Skip to main content
Log in

MiR-29c Inhibits TNF-α-Induced ROS Production and Apoptosis in Mouse Hippocampal HT22 Cell Line

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent reports have suggested that abnormal miR-29c expression in hippocampus have been implicated in the pathophysiology of some neurodegenerative and neuropsychiatric diseases. However, the underlying effect of miR-29c in regulating hippocampal neuronal function is not clear. In this study, HT22 cells were infected with lentivirus containing miR-29c or miR-29c sponge. Cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay kit were applied to evaluate cell viability and toxicity before and after TNF-α administration. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Hoechst 33258 staining and TUNEL assay were used to evaluate cell apoptosis. The expression of key mRNA/proteins (TNFR1, Bcl-2, Bax, TRADD, FADD, caspase-3, -8 and -9) in the apoptosis pathway was detected by PCR or WB. In addition, the protein expression of microtubule-associated protein-2 (MAP-2), nerve growth-associated protein 43 (GAP-43) and synapsin-1 (SYN-1) was detected by WB. As a result, we found that miR-29c overexpression could improve cell viability, attenuate LDH release, reduce ROS production and inhibit MMP depolarization in TNF-α-treated HT22 cells. Furthermore, miR-29c overexpression was found to decrease apoptotic rate, along with decreased expression of Bax, cleaved caspase-3, cleaved caspase-9, and increased expression of Bcl-2 in TNF-α-treated HT22 cells. However, miR-29c sponge exhibited an opposite effects. In addition, in TNF-α-treated HT22 cells, miR-29c overexpression could decrease the expressions of TNFR1, TRADD, FADD and cleaved caspase-8. However, in HT22 cells transfected with miR-29c sponge, TNF-α-induced the expressions of TNFR1, TRADD, FADD and cleaved caspase-8 was significantly exacerbated. At last, TNF-α-induced the decreased expression of MAP-2, GAP-43 and SYN-1 was reversed by miR-29c but exacerbated by miR-29c sponge. Overall, our study demonstrated that miR-29c protects against TNF-α-induced HT22 cells injury through alleviating ROS production and reduce neuronal apoptosis. Therefore, miR-29c might be a potential therapeutic agent for TNF-α accumulation and toxicity-related brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are available from the corresponding author on reasonable request.

Abbreviations

Bax:

Bcl-2 assaciated X protein

Bcl-2:

B-cell lymphoma/Leukemia-2

CCK8:

Cell counting kit-8

DHE:

Dihydroethidium

EGFP:

Enhanced green fluorescent protein

FADD:

Fas associated death domain protein

GAP-43:

Growth associated protein-43

iNOS:

Inducible nitric oxide synthase

LDH:

Lactate dehydrogenase

MAP-2:

Microtubule associated protein 2

MAP2K6:

Mitogen-Activated Protein Kinase Kinase 6

miRNAs:

microRNAs

MMP:

Mitochondrial membrane potential

ROS:

Reactive oxygen species

RTFQ-PCR:

Realtime Fluorescence Quantitative PCR

SYN-1:

Synaptophysin-1

TMRE:

Tetramethylrhodamine methyl ester

TNF-α:

Tumor necrosis factor-α

TNFR1:

Tumor necrosis factor receptor 1

TRADD:

TNFR-associated death domain protein

References

  1. Xu S, Zhang R, Niu J, Cui D, Xie B, Zhang B, Lu K, Yu W, Wang X, Zhang Q (2012) Oxidative stress mediated-alterations of the microRNA expression profile in mouse hippocampal neurons. Int J Mol Sci 13(12):16945–16960. https://doi.org/10.3390/ijms131216945

    Article  CAS  Google Scholar 

  2. Zhang R, Zhang Q, Niu J, Lu K, Xie B, Cui D, Xu S (2014) Screening of microRNAs associated with Alzheimer’s disease using oxidative stress cell model and different strains of senescence accelerated mice. J Neurol Sci 338(1–2):57–64. https://doi.org/10.1016/j.jns.2013.12.017

    Article  CAS  Google Scholar 

  3. Sørensen SS, Nygaard AB, Christensen T (2016) miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia-an exploratory study. Transl Neurodegener 5:6. https://doi.org/10.1186/s40035-016-0053-5

