Skip to main content

Advertisement

Log in

Evidence of surface rupture associated with historical earthquakes on the Gülbahçe Fault Zone (İzmir, Türkiye) and its application for determination of the surface fault-rupture hazard zone

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In order to decipher the late Pleistocene-Holocene seismotectonic behavior of the Gülbahçe Fault Zone (GBFZ), trench-based palaeoseismological analyses were performed for the first time using optically stimulated luminescence and radiocarbon (14C) dating. The paleoseismic data from this study shows that (i) GBFZ has been responsible for four surface rupturing earthquakes since the late Pleistocene-Holocene, which occurred at 34.6 ± 8.6 ka (E1), 14.4 ± 4.4 ka (E2), 4.3 ± 2.0 ka (E3), and 0.5 ± 0.4 ka (E4), (ii) the recurrence interval of destructive earthquakes on GBFZ were found between 1.4 kyr and 6.2 kyr for the Holocene which signifies irregular recurrence interval, (iii) the elapsed time since the most recent surface rupturing earthquake on the GBFZ is 633 year, (iv) the predicted dextral slip rate ranges from 1.37 mm/yr to 4.27 mm/yr for the western splay of the GBFZ. These results show that the GBFZ has completed approximately half of the destructive earthquakes that ruptured the ground surface corresponding to the narrowest time and should be evaluated within the scope of its potential to produce a destructive earthquake in the near future. GIS-based modeling of the surface rupture zone on the GBFZ ranging in width from 40 to 50 m was defined to reduce the risks that may occur in the future on the fault zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Modified from Göktaş and Cakmakoglu, 2018). Areas where fault traces are observed as follows; D1: Offset of the stream developing on alluvial fan deposits by the fault; D2: Observation point where fault traces are observed between volcano-sedimentary units and Holocene aged front fault deposits; D3: Observation point on the center splay of the GBFZ; D4: Fault slopes of the eastern splay of the GBFZ traced between the carbonates of the Karaburun platform and the Holocene aged alluvium; D5: A view of the eastern splay of the GBFZ from NW; D6: Field view of the fault slope on the eastern splay of the GBFZ

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aitken MJ (1998) Introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. Clarendon Press

    Google Scholar 

  • Aktuğ B, Tiryakioğlu İ, Sözbilir H, Özener H, Özkaymak Ç, Yiğit CÖ, Softa M (2021) GPS derived finite source mechanism of the 30 October 2020 Samos earthquake, Mw= 6.9, in the Aegean extensional region. Turkish J Earth Sci 30:718–737

    Article  Google Scholar 

  • Aktuğ B, Nocquet JM, Cingöz A, Parsons B, Erkan Y et al. (2009) Deformation of Western Türkiye from a combination of permanent and campaign GPS data: Limits to block‐like behavior. Journal of Geophysical Research: Solid Earth, 114(B10).

  • Ambraseys NN, and Finkel C (1995) The seismicity of Türkiye and adjacent areas: a historical review, pp 1500–1800. MS Eren.

  • Ambraseys NN (2009) Earthquakes in the Eastern Mediterranean and the Middle East: A Multidisciplinary Study of Seismicity up to 1900. Cambridge University Press, 970.

  • Barka A, Reilinger R (1997) Active Tectonics of Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Ann Geophys X2(3):587–610

    Google Scholar 

  • Behr CA (1968) Aelius Aristides and the Sacred Tales. Springer, Amsterdam

    Google Scholar 

  • Biasi GP, Weldon RJ, Fumal TE, Seitz GG (2002) Palaeoseismic event dating and the conditional probability of large earthquakes on the southern San Andreas fault, California. Bull Seismol Soc Am 92(7):2761–2781

    Article  Google Scholar 

  • Boncio P, Liberi F, Caldarella M, Nurminen FC (2018) Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning. Nat Hazard 18(1):241–256

