Skip to main content

Advertisement

Log in

A Synopsis of Multitarget Potential Therapeutic Effects of Huperzine A in Diverse Pathologies–Emphasis on Alzheimer’s Disease Pathogenesis

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Numerous challenges are confronted when it comes to the recognition of therapeutic agents for treating complex neurodegenerative diseases like Alzheimer’s disease (AD). The perplexing pathogenicity of AD embodies cholinergic dysfunction, amyloid beta (Aβ) aggregation, neurofibrillary tangle formation, neuroinflammation, mitochondrial disruption along with vicious production of reactive oxygen species (ROS) generating oxidative stress. In this frame of reference, drugs with multi target components could prove more advantageous to counter complex pathological mechanisms that are responsible for AD progression. For as much as, medicinal plant based pharmaco-therapies are emerging as potential candidates for AD treatment keeping the efficacy and safety parameters in terms of toxicity and side effects into consideration. Huperzine A (Hup A) is a purified alkaloid compound extracted from a club moss called Huperzia serrata. Several studies have reported both cholinergic and non-cholinergic effects of this compound on AD with significant neuroprotective properties. The present review convenes cumulative demonstrations of neuroprotection provided by Hup A in in vitro, in vivo, and human studies in various pathologies. The underlying molecular mechanisms of its actions have also been discussed. However, more profound evidence would certainly promote the therapeutic implementation of this drug thus furnishing decisive insights into AD therapeutics and various other pathologies along with preventive and curative management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  2. Perl DP (2010) Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77:32–42

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223:267–281

    Article  CAS  PubMed  Google Scholar 

  4. Nilsu T, Thorroad S, Ruchirawat S, Thasana N (2016) Squarrosine A and Pyrrolhuperzine A, New Lycopodium Alkaloids from Thai and Philippine Huperzia squarrosa. Planta Med 82:1046–1050

    Article  CAS  PubMed  Google Scholar 

  5. Nilsu T, Thaisaeng W, Thamnarak W, Eurtivong C, Jumraksa A, Thorroad S, Khunnawutmanotham N, Ruchirawat S, Thasana N (2018) Three Lycopodium alkaloids from Thai club mosses. Phytochemistry 156:83–88

    Article  CAS  PubMed  Google Scholar 

  6. Anukanon S, Pongpamorn P, Tiyabhorn W, Chatwichien J, Niwetmarin W, Sessions RB, Ruchirawat S, Thasana N (2021) In Silico-Guided Rational Drug Design and Semi-synthesis of C(2)-Functionalized Huperzine A Derivatives as Acetylcholinesterase Inhibitors. ACS Omega 6:19924–19939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boonya-Udtayan S, Thasana N, Jarussophon N, Ruchirawat S (2019) Serratene triterpenoids and their biological activities from Lycopodiaceae plants. Fitoterapia 136:104181

    Article  CAS  PubMed  Google Scholar 

  8. Ratia M, Gimenez-Llort L, Camps P, Munoz-Torrero D, Perez B, Clos MV, Badia A (2013) Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer’s disease in triple transgenic mice (3xTg-AD). Neurodegener Dis 11:129–140

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Wu HM, Zhou RL, Liu GJ, Dong BR (2008) Huperzine A for Alzheimer’s disease. Cochrane Database Syst Rev 2:CD005592

    Google Scholar 

  10. Wang BS, Wang H, Wei ZH, Song YY, Zhang L, Chen HZ (2009) Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: an updated meta-analysis. J Neural Transm (Vienna) 116:457–465

    Article  CAS  Google Scholar 

  11. Bai DL, Tang XC, He XC (2000) Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr Med Chem 7:355–374

    Article  CAS  PubMed  Google Scholar 

  12. Sun QQ, Xu SS, Pan JL, Guo HM, Cao WQ (1999) Huperzine-A capsules enhance memory and learning performance in 34 pairs of matched adolescent students. Zhongguo Yao Li Xue Bao 20:601–603

    CAS  PubMed  Google Scholar 

  13. Ma X, Tan C, Zhu D, Gang DR, Xiao P (2007) Huperzine A from Huperzia species--an ethnopharmacolgical review. J Ethnopharmacol 113:15–34