    Article  Google Scholar 

  4. Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D, Pan S (2015) MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep 12(2):3081–3088. https://doi.org/10.3892/mmr.2015.3728

    Article  CAS  Google Scholar 

  5. Hori Y, Goto G, Arai-Iwasaki M, Ishikawa M, Sakamoto A (2013) Differential expression of rat hippocampal microRNAs in two rat models of chronic pain. Int J Mol Med 32(6):1287–1292. https://doi.org/10.3892/ijmm.2013.1504

    Article  CAS  Google Scholar 

  6. Tang C, Ou J, Kou L, Deng J, Luo S (2020) Circ_016719 plays a critical role in neuron cell apoptosis induced by I/R via targeting miR-29c/Map2k6. Mol Cell Probes 49:101478. https://doi.org/10.1016/j.mcp.2019.101478

    Article  CAS  Google Scholar 

  7. Huang LG, Li JP, Pang XM, Chen CY, Xiang HY, Feng LB, Su SY, Li SH, Zhang L, Liu JL (2015) MicroRNA-29c correlates with neuroprotection induced by FNS by targeting both Birc2 and Bak1 in rat brain after stroke. CNS Neurosci Ther 21(6):496–503. https://doi.org/10.1111/cns.12383

    Article  CAS  Google Scholar 

  8. Zhang Y, Chopp M, Liu XS, Kassis H, Wang X, Li C, An G, Zhang ZG (2015) MicroRNAs in the axon locally mediate the effects of chondroitin sulfate proteoglycans and cGMP on axonal growth. Dev Neurobiol 75(12):1402–1419. https://doi.org/10.1002/dneu.22292

    Article  CAS  Google Scholar 

  9. Klimova N, Fearnow A, Long A, Kristian T (2020) NAD + precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp Neurol 325:113144. https://doi.org/10.1016/j.expneurol.2019.113144

    Article  CAS  Google Scholar 

  10. Dai Y, Zhang H, Zhang J, Yan M (2018) Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chem Biol Interact 284:32–40. https://doi.org/10.1016/j.cbi.2018.02.017

    Article  CAS  Google Scholar 

  11. Sun S, Hu F, Wu J, Zhang S (2017) Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons. Redox Biol 11:577–585. https://doi.org/10.1016/j.redox.2016.12.029

    Article  CAS  Google Scholar 

  12. Zhang Z, Song Z, Shen F, Xie P, Wang J, Zhu AS, Zhu G (2021) Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus. Mol Neurobiol 58(4):1550–1563. https://doi.org/10.1007/s12035-020-02213-9

    Article  CAS  Google Scholar 

  13. Wang Y, Lv W, Li Y, Liu D, He X, Liu T (2020) Ampelopsin improves cognitive impairment in Alzheimer’s disease and effects of inflammatory cytokines and oxidative stress in the hippocampus. Curr Alzheimer Res 17(1):44–51. https://doi.org/10.2174/1567205016666191203153447

    Article  CAS  Google Scholar 

  14. Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, Wei X, Xu T, Xin WJ, Pang RP, Li YY, Qin ZH, Murugan M, Mattson MP, Wu LJ, Liu XG (2017) TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 37(4):871–881. https://doi.org/10.1523/JNEUROSCI.2235-16.2016

    Article  CAS  Google Scholar 

  15. Li Z, Meng X, Ren M, Shao M (2020) Combination of scalp acupuncture with exercise therapy effectively counteracts ischemic brain injury in rats. J Stroke Cerebrovasc Dis 29(11):105286. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105286

    Article  Google Scholar 

  16. Wang L, Chang X, Feng J, Yu J, Chen G (2020) TRADD mediates RIPK1-independent necroptosis induced by tumor necrosis factor. Front Cell Dev Biol 7:393. https://doi.org/10.3389/fcell.2019.00393

    Article  Google Scholar 

  17. Wang M, Guo J, Dong LN, Wang JP (2019) Cerebellar fastigial nucleus stimulation in a chronic unpredictable mild stress rat model reduces post-stroke depression by suppressing brain inflammation via the microRNA-29c/TNFRSF1A signaling pathway. Med Sci Monit 25:5594–5605. https://doi.org/10.12659/MSM.911835

