Skip to main content
Log in

Morphometric and kinematic analysis of southern margin of the Küçük Menderes Graben and its tectonic implications in western Anatolia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Küçük Menderes Graben is located in the highly active extensional-dominated region of the western Anatolia, and it is delimited by İzmir Balıkesir Transfer Zone (İBTZ). Even though the formation of Küçük Menderes Graben (KMG) has been studied since mid-1800, the studies regarding tectonic and geomorphology aim to unravel the Quaternary activity and landscape evolution has so far been rarely addressed. To fill this gap that exists in literature, in this study, relative tectonic assessment of six morphometric indices and kinematic analysis was performed along the southern margin of the KMG. The results denoted asymmetry factor (13-AF-84), hypsometric curve (HC) and hypsometric integral (0.34-HI-0.90), mountain front sinuosity (1.2-Smf-1.95), valley floor width-to-height ratio (0.21-Vf-1.81), basin shape analyses (0.80-Bs-8.48), and stream length gradient index (28-Hack-778). They signified that relatively high tectonic activity is concentrated in around the Tire region and Beydağı region, along the Tire fault and Halıköy-Beydağ/Konaklı-Kemenler faults. In contrast, the rest of the regions exhibits moderate tectonic activity. These findings particularly indicate a differential uplift along the southern margin of the KMG. The geomorphic and paleo stress data along with field evidence imply that (i) WNW-ESE-oriented contraction associated with an NNE-SSW-oriented extension prevails over the KMG, (ii) the KMG is delimited by NE-SW trending dextral strike-slip fault at the west within the İBTZ, and (iii) uplift rate recorded for the Quaternary is somewhat moderate and preliminary qualitative morphometric analysis suggests rates higher than 0.05 mm a−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahnert F (1970) Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am J Sci 268(3):243–263

    Google Scholar 

  • Akkar S, Azak T, Çan T et al (2018) Evolution of seismic hazard maps in Turkey. Bull Earthq Eng 16:3197–3228. https://doi.org/10.1007/s10518-018-0349-1

    Article  Google Scholar 

  • Aktuğ B, Parmaksız E, Kurt MA et al (2013) Deformation of Central Anatolia: GPS implications. J Geodyn 67:78–96. https://doi.org/10.1016/j.jog.2012.05.008

    Article  Google Scholar 

  • Aktuğ B, Tiryakioğlu İ, Sözbilir H et al (2021) GPS derived finite source mechanism of the 30 October 2020 Samos Earthquake, Mw=6.9 in Aegean extensional region. Turk J Earth Sci. https://doi.org/10.3906/yer-2101-18

  • Altunel E, Pınar A (2021) Tectonic implications of the Mw 6.8, 30 October 2020 Kusadasi Gulf earthquake in the frame of active faults of Western Turkey. Turk J Earth Sci. https://doi.org/10.3906/yer-2011-6

  • Ambraseys N (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, New York

    Google Scholar 

  • Angelier J (1984) Tectonic analysis of fault slip data sets. J Geophys Res Solid Earth 89(B7):5835–5848

    Google Scholar 

  • Barka A, Reilinger R (1997) Active tectonics of Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Ann Geophys X2(3):587–610

    Google Scholar 

  • Bayrak Y, Bayrak E (2012) An evaluation of earthquake hazard potential for different regions in Western Anatolia using the historical and instrumental earthquake data. Pure Appl Geophys 169:1859–1873

    Google Scholar 

  • Bozkurt E (2001) Neotectonics of Turkey - a synthesis. Geodin Acta 14:3–30

    Google Scholar 

  • Bozkurt E, Rojay B (2005) Episodic, two-stage Neogene extension and short-term intervening compression in western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst. Geodin Acta 18:295–312

    Google Scholar 

  • Bozkurt E, Winchester JA, Ruffet G, Rojay B (2008) Age and chemistry of Miocene volcanic. Rocks from the Kiraz Basin of the Küçük Menderes Graben: its significance for the extensional tectonics of Southwestern Anatolia, Turkey. Geodin Acta 21(5-6):239–257

    Google Scholar 

  • Bull WB (2007) Tectonic geomorphology of mountains. Blackwell Publishing, Oxford

