Skip to main content
Log in

Experimental and numerical study on motion instability of modular floating structures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The parametric resonance, found in a single floating body, discloses that the kinetic energy could be transferred from heave mode to roll mode and causes motion instability if there is an integer multiple relationship between the two mode natural frequencies. For multi-module floating structures, the event of parametric resonance has not been investigated, but important for the stability and safety design of the floating platforms. In this paper, an experimental test is carried out using five box-type floating modules in a wave flume and observes the existence of the parametric resonance between the heave mode and roll mode. A mathematical model, validated by the experiment data, is built up for the theoretical analysis of the influential factors of the parametric resonance. The effects on the motion instability of wave condition, connector stiffness and number of modules are analyzed. It reveals that an appropriate stiffness setting of the connectors could eliminate the parametric resonance of multi-module floating structures. This theoretical finding is confirmed in a further experiment test on a five-module floating structure in the wave flume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. To, C.W.S., Chen, Z.: First passage time of nonlinear ship rolling in narrow band non-stationary random seas. J. Sound Vib. 309, 197–209 (2008). https://doi.org/10.1016/j.jsv.2007.06.054

    Article  Google Scholar 

  2. Froude, W.: Remarks on Mr. Scott-Russell’s paper on rolling. Trans. Inst. Nav. Archit. 4, 232–275 (1863)

    Google Scholar 

  3. Van Laarhoven, B.J.H.: Stability analysis of parametric roll resonance. Report, Eindhoven University of Technology Department Mechanical Engineering Dynamics and Control Group Eindhoven (2009)

  4. Liaw, C.Y., Bishop, S.R.: Nonlinear heave-roll coupling and ship rolling. Nonlinear Dyn. 8, 197–211 (1995). https://doi.org/10.1007/BF00045774

    Article  Google Scholar 

  5. Blocki, W.: Ship safety in connection with parametric resonance of the roll. Int. Shipbuild. Prog. 27, 36–53 (1980)

    Article  Google Scholar 

  6. Spyrou, K.J.: Designing against parametric instability in following seas. Ocean Eng. 27, 625–653 (2000). https://doi.org/10.1016/S0029-8018(99)00019-0

    Article  Google Scholar 

  7. Chang, B.C.: On the parametric rolling of ships using a numerical simulation method. Ocean Eng. 35, 447–457 (2008). https://doi.org/10.1016/j.oceaneng.2008.01.008

    Article  Google Scholar 

  8. Paulling, J.R.: Parametric rolling of ships—then and now. In: Almeida Santos Neves, M., Belenky, V., de Kat, J., Spyrou, K., Umeda, N. (eds.) Contemporary Ideas on Ship Stability and Capsizing in Waves. Fluid Mechanics and Its Applications, vol 97, pp. 347–360. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-1482-3_19

    Chapter  Google Scholar 

  9. Paulling, J., Rosenberg, R.: On unstable ship motions resulting from nonlinear coupling. J. Sh. Res. 3, 36–46 (1959)

    Article  Google Scholar 

  10. Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J Hydronaut. 7, 145–152 (1973). https://doi.org/10.2514/3.62949

    Article  Google Scholar 

  11. Neves, M.A.S., Pérez, N.A., Rodriguez, C.A.: Hull design considerations for improved stability of fishing vessels in waves. In: Proceedings of the Eighth International Conference on the Stability of Ships and Ocean Vehicles, pp. 291–304 (2003)

  12. Lugni, C., Greco, M., Faltinsen, O.M.: Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation. Appl. Ocean Res. 51, 25–37 (2015). https://doi.org/10.1016/j.apor.2015.02.005

    Article  Google Scholar 

  13. Greco, M., Lugni, C., Faltinsen, O.M.: Influence of motion coupling and nonlinear effects on parametric roll for a floating production storage and offloading platform. Phil. Trans. R. Soc. A. 373, 1–18 (2015)

    Article  Google Scholar 

  14. Rho, J.B., Choi, H.S., Lee, W.C., Shin, H.S., Park, I.K.: Heave and pitch motions of a spar platform with damping plate. In: The Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, pp. 198–201 (2002)