    Article  Google Scholar 

  • Bookhagen B, Echtler HP, Melnick D, Strecker MR, Spencer JQG (2006) Using uplifted Holocene beach berms for paleoseismic analysis on the Santa María Island, south-central Chile. Geophys Res Lett 33:L15302

    Article  Google Scholar 

  • Bronk RC (2008) Deposition models for chronological records. Quaternary Sci Rev 27(1–2):42–60. https://doi.org/10.1016/j.quascirev.2007.01.019

    Article  Google Scholar 

  • Bronk RC (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360

    Article  Google Scholar 

  • Çağlayan A, Işık V, and Saber R (2018) Mapping Active Faults and Establishing Fault Avoidance Zones: Applications for Disaster Risk Reduction in Urban Planning in Türkiye. The 36th National and 3rd Int.Geosciences Congress Tehran Iran.

  • Chamot-Rooke N, Rabaute A, Kreemer C (2005) Western Mediterranean Ridge mud belt correlates with active shear strain at the prism-backstop geological contact. Geology 33(11):861–864

    Article  Google Scholar 

  • Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics 597:106–122

    Article  Google Scholar 

  • Christenson GE, Batatian LD, Nelson CV (2003) Guidelines for evaluating surface-fault-rupture hazards in Utah. Utah Geological Survey Miscellaneous Publication, Salt Lake City, pp 03–06

    Google Scholar 

  • Dewey JF, Sengör AMC (1979) Aegean and surrounding regions: complex multiple and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92

    Article  Google Scholar 

  • Duman TY, Çan T, Emre Ö, Kadirioğlu FT, Baştürk NB et al (2018) Seismotectonic database of Türkiye. Bull Earthq Eng 16(8):3277–3316

    Article  Google Scholar 

  • Duran I, Sozbilir H, Eski S, Softa M, Uytun H, Yuksel M, Topaksu M (2021) Paleoseismic history of the Manisa fault zone, Western Anatolia. Turkish Journal of Earth Sciences, 30(SI), 806–832.

  • Emre Ö, Duman TY, Özalp S, Şaroğlu F, Olgun Ş, Elmacı H, Çan T (2018) Active fault database of Türkiye. Bull Earthq Eng 16(8):3229–3275

    Article  Google Scholar 

  • Emre Ö, Özalp S, Doğan A, Özaksoy V, Yıldırım C (2005) İzmir ve yakın çevresinin diri fayları ve deprem potansiyelleri. Jeoloji Etütleri Dairesi, Rapor No:10754 (in Turkish).

  • Emre Ö, Özalp S, Duman TY (2011) 1: 250,000 scale active fault map series of Türkiye. İzmir (NJ 35–7) Quadrangle, Serial Number (6). General Directorate of Mineral Research and Exploration. Ankara, Türkiye.

  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, and Şaroğlu F (2013) Active Fault Map of Türkiye with an Explanatory Text [Active Fault Map of Türkiye]. 1:1,250,000 Scale, General Directorate of Mineral Research and Exploration, Special Publication Series-30, Ankara.

  • Ergin K, Guglu U, Uz Z (1967) A catalogue of earthquakes of Türkiye and surrounding area (11 A.D. to 1964 A.D.). Maden Fakultesi Arz Fizigi Enstitusu Yayinlari, Istanbul, pp 24–169.

  • Erkül F, Helvacı C, Sözbilir H (2005) Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for Western Türkiye. Geol J 40:1–16

    Article  Google Scholar 

  • Erturaç MK (2021) Late Pleistocene-Holocene characteristics of the North Anatolian Fault at Adapazari Basin: evidence from the age and geometry of the fluvial terrace staircases. Turkish J Earth Sci 30(1):93–115

    Article  Google Scholar 

  • Eyübagil EE, Solak Hİ, Kavak US, Tiryakioğlu İ, Sözbilir H, Aktuğ B, Özkaymak Ç (2020) Present-day strike-slip deformation within the southern part of İzmir Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment, western Anatolia. Turkish J Earth Sci. https://doi.org/10.3906/yer2005-26