    Google Scholar 

  • Bull WB (2009) Tectonically active landscapes. Wiley-Blackwell, Oxford

    Google Scholar 

  • Bull WB, McFadden LD (1977) Tectonic geomorphology north and south of the Garlock fault, California. In: Doehering DO (ed). Geomorphology in arid regions. Proceedings at the Eighth Annual Geomorphology Symposium, Binghamton, New York, pp 115–138

  • Burbank DW, Anderson RS (2011) Tectonic geomorphology. John Wiley & Sons

    Google Scholar 

  • Buscher JT, Hampel A, Hetzel R et al (2013) Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J Geol Soc 170(4):669–683

    Google Scholar 

  • Candan O, Dora OÖ, Kun N, Akal C, Koralay E (1992) Aydın Dağları (Menderes Masifi) güney kesimindeki allokton metamorfik birimler. Türkiye Petrol Jeologları Derneği Bülteni 4(1):93–110 (In Turkish)

    Google Scholar 

  • Cannon PJ (1976) Generation of explicit parameters for a quantitative geomorphic study of the mill creek drainage basin. Oklahoma Geol Notes 36(1):3–16

    Google Scholar 

  • Chamot-Rooke N, Dotmed Working Group (2005). DOTMED – Deep Offshore Tectonics of the Mediterranean: a synthesis of deep marine data in eastern Mediterranean, Mémoire de la Société géologique de France and American Association of Petroleum Geologists numéro special: 177, 64 pp, 9 maps

  • Chang Z, Sun W, Wang J (2015) Assessment of the relative tectonic activity in the Bailongjiang Basin: insights from DEM-derived geomorphic indices. Environ Earth Sci 74(6):5143–5153

    Google Scholar 

  • Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics 597:106–122

    Google Scholar 

  • Chen YC, Sung Q, Cheng KY (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56(1–2):109–137

    Google Scholar 

  • Dehbozorgi M, Pourkermani M, Arian M et al (2010) Geomorphology quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology 121(3):329–341. https://doi.org/10.1016/j.geomorph.2010.05.002

    Article  Google Scholar 

  • Delcaillau B, Amrhar M, Namous M et al (2011) Transpressional tectonics in the Marrakech High Atlas: insight by the geomorphic evolution of drainage basins. Geomorphology 134:344–362

    Google Scholar 

  • Dewey JF, Sengör AMC (1979) Aegean and surrounding region: complex multiplate and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92

    Google Scholar 

  • Dora Ö (1976) Die Feldspäte als petrogenetischer indikator im Menderes Massiv/Westanatolien. Neues Jb Mineral Abh 127(3):289–310

    Google Scholar 

  • DSI (2016) Küçük menderes havzası master plan nihai raporu. T.C. Devlet Su İşleri Genel Müdürlüğü, Ankara (In Turkish)

    Google Scholar 

  • Dumont JF, Uysal Ş, Şi̇mşek Ş, Karamanderesi̇ IH, Letouzey J (1979) Güneybatı Anadolu’daki Grabenlerin Oluşumu. Maden Tetkik ve Arama Dergisi 92: 7-17 (In Turkish).

  • El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller EA (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96:150–173

    Google Scholar 

  • Elias Z (2015) The neotectonic activity along the lower Khazir River by using SRTM image and geomorphic indices. Earth Sci 1(1):50–58. https://doi.org/10.11648/j.earth.20150401.15

    Article  Google Scholar 

  • Emre Ö, Duman TY, Özalp S et al (2018) Active fault database of Turkey. Bull Earthq Eng 16(8):3229–3275

    Google Scholar 

  • Emre Ö, Özalp S, Duman TY (2011a) 1: 250,000 scale active fault map series of Turkey. İzmir (NJ 35-7) Quadrangle, Serial Number (6). General Directorate of Mineral Research and Exploration, Ankara

    Google Scholar 

  • Emre T, Sözbilir H (2007) Tectonic Evolution of the Kiraz Basin, Küçük Menderes Graben: evidence for compression/uplift related basin formation overprinted by extensional tectonics in West Anatolia. Turk J Earth Sci 16:441–470