  15. Lim, S.J., Rho, J.B., Choi, H.S.: An experimental study on motion characteristics of cell spar platform. In: The Fifteenth International Offshore and Polar Engineering Conference, Seoul, Korea, pp. 233–237 (2005)

  16. Koo, B.J., Kim, M.H.Ã., Randall, R.E.: Mathieu instability of a spar platform with mooring and risers. Ocean Eng. 31, 2175–2208 (2004). https://doi.org/10.1016/j.oceaneng.2004.04.005

    Article  Google Scholar 

  17. Liu, L., Zhou, B., Tang, Y.: Study on the nonlinear dynamical behavior of deepsea Spar platform by numerical simulation and model experiment. J. Vib. Control. 20, 1528–1537 (2014). https://doi.org/10.1177/1077546312472917

    Article  Google Scholar 

  18. Giorgi, G., Gomes, R.P.F., Bracco, G., Mattiazzo, G.: Numerical investigation of parametric resonance due to hydrodynamic coupling in a realistic wave energy converter. Nonlinear Dyn. 101, 153–170 (2020). https://doi.org/10.1007/s11071-020-05739-8

    Article  Google Scholar 

  19. Yang, H., Xu, P.: Effect of hull geometry on parametric resonances of spar in irregular waves. Ocean Eng. 99, 14–22 (2015). https://doi.org/10.1016/j.oceaneng.2015.03.006

    Article  Google Scholar 

  20. Wei, H., Xiao, L., Tian, X., Low, Y.M.: Nonlinear coupling and instability of heave, roll and pitch motions of semi-submersibles with bracings. J. Fluids Struct. 83, 171–193 (2018)

    Article  Google Scholar 

  21. Wei, H., Xiao, L., Low, Y.M., Tian, X., Liu, M.: Effects of bracings and motion coupling on resonance features of semi-submersible platform under irregular wave conditions. J. Fluids Struct. 92, 102783 (2020). https://doi.org/10.1016/j.jfluidstructs.2019.102783

    Article  Google Scholar 

  22. Watanabe, E., Utsunomiya, T., Wang, C.M.: Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng. Struct. 26, 245–256 (2004). https://doi.org/10.1016/j.engstruct.2003.10.001

    Article  Google Scholar 

  23. Wang, C.M., Tay, Z.Y.: Very large floating structures: applications, research and development. Procedia Eng. 14, 62–72 (2011). https://doi.org/10.1016/j.proeng.2011.07.007

    Article  Google Scholar 

  24. Maeda, H., Inoue, R., Togawa, S., Maruyama, S., Watanabe, K., Suzuki, F.: On the motions of a floating structure which consists of two or three blocks with rigid or pin joints. Nav. Archit. Ocean Eng. 17, 91–98 (1979)

    Google Scholar 

  25. Fu, S.X., Moan, T., Chen, X.J., Cui, W.C.: Hydroelastic analysis of flexible floating interconnected structures. Ocean Eng. 34, 1516–1531 (2007). https://doi.org/10.1016/j.oceaneng.2007.01.003

    Article  Google Scholar 

  26. Xia, S.Y., Xu, D.L., Zhang, H.C., Wu, Y.S.: Multivariable oscillation control of a modularized floating airport with disturbance of uncertain waves. J. Sound Vib. 439, 310–328 (2019). https://doi.org/10.1016/j.jsv.2018.10.006

    Article  Google Scholar 

  27. Tay, Z.Y., Wang, C.M., Utsunomiya, T.: Hydroelastic responses and interactions of floating fuel storage modules placed side-by-side with floating breakwaters. Mar. Struct. 22, 633–658 (2009). https://doi.org/10.1016/j.marstruc.2008.11.002

    Article  Google Scholar 

  28. Zhang, H.C., Xu, D.L., Lu, C., Qi, E.R., Hu, J.J., Wu, Y.S.: Amplitude death of a multi-module floating airport. Nonlinear Dyn. 79, 2385–2394 (2015). https://doi.org/10.1007/s11071-014-1819-x

