Skip to main content

Advertisement

Log in

Metformin Relieves Bortezomib-Induced Neuropathic Pain by Regulating AMPKa2-Mediated Autophagy in the Spinal Dorsal Horn

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chemotherapy-induced neuropathic pain is a major clinical problem with limited treatment options. Here, we show that metformin relieves bortezomib (BTZ)-evoked induction and maintenance of neuropathic pain by preventing the reduction in the expression of Beclin-1, an autophagy marker, in the spinal dorsal horn. Application of rapamycin or 3-methyladenine, autophagy inducer and inhibitor, respectively, affected the mechanical allodynia differently. Co-application of 3-methyladenine and metformin partially inhibited the effect of metformin in recovering Beclin-1 expression and in reducing the pain behavior in rats subjected to BTZ treatment. BTZ treatment also reduced the expression of AMPKa2 in the dorsal horn, which was recovered by metformin treatment. Overexpression of AMPKa2 attenuated the BTZ-evoked reduction in Beclin-1 expression and mechanical allodynia, whereas intrathecal injection of AMPKa2 siRNA decreased the Beclin-1 expression and induced mechanical allodynia in naive rats. Moreover, BTZ treatment increased the GATA3 expression in the dorsal horn, and GATA3 siRNA attenuated the AMPKa2 downregulation and mechanical allodynia induced by BTZ. Chromatin immunoprecipitation further showed that BTZ induced an increased recruitment of GATA3 to multiple sites in the AMPKa2 promoter region. Furthermore, decreased acetylation and increased methylation of histone H3 in the AMPKa2 promoter in the spinal dorsal horn was detected after BTZ treatment. Our findings suggest that metformin may regulate AMPKa2-mediated autophagy in the dorsal horn and alleviate the behavioral hypersensitivity induced by BTZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Rule S (2018) Bortezomib-based chemotherapy in mantle cell lymphoma. Lancet Oncol 19:1419–1421

    Article  Google Scholar 

  2. Stockstill K, Doyle TM, Yan X, Chen Z, Janes K, Little JW, Braden K, Lauro F, Giancotti LA, Harada CM, Yadav R, Xiao WH, Lionberger JM, Neumann WL, Bennett GJ, Weng HR, Spiegel S, Salvemini D (2018) Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med 215:1301–1313

    Article  CAS  Google Scholar 

  3. Moschetti G, Amodeo G, Maftei D, Lattanzi R, Procacci P, Sartori P, Balboni G, Onnis V, Conte V, Panerai A, Sacerdote P, Franchi S (2019) Targeting prokineticin system counteracts hypersensitivity, neuroinflammation, and tissue damage in a mouse model of bortezomib-induced peripheral neuropathy. J Neuroinflamm 16:89

    Article  Google Scholar 

  4. Liu C, Luan S, OuYang H, Huang Z, Wu S, Ma C, Wei J, Xin W (2016) Upregulation of CCL2 via ATF3/c-Jun interaction mediated the Bortezomib-induced peripheral neuropathy. Brain Behav Immun 53:96–104

    Article  CAS  Google Scholar 

  5. Duggett NA, Flatters SJL (2017) Characterization of a rat model of bortezomib-induced painful neuropathy. Br J Pharmacol 174:4812–4825

    Article  CAS  Google Scholar 

  6. Geisler S, Doan RA, Cheng GC, Cetinkaya-Fisgin A, Huang SX, Hoke A, Milbrandt J, DiAntonio A (2019) Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI 4:e129920

    Google Scholar 

  7. Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpaa ML, Kent JL, Krane EJ, Lebel AA, Levy RM, Mackey SC, Mayer J, Miaskowski C, Raja SN, Rice AS, Schmader KE, Stacey B, Stanos S, Treede RD, Turk DC, Walco GA, Wells CD (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 85:S3-14

    Article  CAS  Google Scholar 

  8. Al-Khrasani M, Mohammadzadeh A, Balogh M, Kiraly K, Barsi S, Hajnal B, Koles L, Zadori ZS, Harsing LG Jr (2019) Glycine transporter inhibitors: a new avenue for managing neuropathic pain. Brain Res Bull 152:143–158

    Article  CAS  Google Scholar 

  9. Correia S, Carvalho C, Santos MS, Proenca T, Nunes E, Duarte AI, Monteiro P, Seica R, Oliveira CR, Moreira PI (2008) Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. Med Chem 4:358–364

    Article  CAS  Google Scholar 

  10. El-Mir MY, Detaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X (2008) Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 34:77–87

    Article  CAS  Google Scholar 

  11. Ullah I, Ullah N, Naseer MI, Lee HY, Kim MO (2012) Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons. BMC Neurosci 13:11

    Article  CAS  Google Scholar 

  12. Li J, Benashski SE, Venna VR, McCullough LD (2010) Effects of metformin in experimental stroke. Stroke 41:2645–2652

    Article  CAS  Google Scholar 

  13. Mao-Ying QL, Kavelaars A, Krukowski K, Huo XJ, Zhou W, Price TJ, Cleeland C, Heijnen CJ (2014) The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. PLoS ONE 9:e100701

    Article  Google Scholar 

  14. Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF (1999) Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem 72:1707–1716

    Article  CAS  Google Scholar 

  15. Maixner DW, Yan X, Hooks SB, Weng HR (2016) AMPKalpha1 knockout enhances nociceptive behaviors and spinal glutamatergic synaptic activities via production of reactive oxygen species in the spinal dorsal horn. Neuroscience 326:158–169