    Google Scholar 

  • Emre T, Sözbilir H, Gökçen N (2006) Neogene-Quaternary stratigraphy of Kiraz-Beydağ region, Küçük Menderes Graben, West Anatolia. Gen Director Miner Res Explor (MTA) Bull 132:1–32

    Google Scholar 

  • Emre T, Tavlan M, Akkiraz MS, Işıntek İ (2011b) Stratigraphy, sedimentology and palynology of the Neogene–Pleistocene (?) rocks around Akçaşehir-Tire-İzmir (Küçük Menderes Graben, Western Anatolia). Turk J Earth Sci 20:27–56

    Google Scholar 

  • Erinç S (1955) Die morduologischen Entwicklungsstadien der Küçükmenderes Masse. Rev Geogr Inst Univ Istanbul 2:93–95

    Google Scholar 

  • Erkül F, Helvacı C, Sözbilir H (2005) Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Geol J 40:1–26

    Google Scholar 

  • Eski S, Sözbilir H, Uzel B, Özkaymak Ç, Sümer Ö (2020) Gölmarmara Fayı’nın Morfotektonik Evriminin CBS Tabanlı Yöntemlerle Araştırılması, Gediz Grabeni, Batı Anadolu. Türk Jeol Bül 63(3):345–372

    Google Scholar 

  • García-Delgado H, Velandia F (2020) Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology 349:106914

    Google Scholar 

  • Geçkin B, Sözbilir H, Özkaymak Ç, Softa M (2021) Active Tectonics of Gülbahçe Fault Zone (GBFZ) by using geomorphic indices, İzmir Province, Western Anatolia, Turkey. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21(5):1195–1209

    Google Scholar 

  • Gessner K, Gallardo LA, Markwitz V, Ring U, Thomson SN (2013) What caused the denudation of the Menderes Massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res 24:243–274

    Google Scholar 

  • Gessner K, Ring U, Lackmann W, Passchier CW, Güngor T (1998) Structure and crystal thickening of the Menderes massif, southwest Turkey, and consequences for large-scale correlations between Greece and Turkey. Bull Geol Soc Greece 32(1):145–152

    Google Scholar 

  • Griffiths GA (1979) Recent sedimentation history of the Waimakariri River, New Zealand. J Hydrol N Z:6–28

  • Griffiths GA (1981) Some suspended sediment yields from south island catchments, New Zealand. JAWRA J Am Water Resour Assoc 17(4):662–671

    Google Scholar 

  • Guidoboni E, Comastri A, Triana G (1994) Catalogue of ancient earthquakes in the Mediterranean area up to the10th century. Istituto Nazionale di Geofisica, Roma

    Google Scholar 

  • Gunnell Y, Calvet M, Brichau S, Carter A, Aguilar JP, Zeyen H (2009) Low long-term erosion rates in high-energy mountain belts: insights from thermo-and biochronology in the Eastern Pyrenees. Earth Planet Sci Lett 278(3-4):208–218

    Google Scholar 

  • Gürçay Ş, Çifçi G (2021) Submarine stratigraphic and structural features offshore of Küçük Menderes Graben (North of Samos Island) and surroundings by high resolution seismic reflection method. International Workshop on Active Tectonics and Seismicity of the Aegean Region with Special Emphasis on the Samos Earthquake Struck on 30 October 2020 (ASASE2021). Turk J Earth Sci 30:MA-31

    Google Scholar 

  • Gürer A, Bayrak M, Gürer ÖF (2004) Magnetotelluric images of the crust and mantle in the southwestern Taurides, Turkey. Tectonophysics 391(1):109–120

    Google Scholar 

  • Hack JT (1973) Stream-profile analysis and stream-gradient index. Journal of Research of the U. S. Geol Surv 1:421–429

    Google Scholar 

  • Hakyemez HY, Erkal T, Göktaş F (1999) Late Quaternary evolution of the Gediz and Büyük Menderes grabens, Western Anatolia, Turkey. Quat Sci Rev 18:549–554

    Google Scholar 

  • Hamilton JW, Strickland HE (1840) On the geology of the western party of Asia Minor, 2nd edn. Transactions of the Geological Society of London, London

