Skip to main content
Log in

Transgenerational Susceptibility to Food Addiction-Like Behavior in Rats Associates to a Decrease of the Anti-Inflammatory IL-10 in Plasma

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trujillo-Villarreal LA, Romero-Díaz VJ, Marino-Martínez IA et al (2021) Maternal cafeteria diet exposure primes depression-like behavior in the offspring evoking lower brain volume related to changes in synaptic terminals and gliosis. Transl Psychiatry. https://doi.org/10.1038/s41398-020-01157-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. de la Garza AL, Garza-Cuellar MA, Silva-Hernandez IA et al (2019) Maternal flavonoids intake reverts depression-like behaviour in rat female offspring. Nutrients. https://doi.org/10.3390/nu11030572

    Article  PubMed  PubMed Central  Google Scholar 

  3. Glendining KA, Fisher LC, Jasoni CL (2018) Maternal high fat diet alters offspring epigenetic regulators, amygdala glutamatergic profile and anxiety. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2018.06.015

    Article  PubMed  Google Scholar 

  4. Camacho A, Montalvo-Martinez L, Cardenas-Perez RE et al (2017) Obesogenic diet intake during pregnancy programs aberrant synaptic plasticity and addiction-like behavior to a palatable food in offspring. Behav Brain Res. https://doi.org/10.1016/j.bbr.2017.05.014

    Article  PubMed  Google Scholar 

  5. Peleg-Raibstein D, Sarker G, Litwan K et al (2016) Enhanced sensitivity to drugs of abuse and palatable foods following maternal overnutrition. Transl Psychiatry. https://doi.org/10.1038/tp.2016.176

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M et al (2020) Fetal programming by methyl donors modulates central inflammation and prevents food addiction-like behavior in rats. Front Neurosci. https://doi.org/10.3389/fnins.2020.00452

    Article  PubMed  PubMed Central  Google Scholar 

  7. Teegarden SL, Scott AN, Bale TL (2009) Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience. https://doi.org/10.1016/j.neuroscience.2009.05.029

    Article  PubMed  Google Scholar 

  8. Naef L, Moquin L, Dal Bo G et al (2011) Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience. https://doi.org/10.1016/j.neuroscience.2010.12.037

    Article  PubMed  Google Scholar 

  9. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry. https://doi.org/10.1016/S2215-0366(16)00104-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sarker G, Berrens R, von Arx J et al (2018) Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition. Transl Psychiatry. https://doi.org/10.1038/s41398-018-0243-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen Q, Yan M, Cao Z et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. https://doi.org/10.1126/science.aad7977

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sarker G, Peleg-Raibstein D (2019) Maternal overnutrition induces long-term cognitive deficits across several generations. Nutrients. https://doi.org/10.3390/nu11010007

    Article  Google Scholar 

  13. Sarker G, Litwan K, Kastli R, Peleg-Raibstein D (2019) Maternal overnutrition during critical developmental periods leads to different health adversities in the offspring: relevance of obesity, addiction and schizophrenia. Sci Rep. https://doi.org/10.1038/s41598-019-53652-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sarker G, Sun W, Rosenkranz D et al (2019) Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1820810116

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Zhang X, Shi J et al (2018) Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. https://doi.org/10.1038/s41556-018-0087-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tse E, Helbig KJ, Van Der Hoek K et al (2015) Fatty acids induce a pro-inflammatory gene expression profile in Huh-7 cells that attenuates the anti-HCV action of interferon. J Interf Cytokine Res. https://doi.org/10.1089/jir.2014.0165

    Article  Google Scholar 

  17. Wang Z, Liu D, Wang F et al (2012) Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br J Nutr 107:229–241. https://doi.org/10.1017/S0007114511002868

    Article  CAS  PubMed  Google Scholar 

  18. Milanski M, Degasperi G, Coope A et al (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2760-08.2009

    Article  PubMed  PubMed Central  Google Scholar 

  19. Milanski M, Arruda AP, Coope A et al (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61:1455–1462. https://doi.org/10.2337/db11-0390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roepke TA, Yasrebi A, Villalobos A et al (2017) Loss of ERα partially reverses the effects of maternal high-fat diet on energy homeostasis in female mice. Sci Rep. https://doi.org/10.1038/s41598-017-06560-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matuszewska J, Zalewski T, Klimaszyk A et al (2021) Mothers’ cafeteria diet induced sex-specific changes in fat content, metabolic profiles, and inflammation outcomes in rat offspring. Sci Rep. https://doi.org/10.1038/s41598-021-97487-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bordeleau M, Lacabanne C, Fernández De Cossío L et al (2020) Microglial and peripheral immune priming is partially sexually dimorphic in adolescent mouse offspring exposed to maternal high-fat diet. J Neuroinflammation. https://doi.org/10.1186/s12974-020-01914-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Graf AE, Lallier SW, Waidyaratne G et al (2016) Maternal high fat diet exposure is associated with increased hepcidin levels, decreased myelination, and neurobehavioral changes in male offspring. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2016.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  24. Segovia SA, Vickers MH, Zhang XD et al (2015) Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2015.07.013