    Article  CAS  Google Scholar 

  16. Mizushima N, Levine B (2020) Autophagy in human diseases. N Engl J Med 383:1564–1576

    Article  CAS  Google Scholar 

  17. Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16:345–357

    Article  CAS  Google Scholar 

  18. Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, Schulz E, Machiela E, McDonald WG, Escobar Galvis ML, Kordower JH, Van Raamsdonk JM, Colca JR, Brundin P (2016) Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci Transl Med 8:368ra174

    Article  Google Scholar 

  19. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, Lavau CP, Betton M, O’Kane CJ, Wechsler DS, Rubinsztein DC (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5:4998

    Article  CAS  Google Scholar 

  20. Deretic V (2021) Autophagy in inflammation, infection, and immunometabolism. Immunity 54:437–453

    Article  CAS  Google Scholar 

  21. van Bergen M, Marneth AE, Hoogendijk AJ, van Alphen F, van den Akker E, Laros-van Gorkom B, Hoeks M, Simons A, de Munnik S, Janssen JJ, Martens J, Jansen JH, Meijer AB, Van der Reijden BA (2021) Specific proteome changes in platelets from individuals with GATA1-, GFI1B- and RUNX1-linked bleeding disorders. Blood 138:86

    Article  Google Scholar 

  22. Fan Y, Gu X, Zhang J, Sinn K, Klepetko W, Wu N, Foris V, Solymosi P, Kwapiszewska G, Kuebler WM (2020) TWIST1 drives smooth muscle cell proliferation in pulmonary hypertension via loss of GATA-6 and BMPR2. Am J Respir Crit Care Med 202:1283–1296

    Article  CAS  Google Scholar 

  23. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634–648

    Article  CAS  Google Scholar 

  24. Zheng Y, Sun Y, Yang Y, Zhang S, Xu T, Xin W, Wu S, Zhang X (2019) GATA3-dependent epigenetic upregulation of CCL21 is involved in the development of neuropathic pain induced by bortezomib. Mol Pain 15:1744806919863292

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sadakierska-Chudy A, Filip M (2015) A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 27:172–197

    Article  CAS  Google Scholar 

  26. Li J, Tian M, Hua T, Wang H, Yang M, Li W, Zhang X, Yuan H (2021) Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy 17:4062

    Article  CAS  Google Scholar 

  27. Baeza-Flores GDC, Guzman-Priego CG, Parra-Flores LI, Murbartian J, Torres-Lopez JE, Granados-Soto V (2020) Metformin: a prospective alternative for the treatment of chronic pain. Front Pharmacol 11:558474

    Article  CAS  Google Scholar 

  28. Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10:868–880

    Article  CAS  Google Scholar 

  29. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861

    Article  CAS  Google Scholar 

  30. Ling YZ, Li ZY, Ou-Yang HD, Ma C, Wu SL, Wei JY, Ding HH, Zhang XL, Liu M, Liu CC, Huang ZZ, Xin WJ (2017) The inhibition of spinal synaptic plasticity mediated by activation of AMP-activated protein kinase signaling alleviates the acute pain induced by oxaliplatin. Exp Neurol 288:85–93

    Article  CAS  Google Scholar 

  31. Li C, Sun W, Gu C, Yang Z, Quan N, Yang J, Shi Z, Yu L, Ma H (2018) Targeting ALDH2 for therapeutic interventions in chronic pain-related myocardial ischemic susceptibility. Theranostics 8:1027–1041

    Article  CAS  Google Scholar 

  32. Wang S, Kobayashi K, Kogure Y, Yamanaka H, Yamamoto S, Yagi H, Noguchi K, Dai Y (2018) Negative regulation of TRPA1 by AMPK in primary sensory neurons as a potential mechanism of painful diabetic neuropathy. Diabetes 67:98–109

    Article  CAS  Google Scholar 

  33. Iyyanki T, Zhang B, Wang Q, Hou Y, Jin Q, Xu J, Yang H, Liu T, Wang X, Song F, Luan Y, Yamashita H, Chien R, Lyu H, Zhang L, Wang L, Warrick J, Raman JD, Meeks JJ, DeGraff DJ, Yue F (2021) Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer. Genome Biol 22:105

    Article  CAS  Google Scholar 

  34. Chen K, Fan J, Luo ZF, Yang Y, Xin WJ, Liu CC (2018) Reduction of SIRT1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. J Neuroinflamm 15:292

    Article  CAS  Google Scholar 

  35. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  Google Scholar 

  36. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3:71–85

    Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (31970936, 81801103 and 81971048), Natural Science Foundation of Guangdong (2019A1515010871 and 2019A1515110716), Shanghai Pujiang Program (2020PJD059) and Youth Cultivation Project for Special Basic Medical Research of the First Affiliated Hospital of Naval Medical University (2021JCQN02).

Funding

This work was supported by National Natural Science Foundation of China (31970936, 81801103 and 81971048), Natural Science Foundation of Guangdong (2019A1515010871 and 2019A1515110716), Shanghai Pujiang Program (2020PJD059) and Youth Cultivation Project for Special Basic Medical Research of the First Affiliated Hospital of Naval Medical University (2021JCQN02).

Author information

Authors and Affiliations

Authors

Contributions

ML: Investigation, Writing—Original Draft. YTZ: Investigation, Formal analysis. YYL: Investigation, Formal analysis. TX: Formal analysis. DL: Formal analysis. YCX: Visualization, Supervision. WJX: Visualization, Supervision. SYL: Conceptualization, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Su-Yan Lin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

All experimental protocols were approved by the Local Animal Care Committee and carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhao, YT., Lv, YY. et al. Metformin Relieves Bortezomib-Induced Neuropathic Pain by Regulating AMPKa2-Mediated Autophagy in the Spinal Dorsal Horn. Neurochem Res 47, 1878–1887 (2022). https://doi.org/10.1007/s11064-022-03571-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03571-7

Keywords

Navigation