    Google Scholar 

  • Hare PW, Gardner TW (1985) Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphol 4:75–104

    Google Scholar 

  • Hecht H, Oguchi T (2017) Global evaluation of erosion rates in relation to tectonics. Progress Earth Planet Sci 4(1):1–9

    Google Scholar 

  • Heineke C, Hetzel R, Akal C, Christl M (2017) Constraints on water reservoir lifetimes from catchment-wide 10Be erosion rates-a case study from western Turkey. Water Resour Res 53:9206–9224. https://doi.org/10.1002/2017WR020594

    Article  Google Scholar 

  • Heineke C, Hetzel R, Nilius NP et al (2019) Spatial patterns of erosion and landscape evolution in a bivergent metamorphic core complex revealed by cosmogenic 10Be: the central Menderes Massif (western Turkey). Geosphere 15(6):1846–1868. https://doi.org/10.1130/GES02013.1

    Article  Google Scholar 

  • Hurtez JE, Sol C, Lucazeau F (1999) Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surf Process Landf 24:799–808

    Google Scholar 

  • ISC (International Seismological center) (2021). Recent earthquakes in Turkey [online]. Website http:// http://www.isc.ac.uk/. Accessed 27 May 2021

  • İzdar E (1971) Introduction to geology and metamorphism of the Menderes massif of western Turkey. Geology and history of Turkey. The Petroleum Exploration Society of Libya, Tripoli, pp 495–500

    Google Scholar 

  • Kadirioğlu FT, Kartal RF, Kılıç T et al (2017) Türkiye ve yakın çevresi için geliştirilmiş aletsel dönem (1900 - 2012) deprem kataloğu (M ≥4,0). In: Duman TY (ed) Türkiye Sismotektonik Haritası Açıklama Kitabı. Ankara, Türkiye, Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi (In Turkish)

    Google Scholar 

  • Kaya O (1979) Neogene stratigraphy and tectonics of the Middle East Aegean depression. Geol Soc Turk Bull 22:35–58

    Google Scholar 

  • Keller EA, Pinter N (2002) Active tectonics: earthquakes, uplift, and landscape, 2nd edn. Prentice Hall, Upper Saddle River, America

    Google Scholar 

  • Ketin I (1948) Über die tektonisch-mechanischen folge rungen aus den grossen Anatolischen erdebeben des letzten dezenniums. Geol Rundsch 36:77–83

    Google Scholar 

  • Konak N (2002) 1/500.000 Türkiye Jeoloji Haritası İzmir Paftası, (Şenel M. (ed.)) Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara

  • Koukouvelas IK, Zygouri V, Nikolakopoulos K, Verroios S (2018) Treatise on the tectonic geomorphology of active faults: the significance of using a universal digital elevation model. J Struct Geol 116:241–252

    Google Scholar 

  • Lykousis V, Anagnostou C, Pavlakis P, Rousakis G, Alexandri M (1995) Quaternary sedimentary history and neotectonic evolution of the eastern part of Central Aegean Sea, Greece. Mar Geol 128(1-2):59–71

    Google Scholar 

  • Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: insights from DEM derived geomorphic indices and drainage analysis. Geosci Front 3(4):407–428. https://doi.org/10.1016/j.gsf.2011.12.002

    Article  Google Scholar 

  • Matsushi Y, Wakasa S, Matsuzaki H, Matsukura Y (2006) Long-term denudation rates of actively uplifting hillcrests in the Boso Peninsula, Japan, estimated from depth profiling of in situ-produced cosmogenic 10Be and 26Al. Geomorphology 82(3-4):283–294

    Google Scholar 

  • Mayer L (1986) Tectonic geomorphology of escarpments and mountain fronts. In Wallace RE (ed). Active tectonics, studies in geophysics. 1 st ed. Washington, D.C: National Academy Press, pp. 125-135.

  • McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J R Astron Soc 30:109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x

    Article  Google Scholar 

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201(3-4):481–489

    Google Scholar 

  • Nas M, Lyubushin A, Softa M, Bayrak Y (2020) Comparative PGA-driven probabilistic seismic hazard assessment (PSHA) of Turkey with a Bayesian perspective. J Seismol 24(6):1109–1129

    Google Scholar 

  • Ocakoğlu N, Demirbağ E, Kuşçu İ (2005) Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): evidences of strike-slip faulting with compression in the Aegean extensional regime. Mar Geol 219(2-3):155–171

    Google Scholar 

  • Okay Aİ, Siyako M (1991) The new position of the İzmir-Ankara Neo-Tethyan suture between İzmir and Balıkesir. Proceedings of the Ozan Sungurlu Symposium, Ankara, pp 333–355

    Google Scholar 

  • Özkaymak Ç (2015) Tectonic analysis of the Honaz Fault (Western Anatolia) using geomorphic indices and the regional implications. Geodin Acta 27(2-3):110–129

    Google Scholar 

  • Özkaymak Ç, Sözbilir H (2008) Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, Western Anatolia. Turk J Earth Sci 17:615–635

    Google Scholar 

  • Özkaymak Ç, Sözbilir H (2012) Tectonic geomorphology of the Spildağı high ranges, Western Anatolia. Geomorphology 173-174:128–140

    Google Scholar 

  • Özkaymak Ç, Sözbilir H, Uzel B (2013) Neogene–Quaternary evolution of the Manisa Basin: evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. J Geodyn 65:117–135

    Google Scholar 

  • Özkaymak Ç, Sözbilir H, Uzel B, Akyüz HS (2011) Geological and paleoseismological evidence for late Pleistocene–Holocene activity on the Manisa Fault Zone, western Anatolia. Turk J Earth Sci 20:449–474

    Google Scholar 

  • Özsayın E (2016) Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodin Acta 28(4):241–253

    Google Scholar 

  • Palumbo L, Hetzel R, Tao M, Li X (2010) Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet. Geomorphology 117(1-2):130–142

    Google Scholar 

  • Parra M, Mora A, Jaramillo C, Torres V, Zeilinger G, Strecker MR (2010) Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Res 22(6):874–903

    Google Scholar 

  • Parra M, Mora A, Sobel ER, Strecker MR, González R (2009) Episodic orogenic front migration in the northern Andes: constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics 28(4):TC4004

    Google Scholar 

  • Pavlides S, Tsapanos T, Zouros N, Sboras S, Koravos G, Chatzipetros A (2009) Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. In Earthquake Geotechnical Engineering Satellite Conference XVIIth International Conference on Soil Mechanics & Geotechnical Engineering:1-13

  • Pérez-Peña JV, Azor A, Azañón JM, Keller EA (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119(1-2):74–87.

  • Phillippson A (1918) Kleinasien. Handbuch der regionalen geologie. 1 st ed. Germany: Winters universitätsbuchhandlung.

  • Phillipson A (1910-1915) Reisen und Forschungen im Westlichen Kleinasien. Ergänzungshefte 167, 172, 177, 180, 183 der Petermanns Mitteilungen: Gotha, Jüstus Perthes

  • Phillipson A (1911) Reisen und forschungen im Westlichen Klcinasien. Petermanns Miu Erganzonpsheft, 2nd edn. Gotha, Justus Perthes, Germany

    Google Scholar 

  • Radaideh OMA, Mosar J (2019) Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: insights from DEM-derived geomorphic indices. Tectonophysics 768:228179

    Google Scholar 

  • Ramírez-Herrera MT (1998) Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surf Process Landf 23(4):317–332

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P et al (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 1978-2012:111

    Google Scholar 

  • Rimando SM, Schoenbohm LM (2020) Regional relative tectonic activity of structures in the Pampean flat slab segment of Argentina from 30° to 32°. Geomorphology 350:106908

    Google Scholar 

  • Ring U, Laws S, Bernet M (1999) Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean Island of Samos, Greece. J Struct Geol 21:1575–1601

    Google Scholar 

  • Rockwell TK, Keller EA, Johnson DL (1984) Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In: Morisawa, M. (ed). Tectonic geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. 1 st ed. Boston: Allen and Unwin Publishers, pp. 183-207.