    Article  Google Scholar 

  • Fattahi M, Walker RT (2007) Luminescence dating of the last earthquake of the Sabzevar thrust fault. NE Iran Quaternary Geochronol 2(1–4):284–289

    Article  Google Scholar 

  • Fattahi M, Nazari H, Bateman MD, Meyer B et al (2010) Refining the OSL age of the last earthquake on the Dheshir fault. Central Iran Quaternary Geochronol 5(2–3):286–292

    Article  Google Scholar 

  • Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S (2020) Fault responsible for Samos earthquake identified. Temblor. https://doi.org/10.32858/temblor.134

    Article  Google Scholar 

  • Geçkin B, Sözbilir H, Özkaymak Ç, Softa M (2021) Active Tectonics of Gülbahçe Fault Zone (GBFZ) by Using Geomorphic Indices, İzmir Province, Western Anatolia, Türkiye. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21(5):1195–1209

    Google Scholar 

  • Gillespie I. (2010). Field surveys undertaken by the Ulster Archaeological Society in 2008. Ulster Journal of Archaeology, pp 171–185.

  • Gökçe O, Tufekci MK, Gurboga Ş (2014) Evaluation of surface faulting hazard and creation of fault avoidance zone. Prime ministry of disaster and emergency management (AFAD), Ankara, Türkiye (in Turkish)

  • Göktaş F, Çakmakoğlu A (2018) 1:100.000 ölçekli Türkiye Jeoloji Haritaları Serisi, Urla-L16 Paftası, No: 258. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (in Turkish).

  • Guidoboni E, Comastri A, Traina G, Nazionale RI, di Geofisica. (1994) Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century. Istituto nazionale di geofisica, Rome, p 504

    Google Scholar 

  • Guidoboni E, Comastri A, Boschi E (2005). The “exceptional” earthquake of 3 January 1117 in the Verona area (northern Italy): A critical time review and detection of two lost earthquakes (lower Germany and Tuscany). Journal of Geophysical Research: Solid Earth 110 (B12).

  • Gürer ÖF, Kaymakçı N, Çakır Ş, Özburan M (2003) Neotectonics of the southeast Marmara region, NW Anatolia. Türkiye J Asian Earth Sci 21(9):1041–1051

    Article  Google Scholar 

  • Hasluck FW (1906) Notes on manuscripts in the British Museum relating to Levant geography and travel. Ann British School Athens 12:196–215

    Article  Google Scholar 

  • Humair F, Abellan A, CArrea D, Battista M, Epard J et al (2015) Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains. Eur J Remote Sensing. 48:541–568

    Article  Google Scholar 

  • ISC (International Seismological center) (2020) Recent Earthquakes in Türkiye [online]. Website http:// http://www.isc.ac.uk/ [accessed 5 June 2020].

  • Jende P, Nex F, Gerke M, Vosselman G (2018) A fully automatic approach to register mobile mapping and airborne imagery to support the correction of platform trajectories in GNSS-denied urban areas. ISPRS J Photogramm Remote Sens 141:86–99

    Article  Google Scholar 

  • Jones RR, Kokkalas S, McCaffrey KJW (2009) Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR). The Arkitsa fault, central Greece, as a case study. Geosphere 5:465–482

    Google Scholar 

  • Kalafat D, Güneş Y, Kekovalı K, Yılmazer M (2011) A revised and extented earthquake cataloque for Türkiye since 1900 (M ≥ 4.0). Boğaziçi University, Istanbul, p 640 (in Turkish)

  • Kaya O (1979) CenterEastern Ege çöküntüsünün (Neojen) stratigrafisi ve tektoniği. Türkiye Jeoloji Kurultayı Bülteni 22:233–274 ((in Turkish))

    Google Scholar 

  • Kaya O, Ünay E, Göktaş F, Saraç G (2007) Early Miocene stratigraphy of Central West Anatolia, Türkiye: implications for the tectonic evolution of the Eastern Aegean area. Geol J 42:85–109