    Article  CAS  Google Scholar 

  18. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726. https://doi.org/10.1038/nmeth1079

    Article  CAS  Google Scholar 

  19. Olianas MC, Dedoni S, Onali P (2019) Inhibition of TNF-α-induced neuronal apoptosis by antidepressants acting through the lysophosphatidic acid receptor LPA1. Apoptosis 24(5–6):478–498. https://doi.org/10.1007/s10495-019-01530-2

    Article  CAS  Google Scholar 

  20. Olianas MC, Dedoni S, Onali P (2021) Cannabinoid CB1 and CB2 receptors differentially regulate TNF-α-induced apoptosis and LPA1-mediated pro-survival signaling in HT22 hippocampal cells. Life Sci 276:119407. https://doi.org/10.1016/j.lfs.2021.119407

    Article  CAS  Google Scholar 

  21. Shi D, Tian T, Yao S, Cao K, Zhu X, Zhang M, Wen S, Li L, Shi M, Zhou H (2018) FTY720 attenuates behavioral deficits in a murine model of systemic lupus erythematosus. Brain Behav Immun 70:293–304. https://doi.org/10.1016/j.bbi.2018.03.009

    Article  CAS  Google Scholar 

  22. Xiao J, Yao R, Xu B, Wen H, Zhong J, Li D, Zhou Z, Xu J, Wang H (2020) Inhibition of PDE4 attenuates TNF-α-triggered cell death through suppressing NF-κB and JNK activation in HT-22 neuronal cells. Cell Mol Neurobiol 40(3):421–435. https://doi.org/10.1007/s10571-019-00745-w

    Article  CAS  Google Scholar 

  23. Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW (2015) Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem 132(4):443–451. https://doi.org/10.1111/jnc.13008

    Article  CAS  Google Scholar 

  24. Xu Z, Lu Y, Wang J, Ding X, Chen J, Miao C (2017) The protective effect of propofol against TNF-α-induced apoptosis was mediated via inhibiting iNOS/NO production and maintaining intracellular Ca2+ homeostasis in mouse hippocampal HT22 cells. Biomed Pharmacother 91:664–672. https://doi.org/10.1016/j.biopha.2017.04.110

    Article  CAS  Google Scholar 

  25. Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, Kowaltowski A (2004) Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr 36(4):347–352. https://doi.org/10.1023/B:JOBB.0000041766.71376.81

    Article  CAS  Google Scholar 

  26. Huang Y, Mei X, Jiang W, Zhao H, Yan Z, Zhang H, Liu Y, Hu X, Zhang J, Peng W, Zhang J, Qi Q, Chen N (2021) Mesenchymal stem cell-conditioned medium protects hippocampal neurons from radiation damage by suppressing oxidative stress and apoptosis. Dose Response. https://doi.org/10.1177/1559325820984944

    Article  Google Scholar 

  27. Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D, Hargreaves IP (2017) Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med 6(7):71. https://doi.org/10.3390/jcm6070071

    Article  CAS  Google Scholar 

  28. Lee PJ, Pham CH, Thuy NTT, Park HJ, Lee SH, Yoo HM, Cho N (2021) 1-Methoxylespeflorin G11 protects HT22 cells from Glutamate-induced cell death through inhibition of ROS production and apoptosis. J Microbiol Biotechnol 31(2):217–225. https://doi.org/10.4014/jmb.2011.11032

    Article  CAS  Google Scholar 

  29. Hannibal L (2016) Nitric oxide homeostasis in neurodegenerative diseases. Curr Alzheimer Res 13:135–149. https://doi.org/10.2174/1567205012666150921101250

    Article  CAS  Google Scholar 

  30. Kong C, Miao F, Wu Y, Wang T (2019) Oxycodone suppresses the apoptosis of hippocampal neurons induced by oxygen-glucose deprivation/recovery through caspase-dependent and caspase-independent pathways via κ- and δ-opioid receptors in rats. Brain Res 1721:146319. https://doi.org/10.1016/j.brainres.2019.146319

    Article  CAS  Google Scholar 

  31. Zimmerman MA, Biggers CD, Li PA (2018) Rapamycin treatment increases hippocampal cell viability in an mTOR-independent manner during exposure to hypoxia mimetic, cobalt chloride. BMC Neurosci 19(1):82. https://doi.org/10.1186/s12868-018-0482-4