    Article  CAS  PubMed  Google Scholar 

  14. Kozikowski APT, W (1999) Chemistry, pharmacology, and clinical efficacy of the Chinese nootropic agent huperzine A. Acc Chem Res 32:641–650

    Article  CAS  Google Scholar 

  15. Zhang ZJ, Tong Y, Wang XY, Yao SM, Jin GX, Wang XP (2007) Huperzine A as add-on therapy in patients with treatment-resistant schizophrenia: an open-labeled trial. Schizophr Res 92:273–275

    Article  PubMed  Google Scholar 

  16. Zhu XZ, Li XY, Liu J (2004) Recent pharmacological studies on natural products in China. Eur J Pharmacol 500:221–230

    Article  CAS  PubMed  Google Scholar 

  17. Wang R, Yan H, Tang XC (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27:1–26

    Article  PubMed  Google Scholar 

  18. Xu ZQ, Liang XM, Juan W, Zhang YF, Zhu CX, Jiang XJ (2012) Treatment with Huperzine A improves cognition in vascular dementia patients. Cell Biochem Biophys 62:55–58

    Article  CAS  PubMed  Google Scholar 

  19. Ved HS, Koenig ML, Dave JR, Doctor BP (1997) Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. NeuroReport 8:963–968

    Article  CAS  PubMed  Google Scholar 

  20. Gordon RK, Nigam SV, Weitz JA, Dave JR, Doctor BP, Ved HS (2001) The NMDA receptor ion channel: a site for binding of Huperzine A. J Appl Toxicol 21(Suppl 1):S47–51

    Article  CAS  PubMed  Google Scholar 

  21. Wang R, Tang XC (2005) Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 14:71–82

    Article  CAS  PubMed  Google Scholar 

  22. De La Garza R 2, Verrico CD, Newton TF, Mahoney JJ 3, Thompson-Lake DG (2015) Safety and Preliminary Efficacy of the Acetylcholinesterase Inhibitor Huperzine A as a Treatment for Cocaine Use Disorder. Int J Neuropsychopharmacol 19:pyv098

    Article  Google Scholar 

  23. Sun J, Tian L, Cui R, Li X (2017) Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats. Exp Ther Med 13:1584–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma B, Cai Y, Zhang X, Wang F, Zhuang D, Liu H, Liu Y, Zhou W (2020) Huperzine A inhibits heroin-seeking behaviors induced by cue or heroin priming in rats. NeuroReport 31:819–824

    CAS  PubMed  Google Scholar 

  25. Li C, Shi S (2021) Neuroprotective Effect of Huperzine A on d-Galactose-Induced Hearing Dysfunction. Ear Nose Throat J 100:269S–276S

    Article  PubMed  Google Scholar 

  26. Yu P, Dong WP, Tang YB, Chen HZ, Cui YY, Bian XL (2021) Huperzine A lowers intraocular pressure via the M3 mAChR and provides retinal neuroprotection via the M1 mAChR: a promising agent for the treatment of glaucoma. Ann Transl Med 9:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2015) Progress report on new antiepileptic drugs: a summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res 111:85–141

    Article  PubMed  Google Scholar 

  28. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2017) Progress report on new antiepileptic drugs A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices EILAT XIII. Epilepsia 58: 181-221

  29. Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Tomson T, White HS (2018) Progress report on new antiepileptic drugs:A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV).I.Drugs in preclinical and early clinical development.Epilepsia 59:1811-1841

  30. Younus I, Reddy DS (2018) A resurging boom in new drugs for epilepsy and brain disorders. Expert Rev Clin Pharmacol 11:27–45

    Article  CAS  PubMed  Google Scholar 

  31. Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A (2016) Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 16:671–680

    Article  CAS  PubMed  Google Scholar 

  32. Schneider BM, Dodman NH, Faissler D, Ogata N (2009) Clinical use of an herbal-derived compound (Huperzine A) to treat putative complex partial seizures in a dog. Epilepsy Behav 15:529–534

