Skip to main content
Log in

Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Autophagy acts as an important homoeostatic mechanism by degradation of cytosolic constituents and plays roles in many physiological processes. Recent studies demonstrated that autophagy can also regulate the production and secretion of the proinflammatory cytokine interleukin-1β (IL-1β), which plays a critical role in the development and maintenance of neuropathic pain. In the present study, the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were significantly decreased after spinal nerve ligation (SNL), and the changes were accompanied by inhibited autophagy in the spinal microglia and increased mRNA and protein levels of IL-1β in the ipsilateral spinal cord. We then investigated the antinociceptive effect of rapamycin, a widely used autopahgy inducer, on SNL-induced neuropathic pain in rats and found that treatment with intrathecal rapamycin significantly attenuated the mechanical allodynia and thermal hyperalgesia. Moreover, rapamycin significantly enhanced autophagy in the spinal microglia, whereas it reduced the mRNA and protein levels of IL-1β in the ipsilateral spinal cord. Our results showed that rapamycin could ameliorate neuropathic pain by activating autophagy and inhibiting IL-1β in the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol, 2010, 9(8):807–819

    Article  PubMed  Google Scholar 

  2. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  3. Liu CL, Chen S, Dietrich D, et al. Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab, 2008, 28(4):674–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sadasivan S, Dunn WJ, Hayes RL, et al. Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun, 2008, 373(4):478–481

    Article  CAS  PubMed  Google Scholar 

  5. Zhang YB, Li SX, Chen XP, et al. Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull, 2008, 24(3):143–149

    Article  PubMed  Google Scholar 

  6. Smith CM, Chen Y, Sullivan ML, et al. Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis, 2011, 43(1):52–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kanno H, Ozawa H, Sekiguchi A, et al. The role of autophagy in spinal cord injury. Autophagy, 2009, 5(3):390–392

    Article  CAS  PubMed  Google Scholar 

  8. Chen HC, Fong TH, Lee AW, et al. Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury. Spine, 2012, 37(6):470–475

    Article  CAS  PubMed  Google Scholar 

  9. Berliocchi L, Russo R, Maiaru M, et al. Autophagy impairment in a mouse model of neuropathic pain. Mol Pain, 2011, 7:83

    Article  PubMed Central  PubMed  Google Scholar 

  10. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature, 2011, 469(7330):323–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 2008, 456(7219): 264–268

    Article  CAS  PubMed  Google Scholar 

  12. Harris J, Hartman M, Roche C, et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem, 2011, 286(11):9587–9597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol, 2011, 12(3):222–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol, 2012, 13(3):255–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. Brain Res Rev, 2009, 60(1):57–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kiguchi N, Kobayashi Y, Kishioka S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol, 2012, 12(1):55–61

    Article  CAS  PubMed  Google Scholar 

  17. Wolf G, Gabay E, Tal M, et al. Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain, 2006, 120(3):315–324

    Article  CAS  PubMed  Google Scholar 

  18. Raught B, Gingras A C, Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA, 2001, 98(13):7037–7044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008, 4(6):762–769

    Article  CAS  PubMed  Google Scholar 

  20. He Y, Wan S, Hua Y, et al. Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab, 2008, 28(5):897–905

    Article  CAS  PubMed  Google Scholar 

  21. Alirezaei M, Kemball CC, Whitton JL. Autophagy, inflammation and neurodegenerative disease. Eur J Neurosci, 2011, 33(2):197–204

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shih MH, Kao SC, Wang W, et al. Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J Pain, 2012, 13(4):338–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sakura S, Kirihara Y, Muguruma T, et al. The comparative neurotoxicity of intrathecal lidocaine and bupivacaine in rats. Anesth Analg, 2005, 101(2):541–547

    Article  CAS  PubMed  Google Scholar 

  24. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain, 1992, 50(3):355–363

    Article  CAS  PubMed  Google Scholar 

  25. Norsted GE, Codeluppi S, Gregory JA, et al. Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience. 2010, 169(3):1392–1402

    Article  Google Scholar 

  26. Yan W, Zhang H, Bai X, et al. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res, 2011, 1402:109–121

    Article  CAS  PubMed  Google Scholar 

  27. Myers B, Greenwood-Van MB. Elevated corticosterone in the amygdala leads to persistent increases in anxiety-like behavior and pain sensitivity. Behav Brain Res, 2010, 214(2):465–469

    Article  CAS  PubMed  Google Scholar 

  28. Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988, 32(1):77–88

    Article  CAS  PubMed  Google Scholar 

  29. Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci, 2001, 21(9):3017–3023

    CAS  PubMed  Google Scholar 

  30. Kawasaki Y, Xu ZZ, Wang X, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med, 2008, 14(3): 331–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev, 2010, 90(4):1383–1435

    Article  CAS  PubMed  Google Scholar 

  32. Guo Y, Wang J, Wang Z, et al. Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement. J Huazhong Univ Sci Technolog [Med Sci], 2010, 30(1):1–7

    Article  CAS  Google Scholar 

  33. Zhang E, Yi MH, Ko Y, et al. Expression of LC3 and Beclin 1 in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Brain Res, 2013, 1519: 31–39

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Zhou J, Li X, et al. GSK-3beta inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem Biophys Res Commun, 2011, 411(2):271–275

    Article  CAS  PubMed  Google Scholar 

  35. Schafers M, Sorkin L. Effect of cytokines on neuronal excitability. Neurosci Lett, 2008, 437(3):188–193

    Article  PubMed  Google Scholar 

  36. Mcmahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol, 2005, 192(2):444–462

    Article  CAS  PubMed  Google Scholar 

  37. Harris J. Autophagy and IL-1 family cytokines. Front Immunol, 2013, 4:83

    Article  PubMed Central  PubMed  Google Scholar 

  38. Shi G, Shi J, Liu K, et al. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia, 2013, 61(4):504–512

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-ying Yuan  (袁世荧) or Wei Cheng  (程 伟).

Additional information

The two authors contributed equally to the project.

This project was supported by grants from the National Natural Science Foundation of China (Nos. 31100801 and 81200858).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Yin, Q., Weng, Zl. et al. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 830–837 (2014). https://doi.org/10.1007/s11596-014-1361-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1361-6

Key words

Navigation