  • Rojay B, Toprak V, Demirci C, Süzen L (2005) Plio-Quaternary evolution of the Küçük Menderes Graben Southwestern Anatolia, Turkey. Geodin Acta 18:317–331

    Google Scholar 

  • Royden L (1993) Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12:303–325

    Google Scholar 

  • Scharf TE, Codilean AT, De Wit M, Jansen JD, Kubik PW (2013) Strong rocks sustain ancient postorogenic topography in southern Africa. Geology 41(3):331–334

    Google Scholar 

  • Schuiling RD (1962) On petrology, age, and structure of the Menderes Massif migmatite complex, SW Turkey. MTA Bull 58:71–84

    Google Scholar 

  • Schwanghart W, Kuhn NJ (2010) TopoToolbox: a set of Matlab functions for topographic analysis. Environ Model Softw 25:770–781

    Google Scholar 

  • Selby MJ (1980) A rock strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Z Geomorphol 24:31–51

    Google Scholar 

  • Şengör AMC, Görür N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle K, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation, 1st edn. Society of Economic Paleontologists and Mineralogists, Special Publication, Texas

    Google Scholar 

  • Seyitoğlu G, Işik V (2009) Meaning of the Küçük Menderes Graben in the tectonic framework of the central Menderes metamorphic core complex (western Turkey). Geol Acta 7:323–331

    Google Scholar 

  • Siame LL, Angelier J, Chen RF, Godard V, Derrieux F, Bourlès DL et al (2011) Erosion rates in an active orogen (NE-Taiwan): a confrontation of cosmogenic measurements with river suspended loads. Quat Geochronol 6(2):246–260

    Google Scholar 

  • Silva PG, Goy JL, Zazo C, Bardajı́ T (2003) Fault generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology 50: 203-225.

  • Softa M, Emre T, Sözbilir H, Spencer JQG, Turan M (2018) Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodin Acta 30(1):249–264

    Google Scholar 

  • Soysal H, Sipahioğlu S, Kolçak D, Altınok Y (1981) Türkiye ve çevresinin tarihsel deprem kataloğu (2100 BC–1900 AD). Ankara: TÜBİTAK Rapor No: TBAG-341 (In Turkish)

  • Sözbilir H, İnci U, Erkül F, Sümer Ö (2003) An active intermittent transform zone accommodating N-S Extension in Western Anatolia and its relation to the North Anatolian Fault system, International Workshop on the North Anatolian, East Anatolian, and Dead Sea Fault Systems. In Recent progress in tectonics and paleoseismology, and field training course in paleoseismology. Poster Session P2/2: Ankara

  • Sözbilir H, Sarı B, Uzel B, Sümer Ö, Akkiraz S (2011) Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, Western Anatolia, Turkey. Basin Res 23:423–448. https://doi.org/10.1111/j.1365-2117.2010.00496.x

    Article  Google Scholar 

  • Sözbilir H, Sümer Ö, Uzel B et al (2007) Geological features of strikeslip basins located within the İzmir-Balıkesir Transfer Zone, western Anatolia. 11th Workshop of Active Tectonics Research Group Meeting, Abstracts, p. 42 (In Turkish)

  • Sözbilir H, Sümer Ö, Uzel B et al (2009) The seismic geomorphology of the Sığacık Gulf (İzmir) earthquakes of October 17-20, 2005 and their relationships with the stress field of their western Anatolian region. Geol Bull Turk 52:217–238 [in Turkish with English abstract]

    Google Scholar 

  • Sözbilir H, Uzel B, Sümer Ö et al (2008) Evidence for a kinematically linked E-W trending İzmir Fault and NE-trending Seferihisar Fault: kinematic and paleoseismogical studies carried out on active faults forming the İzmir Bay, Western Anatolia. Geol Bull Turk 51:91–114 [in Turkish with English abstract]

    Google Scholar 

  • Steer P, Simoes M, Cattin R, Shyu JBH (2014) Erosion influences the seismicity of active thrust faults. Nat Commun 5(1):1–7

    Google Scholar 

  • Struth L, Babault J, Teixell A (2015) Drainage reorganization during mountain building in the river system of the Eastern Cordillera of the Colombian Andes. Geomorphology 250:370–383