    Article  Google Scholar 

  • Kerr J, Nathan S, Van Dissen R, Webb P, Brunsdon D, King A (2003) Planning for development of land on, or close to active faults: an interim guideline to assist resource management planners in New Zealand. Inst Geol Nucl Sci Client Rep 124:52

    Google Scholar 

  • Ketin I (1948) Über die tektonisch-mechanischen folge rungen aus den grossen Anatolischen erdebeben des letzten dezenniums. Geol Rundsch 36:77–83

    Article  Google Scholar 

  • Koçyiğit A, Özaçar AA (2003) Extensional neotectonic regime through the NE edge of the Outer Isparta Angle, SW Türkiye: new field and seismic data. Turkish J Earth Sci 12:67–90

    Google Scholar 

  • Kouskouna V, Sakkas G (2013) The University of Athens hellenic macroseismic database (HMDB. UoA): historical earthquakes. J Seismol 17(4):1253–1280

    Article  Google Scholar 

  • Kürçer A, Özalp S, Özdemir E, Güldoğan ÇU, Duman TY (2019) Active tectonic and palaeoseismological characteristics of the Yenice-Gönen fault, NW Türkiye, in light of the 18 March 1953 Yenice-Gönen Earthquake (Ms= 7.2). Bull Miner Res Explor 159:29–62

    Google Scholar 

  • Lee J, Spencer J, Owen L (2001) Holocene slip rates along the Owens valley fault, California: implications for the recent evolution of the eastern California shear zone. Geology 29:819–882

    Article  Google Scholar 

  • Lesvigne MV (2013) Smyrne et les tremblements de terre, regards occidentaux sur une ville Phénix. J.-L. Maeso et M.-V. Lesvigne (éds.). Smyrne aux 18e et 19e siècles : regards occidentaux, Catalogue de l’exposition présentée à Arkas Sanat Merkezi, Izmir. Istanbul. pp 129–137.

  • Lykousis V, Anagnostou C, Pavlakis P, Rousakis G, Alexandri M (1995) Quaternary sedimentary history and neotectonic evolution of the eastern part of Central Aegean Sea. Greece Marine Geology 128(1–2):59–71

    Article  Google Scholar 

  • McCalpin JP (2009) Palaeoseismology, second ed. In: International Geophysics Academic Press.

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Int 30(2):109–185

    Article  Google Scholar 

  • Moberg K (2015). Seismic hazard of the Izmir region, Türkiye, based on a probabilistic seismic hazard assessment and stochastic ground motion simulations (Master's thesis, The University of Bergen).

  • Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiat Meas 33:57–73

    Article  Google Scholar 

  • Murray AS, Wintle AG (2003) The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat Meas 37:377–381

    Article  Google Scholar 

  • Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res B 109(11):1–23. https://doi.org/10.1029/2003JB002830

    Article  Google Scholar 

  • Ocakoğlu N, Demirbağ E, Kuşçu İ (2004) Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (Western Türkiye): evidence of strike-slip faulting in the Aegean extensional province. Tectonophysics 391(1–4):67–83

    Article  Google Scholar 

  • Ocakoğlu N, Demirbağ E, Kuşçu İ (2005) Neotectonic structures in İzmir Gulf and surrounding regions (Western Türkiye): evidences of strike-slip faulting with compression in the Aegean extensional regime. Mar Geol 219:155–171

    Article  Google Scholar 

  • Okay Aİ, Siyako M (1991) The New Position of the İzmir-Ankara Neo-Tethyan suture between İzmir and Balıkesir. Ozan Sungurlu Sempozyumu Bildirileri Kitabı içinde, Ankara pp333–355 (in Turkish with English abstract).

  • Özkaymak Ç, Sözbilir H (2008) Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, Western Anatolia. Turkish J Earth Sci 17:615–635

    Google Scholar 

  • Özkaymak Ç, Sözbilir H, Uzel B (2013) Neogene-Quaternary evolution of the Manisa Basin: evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, Western Anatolia. J Geodyn 65:117–135

    Article  Google Scholar 

  • Papazachos BC, Papazachou CB (1997). The earthquakes of Greece. Ziti Publishing 304.