    Article  Google Scholar 

  29. Koh, H.S., Lim, Y.B.: The floating platform at the Marina Bay, Singapore. Struct. Eng. Int. 19, 33–37 (2009). https://doi.org/10.2749/101686609787398263

    Article  Google Scholar 

  30. Waals, O.J., Bunnik, T.H.J., Otto, W.J.: Model test and numerical analysis for a floating mega island. In: Proceedings of the 37th International Conference on Ocean, Offshore & Arctic Engineering (OMAE2018), pp. 1–11 (2018)

  31. Ding, R., Liu, C.R., Zhang, H.C., Xu, D.L., Shi, Q.J., Yan, D.L., Yang, W.Y., Chen, W.P., Wu, S.: Experimental investigation on characteristic change of a scale-extendable chain-type floating structure. Ocean Eng (2020). https://doi.org/10.1016/j.oceaneng.2020.107778

    Article  Google Scholar 

  32. Chakrabarti, S.K.: Offshore Structure Modeling. World Scientific Publishing, Singapore (1994)

    Book  Google Scholar 

  33. Kou, Y., Xiao, L., Tao, L.: Performance characteristics of a conceptual ring-shaped spar-type VLFS with double-layered perforated-wall breakwater. Appl. Ocean Res. 86, 28–39 (2019). https://doi.org/10.1016/j.apor.2019.02.011

    Article  Google Scholar 

  34. Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. Wiley, New Jersey (1992)

    Book  MATH  Google Scholar 

  35. Ertekin, R.C., Riggs, H.R., Che, X.L., Du, S.X.: Efficient methods for hydroelastic analysis of very large floating structures. J. Sh. Res. 37, 58–76 (1993)

    Article  Google Scholar 

  36. Riggs, H.R., Ertekin, R.C., Mills, T.R.J.: A Comparative study of RMFC and FEA models for the wave-induced response of a MOB. Mar. Struct. 13, 217–232 (2000). https://doi.org/10.1016/S0951-8339(00)00029-0

    Article  Google Scholar 

  37. Zhao, J., Tang, Y., Shen, W.: A study on the combination resonance response of a classic spar platform. J. Vib. Control. 16, 2083–2107 (2010). https://doi.org/10.1177/1077546309349393

    Article  MathSciNet  MATH  Google Scholar 

  38. Gavassoni, E., Gonçalves, P.B., Roehl, D.M.: Nonlinear vibration modes and instability of a conceptual model of a spar platform. Nonlinear Dyn. 76, 809–826 (2014). https://doi.org/10.1007/s11071-013-1171-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley (2007)

    MATH  Google Scholar 

  40. Zhang, H.C., Xu, D.L., Xia, S.Y., Lu, C., Qi, E.R., Tian, C., Wu, Y.S.: Nonlinear network modeling of multi-module floating structures with arbitrary flexible connections. J. Fluids Struct. 59, 270–284 (2015). https://doi.org/10.1016/j.jfluidstructs.2015.09.012

    Article  Google Scholar 

  41. Zhang, X., Zhang, H., Zhou, X., Sun, Z.: Recent advances in wave energy converters based on nonlinear stiffness mechanisms. Appl. Math. Mech. 43, 1081–1108 (2022)

    Article  MATH  Google Scholar 

Download references

Funding

This research work was supported by the National Natural Science Foundation of China (Grant No. 52071138), the Natural Science Foundation of Hunan Province (Grant No 2022JJ30120) and the High-tech Ship Research Projects Sponsored by the Ministry of Industry and Information Technology (Grant No. [2019]357).

Author information

Authors and Affiliations

Authors

Contributions

RD, HZ and DX participated in the design of experiment and the data analysis. RD carried out the wave flume experiment, the data acquisition, the numerical analysis and the manuscript editing. HZ and DX performed the manuscript review. CL and QS helped in conducting the experiment. WZ, JL and YW contributed in the conception and design of this work. All authors have read and approved the content of the manuscript.

Corresponding author

Correspondence to Haicheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Zhang, H., Xu, D. et al. Experimental and numerical study on motion instability of modular floating structures. Nonlinear Dyn 111, 6239–6259 (2023). https://doi.org/10.1007/s11071-022-08163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08163-2

Keywords

Navigation