    Article  PubMed  Google Scholar 

  33. Wong JC, Dutton SB, Collins SD, Schachter S, Escayg A (2016) Huperzine A Provides Robust and Sustained Protection against Induced Seizures in Scn1a Mutant Mice. Front Pharmacol 7:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu XD, Giacobini E (1995) Second generation cholinesterase inhibitors: effect of (L)-huperzine-A on cortical biogenic amines. J Neurosci Res 41:828–835

    Article  CAS  PubMed  Google Scholar 

  35. Chen LW, Wang YQ, Wei LC, Shi M, Chan YS (2007) Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 6:273–281

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Chen F, Zheng P, Deng W, Yuan J, Peng B, Wang R, Liu W, Zhao H, Wang Y, Wu G (2012) Huperzine A ameliorates experimental autoimmune encephalomyelitis via the suppression of T cell-mediated neuronal inflammation in mice. Exp Neurol 236:79–87

    Article  CAS  PubMed  Google Scholar 

  37. Tian GX, Zhu XQ, Chen Y, Wu GC, Wang J (2013) Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte. Int J Immunopathol Pharmacol 26:757–764

    Article  CAS  PubMed  Google Scholar 

  38. Sanadgol N, Zahedani SS, Sharifzadeh M, Khalseh R, Barbari GR, Abdollahi M (2017) Recent Updates in Imperative Natural Compounds for Healthy Brain and Nerve Function: A Systematic Review of Implications for Multiple Sclerosis. Curr Drug Targets 18:1499–1517

    Article  CAS  PubMed  Google Scholar 

  39. Zhu SZ, Huang WP, Huang LQ, Han YL, Han QP, Zhu GF, Wen MY, Deng YY, Zeng HK (2016) Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function. Neurosci Lett 631:70–78

    Article  CAS  PubMed  Google Scholar 

  40. Darvesh S, Arora RC, Martin E, Magee D, Hopkins DA, Armour JA (2004) Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons. Exp Neurol 188:461–470

    Article  CAS  PubMed  Google Scholar 

  41. Dong H, Li X, Cai M, Zhang C, Mao W, Wang Y, Xu Q, Chen M, Wang L, Huang X (2021) Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension. Aging 13:14234–14257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu Z, Wang Y (2014) Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways. Mol Med Rep 10:701–706

    Article  CAS  PubMed  Google Scholar 

  43. Yang Y, Yang J, Jiang Q (2014) The protective effect of huperzine A against hepatic ischemia reperfusion injury in mice. Transplant Proc 46:1573–1577

    Article  CAS  PubMed  Google Scholar 

  44. Du Y, Liang H, Zhang L, Fu F (2017) Administration of Huperzine A exerts antidepressant-like activity in a rat model of post-stroke depression. Pharmacol Biochem Behav 158:32–38

    Article  CAS  PubMed  Google Scholar 

  45. An JR, Zhao YS, Luo LF, Guan P, Tan M, Ji ES (2020) Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci 250:117573

    Article  CAS  PubMed  Google Scholar 

  46. Hu XN, Wang JF, Huang YQ, Wang Z, Dong FY, Ma HF, Bao ZJ (2018) Huperzine A attenuates nonalcoholic fatty liver disease by regulating hepatocyte senescence and apoptosis: an in vitro study. PeerJ 6:e5145

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tang LL, Wang R, Tang XC (2005) Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells. Acta Pharmacol Sin 26:673–678

    Article  CAS  PubMed  Google Scholar 

  48. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang G, Zhang SQ, Zhan H (2006) Effect of huperzine A on cerebral cholinesterase and acetylcholine in elderly patients during recovery from general anesthesia. Nan Fang Yi Ke Da Xue Xue Bao 26:1660–1662

    CAS  PubMed  Google Scholar 

  51. Shih CC, Chen PY, Chen MF, Lee TJF (2020) Differential blockade by huperzine A and donepezil of sympathetic nicotinic acetylcholine receptor-mediated nitrergic neurogenic dilations in porcine basilar arteries. Eur J Pharmacol 868:172851