  • Pınar N, Lah E (1952). Türkiye depremleri izahlı kataloğu. Bayındırlık Bakanlığı Yapı ve İmar İşleri Reisliği Yayınları 36 (6) (in Turkish).

  • Pirazzoli PA (1986) Marine notches. In: 0. van de Plassche (Editor), Sea-Level Research: a Manual for the Collection and Evaluation of Data. Geo Books, Norwich, pp 361–400.

  • Prentice CS, Kendrick K, Berryman K, Bayasgalan A, Ritz JF, Spencer JQG (2002) Prehistoric ruptures of the Gurvan Bulag fault, Gobi Altay Mongolia. J Geophys Res 107(B12):2321

    Google Scholar 

  • Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A et al (2008) Luminescence dating: basics, methods and applications. Eiszeitalter, Ggenwart: Quaternary Sci J 57(1/2):95–149

    Google Scholar 

  • Ramsay WM (1885) Notes and inscriptions from Asia Minor. Am J Archaeology History Fine Arts 1(2/3):138–151

    Article  Google Scholar 

  • Ramsey CB, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55(2):720–730

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R and Karam G (2006) GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5).

  • Reimer PJ, Baillie MG, Bard E, Bayliss A, Beck JW et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–1150

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887

    Article  Google Scholar 

  • Rhodes EJ (2011) Optically stimulated luminescence dating of sediments over the past 200,000 years. Annu Rev Earth Planet Sci 39:461–488

    Article  Google Scholar 

  • Ring U, Susanne L, Matthias B (1999) Structural analysis of a complex nappe sequence and late orogenic basins from the Aegean Island of Samos, Greece. J Struct Geol 21:1575–1601

    Article  Google Scholar 

  • Rittase WM, Kirby E, McDonald E, Walker JD, Gosse J, Spencer JQG, Herrs A (2014) Temporal variations in Holocene slip rate along the central Garlock fault, Pilot Knob Valley, California. Lithosphere 6:48–58

    Article  Google Scholar 

  • Säynäjoki R, Packalén P, Maltamo M, Vehmas M, Eerikäinen K (2008) Detection of aspens using high resolution aerial laser scanning data and digital aerial images. Sensors 8:5037–5054. https://doi.org/10.3390/s8085037

    Article  Google Scholar 

  • Shebalin NV, Karnik V, Hadzievski D (1974) Catalogue of Earthquakes. Part I, pp 1901–1970, Part II, prior to 1901; UNESCO, Skopje.

  • Shirahama Y, Yoshimi M, Awata Y, Maruyama T, Azuma T, Miyashita Y, Mori H, Imanishi K, Takeda N, Ochi T, Otsubo M, Asahina D, Miyakawa A (2016) Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu. Jpn Earth Planets Space 68(1):191. https://doi.org/10.1186/s40623-016-0559-1

    Article  Google Scholar 

  • Softa M (2022) Morphometric and kinematic analysis of southern margin of the Küçük Menderes Graben and its tectonic implications in western Anatolia. Arab J Geosci 15(2):1–21

    Article  Google Scholar 

  • Softa M, Spencer JQG, Sözbilir H, Huot S, Emre T (2021) Luminescence dating of Quaternary marine terraces from the coastal part of Eastern Black Sea and their tectonic implications for the Eastern Pontides Türkiye. Turkish J Earth Sci 30(3):359–378

    Article  Google Scholar 

  • Soloviev AA, Vorobieva IA, Panza GF (2000) Modelling of block structure dynamics for the Vrancea region: source mechanisms of the synthetic earthquakes. In Seismic Hazard of the Circum-Pannonian Region. Birkhäuser, Basel, pp 97–110.

  • Soysal H, Sipahioğlu S, Kolçak D, Altınok Y (1981) Türkiye ve Çevresinin Tarihsel Deprem Kataloğu (2100 B.C.–1900 A.D.). TÜBİTAK, Rapor No: TBAG-341 (in Turkish).