    Article  PubMed  Google Scholar 

  25. Bilbo SD, Tsang V (2010) Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J. https://doi.org/10.1096/fj.09-144014

    Article  PubMed  Google Scholar 

  26. Yuan N, Chen Y, Xia Y et al (2019) Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Psychiatry Transl. https://doi.org/10.1038/s41398-019-0570-y

    Article  Google Scholar 

  27. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM et al (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0976-10.2010

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hofford RS, Russo SJ, Kiraly DD (2019) Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci 50(3):2562–2573

    Article  Google Scholar 

  29. Schwarz JM, Smith SH, Bilbo SD (2013) FACS analysis of neuronal-glial interactions in the nucleus accumbens following morphine administration. Psychopharmacology. https://doi.org/10.1007/s00213-013-3180-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lewitus GM, Konefal SC, Greenhalgh AD et al (2016) Microglial TNF-α suppresses cocaine-induced plasticity and behavioral sensitization. Neuron. https://doi.org/10.1016/j.neuron.2016.03.030

    Article  PubMed  PubMed Central  Google Scholar 

  31. Snider SE, Hendrick ES, Beardsley PM (2013) Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol 701:124–130. https://doi.org/10.1016/j.ejphar.2013.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Attarzadeh-Yazdi G, Arezoomandan R, Haghparast A (2014) Minocycline, an antibiotic with inhibitory effect on microglial activation, attenuates the maintenance and reinstatement of methamphetamine-seeking behavior in rat. Prog Neuro-Psychopharmacol Biol Psychiatry. https://doi.org/10.1016/j.pnpbp.2014.04.008

    Article  Google Scholar 

  33. Tanda G, Mereu M, Hiranita T et al (2016) Lack of specific involvement of (+)-Naloxone and (+)-Naltrexone on the reinforcing and neurochemical effects of cocaine and opioids. Neuropsychopharmacology. https://doi.org/10.1038/npp.2016.91

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen J-X, Huang K-M, Liu M et al (2017) Activation of TLR4/STAT3 signaling in VTA contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Behav Brain Res 335:151–157. https://doi.org/10.1016/j.bbr.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  35. Brown KT, Levis SC, O’Neill CE et al (2018) Innate immune signaling in the ventral tegmental area contributes to drug-primed reinstatement of cocaine seeking. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2017.08.012

    Article  PubMed  Google Scholar 

  36. Cardenas-Perez RE, Fuentes-Mera L, De La Garza AL et al (2018) Maternal overnutrition by hypercaloric diets programs hypothalamic mitochondrial fusion and metabolic dysfunction in rat male offspring. Nutr Metab. https://doi.org/10.1186/s12986-018-0279-6

    Article  Google Scholar 

  37. Maldonado-Ruiz R, Cárdenas-Tueme M, Montalvo-Martínez L et al (2019) Priming of hypothalamic ghrelin signaling and microglia activation exacerbate feeding in rats’ offspring following maternal overnutrition. Nutrients. https://doi.org/10.3390/nu11061241

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paxinos George WC (2007) The Rat Brain in Stereotaxic Coordinates 6th Edition, 6th Editio. Academic Press, Cambridge

    Google Scholar 

  39. Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344

    Article  CAS  Google Scholar 

  40. Montalvo-Martínez L, Maldonado-Ruiz R, Cárdenas-Tueme M et al (2018) Maternal overnutrition programs central inflammation and addiction-like behavior in offspring. Int Biomed Res. https://doi.org/10.1155/2018/8061389

    Article  Google Scholar 

  41. Maldonado-Ruiz R, Garza-Ocañas L, Camacho A (2019) Inflammatory domains modulate autism spectrum disorder susceptibility during maternal nutritional programming. Neurochem Int 126:109–117. https://doi.org/10.1016/j.neuint.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  42. Zamberletti E, Gabaglio M, Prini P et al (2015) Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2015.09.021

    Article  PubMed  Google Scholar 

  43. Lacagnina MJ, Kopec AM, Cox SS et al (2017) Opioid self-administration is attenuated by early-life experience and gene therapy for anti-inflammatory IL-10 in the nucleus accumbens of male rats. Neuropsychopharmacology. https://doi.org/10.1038/npp.2017.82

    Article  PubMed  PubMed Central  Google Scholar 

  44. Patel RR, Wolfe SA, Bajo M et al (2021) IL-10 normalizes aberrant amygdala GABA transmission and reverses anxiety-like behavior and dependence-induced escalation of alcohol intake. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2020.101952

    Article  PubMed  Google Scholar 

  45. Hutchinson MR, Northcutt AL, Hiranita T et al (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0684-12.2012

    Article  PubMed  PubMed Central  Google Scholar 

  46. Northcutt AL, Hutchinson MR, Wang X et al (2015) DAT isn’t all that: cocaine reward and reinforcement require toll-like receptor 4 signaling. Mol Psychiatry. https://doi.org/10.1038/mp.2014.177