    Article  CAS  PubMed  Google Scholar 

  52. Liang YQ, Tang XC (2004) Comparative effects of huperzine A, donepezil and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats. Neurosci Lett 361:56–59

    Article  CAS  PubMed  Google Scholar 

  53. Liang YQ, Huang XT, Tang XC (2008) Huperzine A reverses cholinergic and monoaminergic dysfunction induced by bilateral nucleus basalis magnocellularis injection of beta-amyloid peptide (1-40) in rats. Cell Mol Neurobiol 28:87–101

    Article  CAS  PubMed  Google Scholar 

  54. Rispoli V, Ragusa S, Nistico R, Marra R, Russo E, Leo A, Felicita V, Rotiroti D (2013) Huperzine a restores cortico-hippocampal functional connectivity after bilateral AMPA lesion of the nucleus basalis of meynert. J Alzheimers Dis 35:833–846

    Article  PubMed  Google Scholar 

  55. Konrath EL, Neves BM, Passos Cdos S, Lunardi PS, Ortega MG, Cabrera JL, Goncalves CA, Henriques AT (2012) Huperzia quadrifariata and Huperzia reflexa alkaloids inhibit acetylcholinesterase activity in vivo in mice brain. Phytomedicine 19:1321–1324

    Article  CAS  PubMed  Google Scholar 

  56. Malkova L, Kozikowski AP, Gale K (2011) The effects of huperzine A and IDRA 21 on visual recognition memory in young macaques. Neuropharmacology 60:1262–1268

    Article  CAS  PubMed  Google Scholar 

  57. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peng Y, Jiang L, Lee DY, Schachter SC, Ma Z, Lemere CA (2006) Effects of huperzine A on amyloid precursor protein processing and beta-amyloid generation in human embryonic kidney 293 APP Swedish mutant cells. J Neurosci Res 84:903–911

    Article  CAS  PubMed  Google Scholar 

  59. Peng Y, Lee DY, Jiang L, Ma Z, Schachter SC, Lemere CA (2007) Huperzine A regulates amyloid precursor protein processing via protein kinase C and mitogen-activated protein kinase pathways in neuroblastoma SK-N-SH cells over-expressing wild type human amyloid precursor protein 695. Neuroscience 150:386–395

    Article  CAS  PubMed  Google Scholar 

  60. Huang JL, Wu DP, Lu L, Li F, Zhong ZG (2012) [The effect of PNS on the content and activity of alpha-secretase in the brains of SAMP8 mice with alzheimer’s disease]. Zhong Yao Cai 35:1805–1808

    CAS  PubMed  Google Scholar 

  61. Wang Y, Tang XC, Zhang HY (2012) Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. J Neurosci Res 90:508–517

    Article  CAS  PubMed  Google Scholar 

  62. Huang XT, Qian ZM, He X, Gong Q, Wu KC, Jiang LR, Lu LN, Zhu ZJ, Zhang HY, Yung WH, Ke Y (2014) Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer’s disease. Neurobiol Aging 35:1045–1054

    Article  CAS  PubMed  Google Scholar 

  63. Peters DG, Connor JR, Meadowcroft MD (2015) The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: Two sides of the same coin. Neurobiol Dis 81:49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang HY, Yan H, Tang XC (2004) Huperzine A enhances the level of secretory amyloid precursor protein and protein kinase C-alpha in intracerebroventricular beta-amyloid-(1-40) infused rats and human embryonic kidney 293 Swedish mutant cells. Neurosci Lett 360:21–24

    Article  CAS  PubMed  Google Scholar 

  65. Wang CY, Zheng W, Wang T, Xie JW, Wang SL, Zhao BL, Teng WP, Wang ZY (2011) Huperzine A activates Wnt/beta-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology 36:1073–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tao Y, Fang L, Yang Y, Jiang H, Yang H, Zhang H, Zhou H (2013) Quantitative proteomic analysis reveals the neuroprotective effects of huperzine A for amyloid beta treated neuroblastoma N2a cells. Proteomics 13:1314–1324