  • Sözbilir H, Sümer Ö, Uzel B, Ersoy Y, Erkul F, İnci U et al (2005) İzmir’deki Deprem Dizilerinin Nedeni: faylardaki çiçek yapısı. Cumhuriyet Bilim Teknik Dergisi Deprem Araştırmaları 976:18–19 (in Turkish)

    Google Scholar 

  • Sözbilir H, Sümer Ö, Uzel B, Ersoy Y, Erkül F et al (2009) 17–20 Ekim 2005 Sığacık Körfezi (İzmir) depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi. Western Anadolu Türkiye Jeoloji Bülteni 52(2):217–238 (in Turkish)

    Google Scholar 

  • Sözbilir H, Sarı B, Uzel B, Sümer Ö, Akkiraz S (2011) Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, Western Anatolia, Türkiye. Basin Res 23:423–448. https://doi.org/10.1111/j.1365-2117.2010.00496.x

    Article  Google Scholar 

  • Sözbilir H, Erkül F, Sümer Ö (2003a) Gümüldür (İzmir) ve Bigadiç (Balıkesir) arasında uzanan Miyosen sonrası yaşlı KD-Doğrultulu accommodation zonuna ait saha verileri, Western Anadolu [Field evidence for post-Miocene NE-trending accomodation zone lying between Gümüldür (İzmir) and Bigadiç (Balıkesir), west Anatolia]. Geological Congress of Türkiye; Ankara, Türkiye. pp 85–86 (in Turkish with English abstract).

  • Sözbilir H, Inci U, Erkül F, Sümer Ö (2003b) An active intermittent transform zone accommodating N–S extension in Western Anatolia and its relation to the North Anatolian Fault System. In International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems; İzmir, Türkiye.

  • Sözbilir H, Sümer Ö, Uzel B, Özkaymak Ç, Ersoy Y et al. (2007) Western Anadolu’da İzmir-Balıkesir transfer zonu içinde kalan aktif doğrultu-atımlı faylarla sınırlı havzaların jeolojik özellikleri [Geological features of basins bordered by active strike-slip faults that located in the İzmir- Balıkesir transfer zone, Western Anatolia]. 11th Meeting of Active Tectonics Research Group. pp. 42 (in Turkish with English abstract).

  • Sözbilir H, Ozkaymak C, Uzel B, Sumer O (2018) Criteria for surface rupture microzonation of active faults for earthquake hazards in urban areas, N. Handbook of research on trends and digital advances in engineering geology, 765 pages, IGI Global. https://doi.org/10.4018/978-1-5225-2709-1.

  • Sözbilir H, Softa M, Eski S, Tepe Ç, Akgün M, Pamukçu OA, Çırmık A, Utku M, Özdağ ÖC, Özden G, Özçelik Ö, Evlek DA, Çakır R, Baba A, Uzelli T and Tatar O (2020) 30 Ekim 2020 Sisam (Samos) Depremi (Mw: 6,9) Değerlendirme Raporu. Dokuz Eylül Üniversitesi, Deprem Araştırma ve Uygulama Merkezi (DAUM) http://daum.deu.edu.tr/wp-content/uploads/2020/11/SamosDeprem-Raporu.pdf (in Turkish).

  • Spencer JQG, Robinson RAJ (2008) Dating intramontane alluvial deposits from NW Argentina using luminescence techniques: Problems and potential. Geomorphology 93(1–2):144–155

    Article  Google Scholar 

  • Stahl T, Quigley MC, McGill A, Bebbington MS (2016) Modeling earthquake moment magnitudes on imbricate reverse faults from palaeoseismic data: fox peak and forest creek faults, South Island, New Zealand. Bull Seismol Soc Am 106(5):2345–2363

    Article  Google Scholar 

  • Stiros SC (2000) Fault pattern of Nisyros Island volcano (Aegean Sea, Greece): structural, coastal and archaeological evidence. Geological Society, London, Special Publications, 171(1), 385-397