    Article  CAS  Google Scholar 

  32. Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28. https://doi.org/10.1615/critreveukaryotgeneexpr.2013006875

    Article  Google Scholar 

  33. Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, Yuan F, Tang Y, Yang G, Ding J, Chen H, Tian H (2022) ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Signal 20(1):56. https://doi.org/10.1186/s12964-022-00862-y

    Article  CAS  Google Scholar 

  34. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296(5573):1634–1635. https://doi.org/10.1126/science.1071924

    Article  CAS  Google Scholar 

  35. Ortiz-Matamoros A, Arias C (2018) Chronic infusion of Wnt7a, Wnt5a and Dkk-1 in the adult hippocampus induces structural synaptic changes and modifies anxiety and memory performance. Brain Res Bull 139:243–255. https://doi.org/10.1016/j.brainresbull.2018.03.008

    Article  CAS  Google Scholar 

  36. Royero PX, Higa GSV, Kostecki DS, Dos Santos BA, Almeida C, Andrade KA, Kinjo ER, Kihara AH (2020) Ryanodine receptors drive neuronal loss and regulate synaptic proteins during epileptogenesis. Exp Neurol 327:113213. https://doi.org/10.1016/j.expneurol.2020.113213

    Article  CAS  Google Scholar 

  37. Gao XR, Chen Z, Fang K, Xu JX, Ge JF (2021) Protective effect of quercetin against the metabolic dysfunction of glucose and lipids and its associated learning and memory impairments in NAFLD rats. Lipids Health Dis 20(1):164. https://doi.org/10.1186/s12944-021-01590-x

    Article  CAS  Google Scholar 

  38. Zong Y, Yu P, Cheng H, Wang H, Wang X, Liang C, Zhu H, Qin Y, Qin C (2015) miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer’s disease. Brain Res 1624:95–102. https://doi.org/10.1016/j.brainres.2015.07.022

    Article  CAS  Google Scholar 

  39. Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D, Pan S (2015) DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor. Mol Med Rep 12(1):1435–1442. https://doi.org/10.3892/mmr.2015.3531

    Article  CAS  Google Scholar 

  40. Wallach D, Arumugam TU, Boldin MP, Cantarella G, Ganesh KA, Goltsev Y, Goncharov TM, Kovalenko AV, Rajput A, Varfolomeev EE, Zhang SQ (2002) How are the regulators regulated? The search for mechanisms that impose specificity on induction of cell death and NF-kappaB activation by members of the TNF/NGF receptor family. Arthritis Res 4(Suppl 3):S189–S196. https://doi.org/10.1186/ar585

    Article  Google Scholar 

  41. Maddahi A, Kruse LS, Chen QW, Edvinsson L (2011) The role of tumor necrosis factor-α and TNF-α receptors in cerebral arteries following cerebral ischemia in rat. J Neuroinflammation 8:107. https://doi.org/10.1186/1742-2094-8-107

    Article  CAS  Google Scholar 

  42. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. https://doi.org/10.1038/nature05292

    Article  CAS  Google Scholar 

  43. Cheng D, Su L, Wang X, Li X, Li L, Hu M, Lu Y (2021) Extract of Cynomorium songaricum ameliorates mitochondrial ultrastructure impairments and dysfunction in two different in vitro models of Alzheimer’s disease. BMC Complement Med Ther 21(1):206. https://doi.org/10.1186/s12906-021-03375-2

    Article  CAS  Google Scholar 

  44. Chen X, Deng A, Zhou T, Ding F (2014) Pretreatment with 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside attenuates cerebral ischemia/reperfusion-induced injury in vitro and in vivo. PLoS ONE 9(7):e100126. https://doi.org/10.1371/journal.pone.0100126

    Article  CAS  Google Scholar 

  45. Zelová H, Hošek J (2013) TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res 62(7):641–651. https://doi.org/10.1007/s00011-013-0633-0

    Article  CAS  Google Scholar 

  46. Thompson SJ, Ashley MD, Stöhr S, Schindler C, Li M, McCarthy-Culpepper KA, Pearson AN, Xiong ZG, Simon RP, Henshall DC, Meller R (2011) Suppression of TNF receptor-1 signaling in an in vitro model of epileptic tolerance. Int J Physiol Pathophysiol Pharmacol 3(2):120–132