    Article  PubMed  PubMed Central  Google Scholar 

  47. Frau L, Simola N, Plumitallo A, Morelli M (2013) Microglial and astroglial activation by 3,4-methylenedioxymethamphetamine (MDMA) in mice depends on S(+) enantiomer and is associated with an increase in body temperature and motility. J Neurochem. https://doi.org/10.1111/jnc.12060

    Article  PubMed  Google Scholar 

  48. Pascual M, Montesinos J, Guerri C (2018) Role of the innate immune system in the neuropathological consequences induced by adolescent binge drinking. J Neurosci Res 96(5):765–780

    Article  CAS  Google Scholar 

  49. Maldonado-Ruiz R, Trujillo-Villarreal LA, Montalvo-Martínez L et al (2022) MCP-1 signaling disrupts social behavior by modulating brain volumetric changes and microglia morphology. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02649-7

    Article  PubMed  Google Scholar 

  50. Trettel F, Di Castro MA, Limatola C (2020) Chemokines: key molecules that orchestrate communication among neurons, microglia and astrocytes to preserve brain function. Neuroscience 439:230–240

    Article  CAS  Google Scholar 

  51. Tian DS, Peng J, Murugan M et al (2017) Chemokine CCL2-CCR2 signaling induces neuronal cell death via STAT3 activation and IL-1β production after status epilepticus. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0315-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dong N, Chang L, Wang B, Chu L (2014) Retinal neuronal MCP-1 induced by AGEs stimulates TNF-α expression in rat microglia via p38, ERK, and NF-κB pathways. Mol Vis 20:616

    PubMed  PubMed Central  Google Scholar 

  53. Pierce RC, Fant B, Swinford-Jackson SE et al (2018) Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology 43:1471–1480

    Article  CAS  Google Scholar 

  54. Le Q, Yan B, Yu X et al (2017) Drug-seeking motivation level in male rats determines offspring susceptibility or resistance to cocaine-seeking behaviour. Nat Commun. https://doi.org/10.1038/ncomms15527

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yamamoto DJ, Nelson AM, Mandt BH et al (2013) Rats classified as low or high cocaine locomotor responders: a unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors. Neurosci Biobehav Rev 37:1738–1753

    Article  CAS  Google Scholar 

  56. Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71:3–39

    Article  Google Scholar 

  57. Christ A, Günther P, Lauterbach MAR et al (2018) Western diet triggers NLRP3-dependent innate immune reprogramming. Cell. https://doi.org/10.1016/j.cell.2017.12.013

    Article  PubMed  PubMed Central  Google Scholar 

  58. Arpon A, Riezu-Boj JI, Milagro FI et al (2016) Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J Physiol Biochem 73:445–455. https://doi.org/10.1007/s13105-017-0552-6

    Article  CAS  PubMed  Google Scholar 

  59. Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76:259–268

    Article  CAS  Google Scholar 

  60. Laplant Q, Vialou V, Covington HE et al (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci. https://doi.org/10.1038/nn.2619

    Article  PubMed  PubMed Central  Google Scholar 

  61. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12:623–637

    Article  CAS  Google Scholar 

  62. Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 21:134–144

    Article  Google Scholar 

  63. Jasiulionis MG (2018) Abnormal epigenetic regulation of immune system during aging. Front Immunol 9:197

    Article  Google Scholar 

  64. Zhang Q, Cao X (2019) Epigenetic regulation of the innate immune response to infection. Nat Rev Immunol 19:417–432

    Article  CAS  Google Scholar 

  65. Li X, Zhang Q, Shi Q et al (2017) Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages. J Autoimmun. https://doi.org/10.1016/j.jaut.2017.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kleinnijenhuis J, Quintin J, Preijers F et al (2012) Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1202870109

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu GX, Wei JY, Liu M et al (2020) Epigenetic upregulation of hippocampal CXCL12 contributes to context spatial memory-associated morphine conditioning. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2019.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lacal I, Ventura R (2018) Epigenetic inheritance: concepts mechanisms and perspectives. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2018.00292

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council of Science and Technology in Mexico (CONACYT) (Grant number: 255317), 708452 CONACYT for L. J. Montalvo-Martínez, 855559 CONACYT for G. Cruz-Carrillo, 573686 CONACYT for R. Maldonado-Ruiz, 650620 CONACYT for M. Cárdenas-Tueme, 781759 CONACYT for L.A. Trujillo-Villarreal. and IBRO-LARC 2020 for Alberto Camacho-Morales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Camacho-Morales.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalvo-Martínez, L., Cruz-Carrillo, G., Maldonado-Ruiz, R. et al. Transgenerational Susceptibility to Food Addiction-Like Behavior in Rats Associates to a Decrease of the Anti-Inflammatory IL-10 in Plasma. Neurochem Res 47, 3093–3103 (2022). https://doi.org/10.1007/s11064-022-03660-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03660-7

Keywords

Navigation