  • Tan O (2013) The dense micro-earthquake activity at the boundary between the Anatolian and the Aegean microplates. J Geogdynamics 65:199–217

    Article  Google Scholar 

  • Tan O, Tapirdamaz MC, Yörük A (2008) The earthquake catalogues for Türkiye. Turkish J Earth Sci 17(2):405–418

    Google Scholar 

  • Taxeidis K (2003) Study of historical seismicity of the Eastern Aegean Islands. University of Athens, Greece (in Greek)

    Google Scholar 

  • Trexler CC, Cowgill E, Spencer JQG, Godoladze T (2020) Rate of active shortening across the southern thrust front of the Greater Caucasus in western Georgia from kinematic modeling of folded river terraces above a listric thrust. Earth Planet Sci Lett 544:116362

    Article  Google Scholar 

  • Tsodoulos IM, Stamoulis K, Caputo R, Koukouvelas I, Chatzipetros A et al (2016) Middle-Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: insight from optically stimulated luminescence (OSL) dating and palaeoseismology. Tectonophysics 687:14–27

    Article  Google Scholar 

  • Üner S, Özsayın E, Selçuk AS (2019) Seismites as an indicator for determination of earthquake recurrence interval: a case study from Erciş fault (Eastern Anatolia-Türkiye). Tectonophysics 766:167–178

    Article  Google Scholar 

  • Urbancic T, Roskar Z, Fras MK, Grigillo D (2019) New target for accurate terrestrial laser scanning and unmanned aerial vehicle point cloud registration. Sensors. https://doi.org/10.3390/s19143179

    Article  Google Scholar 

  • Uzel B, Sözbilir H (2008) A first record of a strike-slip basin in Western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish J Earth Sci 17:559–591

    Google Scholar 

  • Uzel B, Sözbilir H, Özkaymak Ç, Kaymakcı N, Langereis CG (2013) Structural evidence for strike-slip deformation in the İzmir-Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Türkiye). J Geodyn 65:94–116

    Article  Google Scholar 

  • Uzelli T, Baba A, Mungan G, Dirik K, Sözbilir H (2017) Conceptual model of the Gülbahçe geothermal system, Western Anatolia, Türkiye: based on structural and hydrogeochemical data. Geothermics 68:67–85

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84–4:974–1002

    Google Scholar 

  • Wintle AG, Murray AS (2006) A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat Meas 41:369–391

    Article  Google Scholar 

  • Yerli B, Softa M, Sözbilir H (2021) Gümüldür fayinin morfometrik ve kinematik analizi ve bati anadolu’daki sismotektonik anlamı. Türkiye Jeoloji Bülteni 64(3):1–34 (in Turkish)

    Google Scholar 

Download references

Acknowledgements

This study is part of a PhD thesis undertaken by the first author, is supervised by the second author at the Institute of Natural and Applied Sciences, Dokuz Eylül University, Türkiye. The authors would like to thank Pınar Gırca from the University of Southern Queensland for English editing. The authors would also thank Alper Baba (Vice-Rector of the İzmir Institute of Technology), Yusuf Baran (The Rector of the İzmir Institute of Technology), and the students from Dokuz Eylül University Mertkan Osman Geçievi, İsmail Duran, Neslihan Kıray, Büşra Yerli and Oğuz Yasin Özsoy for their help during the field and trench studies.

Funding

This research is supported by TÜBİTAK (The Scierntific and Technological Research Council of Turkey) with project Number 11Y190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Şengöçmen Geçkin.

Ethics declarations

Conflict of interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geçkin, B.Ş., Sözbilir, H., Özkaymak, Ç. et al. Evidence of surface rupture associated with historical earthquakes on the Gülbahçe Fault Zone (İzmir, Türkiye) and its application for determination of the surface fault-rupture hazard zone. Nat Hazards 114, 2189–2218 (2022). https://doi.org/10.1007/s11069-022-05467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05467-9

Keywords

Navigation