    CAS  Google Scholar 

  47. Liu W, Vetreno RP, Crews FT (2021) Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder. Mol Psychiatry 26(6):2254–2262. https://doi.org/10.1038/s41380-020-0698-4

    Article  CAS  Google Scholar 

  48. Wang H, Liu Y, Guo Z, Wu K, Zhang Y, Tian Y, Zhao B, Lu H (2022) Aconitine induces cell apoptosis via mitochondria and death receptor signaling pathways in hippocampus cell line. Res Vet Sci 143:124–133. https://doi.org/10.1016/j.rvsc.2022.01.001

    Article  CAS  Google Scholar 

  49. Shen L, Chen F (2018) MiR-29 targets PUMA to suppress oxygen and glucose deprivation/reperfusion (OGD/R)-induced cell death in hippocampal neurons. Curr Neurovasc Res 15(1):47–54. https://doi.org/10.2174/1567202615666180403170902

    Article  CAS  Google Scholar 

  50. Zhang J, Dong XP (2012) Dysfunction of microtubule-associated proteins of MAP2/tau family in Prion disease. Prion 6(4):334–338. https://doi.org/10.4161/pri.20677

    Article  CAS  Google Scholar 

  51. Liu C, Xu X, Huang C, Zhang L, Shang D, Cai W, Wang Y (2020) Circ_002664/miR-182-5p/Herpud1 pathway importantly contributes to OGD/R-induced neuronal cell apoptosis. Mol Cell Probes 53:101585. https://doi.org/10.1016/j.mcp.2020.101585

    Article  CAS  Google Scholar 

  52. Reddy PH, Yin X, Manczak M, Kumar S, Pradeepkiran JA, Vijayan M, Reddy AP (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 27(14):2502–2516. https://doi.org/10.1093/hmg/ddy154

    Article  CAS  Google Scholar 

  53. Lignani G, Raimondi A, Ferrea E, Rocchi A, Paonessa F, Cesca F, Orlando M, Tkatch T, Valtorta F, Cossette P, Baldelli P, Benfenati F (2013) Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 22(11):2186–2199. https://doi.org/10.1093/hmg/ddt071

    Article  CAS  Google Scholar 

  54. Donnelly CJ, Park M, Spillane M, Yoo S, Pacheco A, Gomes C, Vuppalanchi D, McDonald M, Kim HH, Merianda TT, Gallo G, Twiss JL (2013) Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci 33(8):3311–3322. https://doi.org/10.1523/JNEUROSCI.1722-12.2013

    Article  CAS  Google Scholar 

  55. Gnanapavan S, Yousaf N, Heywood W, Grant D, Mills K, Chernajovsky Y, Keir G, Giovannoni G (2014) Growth associated protein (GAP-43): cloning and the development of a sensitive ELISA for neurological disorders. J Neuroimmunol 276(1–2):18–23. https://doi.org/10.1016/j.jneuroim.2014.07.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31860291) and Major Research Project on Innovation Group of Education Department of Guizhou Province in 2018 (KY character in Guizhou Education Cooperation [2018]025). We are very grateful to the staff of the Department of Physiology and Key Laboratory of Infectious Diseases and Biosafety in Zunyi Medical University.

Funding

National Natural Science Foundation of China (No. 31860291). Major Research Project on Innovation Group of Education Department of Guizhou Province in 2018 (KY character in Guizhou Education Cooperation [2018]025).

Author information

Authors and Affiliations

Authors

Contributions

BL and YL drafted the manuscript. YL, XG and TX performed the immunofluorescence and analysis. BL, XL and HJ performed the RT-PCR and analysis. YL and RW performed the western blot and analysis. XL and JZ conceived of the study, participated in its design and coordination, and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junwei Zeng.

Ethics declarations

Conflict of interest

The authors declare no confict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Lu, Y., Wang, R. et al. MiR-29c Inhibits TNF-α-Induced ROS Production and Apoptosis in Mouse Hippocampal HT22 Cell Line. Neurochem Res 48, 519–536 (2023). https://doi.org/10.1007/s11064-022-03776-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03776-w

Keywords

Navigation