    Google Scholar 

  • Struth L, Teixell A, Owen LA, Babault J (2017) Plateau reduction by drainage divide migration in the Eastern Cordillera of Colombia defined by morphometry and 10Be terrestrial cosmogenic nuclides. Earth Surf Process Landf 42(8):1155–1170

    Google Scholar 

  • Sümer Ö (2015) Evidence for the reactivation of a preexisting zone of weakness and its contributions to the evolution of the Küçük Menderes Graben: a study on the Ephesus Fault, Western Anatolia, Turkey. Geodin Acta 27(2-3):130–154

    Google Scholar 

  • Süzen ML, Toprak V, Rojay B (2006) High-altitude Plio-Quaternary fluvial deposits and their implication on the tilt of a horst, western Anatolia, Turkey. Geomorphology 74:80–99

    Google Scholar 

  • Tepe Ç, Sözbilir H (2017) Tectonic geomorphology of the Kemalpaşa Basin and surrounding horsts, southwestern part of the Gediz Graben, Western Anatolia. Geodin Acta 29(1):70–90

    Google Scholar 

  • Topal S (2018) Quantitative analysis of relative tectonic activity in the Acıgöl fault, SW Turkey. Arab J Geosci 11(9):1–10

    Google Scholar 

  • Topal S (2019a) Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): insights from geomorphic indices and drainage analysis. J Mt Sci 16(4):909–923

    Google Scholar 

  • Topal S (2019b) Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9(1):37–48

    Google Scholar 

  • Topal S, Keller E, Bufe A, Koçyiğit A (2016) Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology 259:55–69

    Google Scholar 

  • Tsimi C, Ganas A (2015) Using the ASTER global DEM to derive empirical relationships among facet slope, facet height, and slip rates along active normal faults. Geomorphology 234:171–181

    Google Scholar 

  • Uzel B, Langereis CG, Kaymakci N et al (2015) Paleomagnetic evidence for an inverse rotation history of western Anatolia during the exhumation of Menderes core complex. Earth Planet Sci Lett 414:108–125

    Google Scholar 

  • Uzel B, Sözbilir H (2008) A first record of a strike-slip basin in Western Anatolia and its tectonic implication: the Cumaovası Basin. Turk J Earth Sci 17:559–591

    Google Scholar 

  • Wells SG, Bullard TF, Menges CM et al (1988) Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology 1:239–265

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Willgoose G, Hancock G (1998) Revisiting the hypsometric curve as an indicator of form and process in transportlimited catchment. Earth Surf Process Landf 23:611–623

    Google Scholar 

  • Wölfler A, Glotzbach C, Heineke C et al (2017) Late Cenozoic cooling history of the central Menderes Massif: timing of the Büyük Menderes detachment and the relative contribution of normal faulting and erosion to rock exhumation. Tectonophysics 717:585–598. https://doi.org/10.1016/j.tecto.2017.07.004

    Article  Google Scholar 

  • Yerli B, Softa M, Sözbilir H (2021) Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı. Türk Jeol Bül 64(3):349–382

    Google Scholar 

  • Yıldırım C (2014) Relative tectonic activity assessment of the Tuz Gölü fault zone: Central Anatolia, Turkey. Tectonophysics 630:183–192

    Google Scholar 

  • Yen-Chieh, Chen Quocheng, Sung Kuang-Yu, Cheng (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56(1–2):109–137. https://doi.org/10.1016/S0169-555X(03)00059-X

Download references

Acknowledgements

The author would particularly like to thank Hasan Sözbilir for his far-reaching recommendation and favorable comments that helped enhance the manuscript. The author also thanks sincerely Julien Babault, Savaş Topal, Murat Nas, Volkan Karabacak, and Bora Rojay whose valuable comments, language correction, and useful criticisms have greatly improved the manuscript. More so, special thanks must go to Büşra Yerli and Ali Duman for their help during the field studies. The author expresses his appreciation to the editors for considering my paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Softa.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Responsible Editor: François Roure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Softa, M. Morphometric and kinematic analysis of southern margin of the Küçük Menderes Graben and its tectonic implications in western Anatolia. Arab J Geosci 15, 131 (2022). https://doi.org/10.1007/s12517-021-09414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-09414-z

Keywords

Navigation