Skip to main content
Log in

Amplitude death of a multi-module floating airport

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamics of a multi-module floating airport is studied. The floating airport consists of a number of floating modules serially coupled by flexible connectors. A non-autonomous network model is proposed with a new feature of piecewise nonlinear coupling. The investigation focuses on the onset of the phenomenon of amplitude death that corresponds to the oscillation suppression of the floating structure in waves. Parametric domains of the coupling strengths are analyzed for the amplitude death, and the underlying mechanism is further discussed. The transitions among different dynamic patterns are illustrated. Various types of collective behaviors in the network can be observed, such as complete synchronization, generalized lag synchronization, and phase-locking phenomenon. The amplitude death behavior is considerably valuable in providing theoretical guidelines for the safety design of very large floating structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sea Legs of Floating Airport Prevents Roll and Pitch. Popular Mechanics (1930)

  2. Suzuki, H.: Overview of megafloat: concept, design criteria, analysis, and design. Mar. struct. 18(2), 111–132 (2005)

    Article  Google Scholar 

  3. Wu, Y.S.: Hydroelasticity of Floating Bodies. Brunel University, UK (1984)

    Google Scholar 

  4. Derstine, M.S., Brown, R.T.: A compliant connector concept for the mobile offshore base. Mar. Struct. 13(4–5), 399–419 (2000)

    Article  Google Scholar 

  5. Remmers, G., Zueck, R., Palo, P., Taylor, R.: Mobile offshore base. Paper presented at the International Offshore and Polar Engineering Conference, International Offshore and Polar Engineering, Montreal, Canada, May

  6. Riggs, H., Ertekin, R.: Approximate methods for dynamic response of multi-module floating structures. Mar. Struct. 6, 117–141 (1993). doi:10.1016/0951-8339(93)90016-V

    Article  Google Scholar 

  7. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  8. Kaneko, K.: Theory and Applications of Coupled Map Lattices. Wiley, New York (1993)

    MATH  Google Scholar 

  9. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  10. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Aronson, D.G., Ermentrout, G.B., Kopell, N.: Amplitude response of coupled oscillators. Phys. D Nonlinear Phenom. 41(3), 403–449 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Saxena, G., Prasad, A., Ramaswamy, R.: Amplitude death: the emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521(5), 205–228 (2012)

    Article  Google Scholar 

  13. Resmi, V., Ambika, G., Amritkar, R.: General mechanism for amplitude death in coupled systems. Phys. Rev. E 84(4), 046212 (2011)

    Article  Google Scholar 

  14. Bar-Eli, K.: Coupling of chemical oscillators. J. Phys. Chem. 88(16), 3616–3622 (1984)

    Article  Google Scholar 

  15. Mirollo, R.E., Strogatz, S.H.: Amplitude death in an array of limit-cycle oscillators. J. Stat. Phys. 60(1–2), 245–262 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ramana Reddy, D., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80(23), 5109–5112 (1998)

    Article  Google Scholar 

  17. Karnatak, R., Ramaswamy, R., Prasad, A.: Amplitude death in the absence of time delays in identical coupled oscillators. Phys. Rev. E 76(3), 035201 (2007)

    Article  Google Scholar 

  18. Konishi, K.: Amplitude death induced by dynamic coupling. Phys. Rev. E 68(6), 067202 (2003)

    Article  MathSciNet  Google Scholar 

  19. Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81(2), 027201 (2010)

    Article  Google Scholar 

  20. Sharma, P.R., Sharma, A., Shrimali, M.D., Prasad, A.: Targeting fixed-point solutions in nonlinear oscillators through linear augmentation. Phys. Rev. E 83(6), 067201 (2011)

    Article  Google Scholar 

  21. Chen, H.L., Yang, J.Z.: Transition to amplitude death in coupled system with small number of nonlinear oscillators. Commun. Theor. Phys. (Beijing, China) 51, 460–464 (2009)

    Article  Google Scholar 

  22. Matthews, P.C., Strogatz, S.H.: Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 65(14), 1701–1704 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Matthews, P.C., Mirollo, R.E., Strogatz, S.H.: Dynamics of a large system of coupled nonlinear oscillators. Phys. D Nonlinear Phenom. 52(2), 293–331 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hou, Z., Xin, H.: Oscillator death on small-world networks. Phys. Rev. E 68, 055103(R) (2003)

    Article  Google Scholar 

  25. Dodla, R., Sen, A., Johnston, G.L.: Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators. Phys. Rev. E 69(5), 056217 (2004)

    Article  MathSciNet  Google Scholar 

  26. Konishi, K.: Amplitude death in oscillators coupled by a one-way ring time-delay connection. Phys. Rev. E 70(6), 066201 (2004)

  27. Liu, W., Wang, X., Guan, S., Lai, C.-H.: Transition to amplitude death in scale-free networks. New J. Phys. 11(9), 093016 (2009)

    Article  Google Scholar 

  28. Pisarchik, A.: Oscillation death in coupled nonautonomous systems with parametrical modulation. Phys. Lett. A 318(1), 65–70 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. Wiley-Interscience, New York (2011)

    Google Scholar 

  30. Sannasiraj, S., Sundaravadivelu, R., Sundar, V.: Diffraction–radiation of multiple floating structures in directional waves. Ocean Eng. 28(2), 201–234 (2001)

    Article  Google Scholar 

  31. Zheng, Y., You, Y., Shen, Y.: On the radiation and diffraction of water waves by a rectangular buoy. Ocean Eng. 31(8), 1063–1082 (2004)

    Article  Google Scholar 

  32. Sannasiraj, S., Sundar, V., Sundaravadivelu, R.: Mooring forces and motion responses of pontoon-type floating breakwaters. Ocean Eng. 25(1), 27–48 (1998)

    Article  Google Scholar 

  33. Moon, F.C.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley, New York (1987)

    MATH  Google Scholar 

  34. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4–5), 1250–1261 (2008)

    Article  Google Scholar 

  35. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)

    Article  Google Scholar 

  36. Banerjee, T., Biswas, D.: Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion. Chaos 23, 043101 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research work was supported by the 973 research Grant (2013CB036104), the National Natural Science Foundation of China (11072075, 11472100), and the research Grant (50970002) from the State Key Lab of Advanced Design and Manufacturing for Vehicle Body.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daolin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, D., Lu, C. et al. Amplitude death of a multi-module floating airport. Nonlinear Dyn 79, 2385–2394 (2015). https://doi.org/10.1007/s11071-014-1819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1819-x

Keywords

Navigation