    Article  CAS  PubMed  Google Scholar 

  67. Zhang GR, Cheng XR, Zhou WX, Zhang YX (2009) Age-related expression of calcium/calmodulin-dependent protein kinase II A in the hippocampus and cerebral cortex of senescence accelerated mouse prone/8 mice is modulated by anti-Alzheimer’s disease drugs. Neuroscience 159:308–315

    Article  CAS  PubMed  Google Scholar 

  68. Zhang HY, Liang YQ, Tang XC, He XC, Bai DL (2002) Stereoselectivities of enantiomers of huperzine A in protection against beta-amyloid(25-35)-induced injury in PC12 and NG108-15 cells and cholinesterase inhibition in mice. Neurosci Lett 317:143–146

    Article  CAS  PubMed  Google Scholar 

  69. Relat J, Come J, Perez B, Camps P, Munoz-Torrero D, Badia A, Gimenez-Llort L, Clos MV (2018) Neuroprotective Effects of the Multitarget Agent AVCRI104P3 in Brain of Middle-Aged Mice. Int J Mol Sci 19

  70. Gimenez-Llort L, Ratia M, Perez B, Camps P, Munoz-Torrero D, Badia A, Clos MV (2015) AVCRI104P3, a novel multitarget compound with cognition-enhancing and anxiolytic activities: studies in cognitively poor middle-aged mice. Behav Brain Res 286:97–103

    Article  CAS  PubMed  Google Scholar 

  71. Wang HY, Wu M, Diao JL, Li JB, Sun YX, Xiao XQ (2020) Huperzine A ameliorates obesity-related cognitive performance impairments involving neuronal insulin signaling pathway in mice. Acta Pharmacol Sin 41:145–153

    Article  PubMed  Google Scholar 

  72. Gimenez-Llort L, Ratia M, Perez B, Camps P, Munoz-Torrero D, Badia A, Clos MV (2017) Behavioural effects of novel multitarget anticholinesterasic derivatives in Alzheimer’s disease. Behav Pharmacol 28:124–131

    Article  CAS  PubMed  Google Scholar 

  73. Arnsten AFT, Datta D, Tredici KD, Braak H (2021) Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement 17:115–124

    Article  CAS  PubMed  Google Scholar 

  74. Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210

    Article  CAS  PubMed  Google Scholar 

  75. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, Campos-Pena V (2020) GSK3beta and Tau Protein in Alzheimer’s Disease and Epilepsy. Front Cell Neurosci 14:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui W, Li W, Zhao Y, Mak S, Gao Y, Luo J, Zhang H, Liu Y, Carlier PR, Rong J, Han Y (2011) Preventing H(2)O(2)-induced apoptosis in cerebellar granule neurons by regulating the VEGFR-2/Akt signaling pathway using a novel dimeric antiacetylcholinesterase bis(12)-hupyridone. Brain Res 1394:14–23

    Article  CAS  PubMed  Google Scholar 

  78. Cui W, Hu S, Chan HH, Luo J, Li W, Mak S, Choi TC, Rong J, Carlier PR, Han Y (2013) Bis(12)-hupyridone, a novel acetylcholinesterase inhibitor, protects against glutamate-induced neuronal excitotoxicity via activating alpha7 nicotinic acetylcholine receptor/phosphoinositide 3-kinase/Akt cascade. Chem Biol Interact 203:365–370

    Article  CAS  PubMed  Google Scholar 

  79. Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna, Nixon R, Dickson D, Matsuoka Y, Ahlijanian M, Lau LF, Duff K (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38:555–565

    Article  CAS  PubMed  Google Scholar 

  80. Imahori K, Uchida T (1997) Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem 121:179–188

    CAS  PubMed  Google Scholar 

  81. Feng JH, Cai BC, Guo WF, Wang MY, Ma Y, Lu QX (2017) Neuroprotective effects of Tongmai Yizhi Decoction () against Alzheimer’s disease through attenuating cyclin-dependent kinase-5 expression. Chin J Integr Med 23:132–137

    Article  PubMed  Google Scholar 

  82. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  83. Christian KM, Song H, Ming GL (2014) Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 37:243–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Braun SM, Jessberger S (2014) Adult neurogenesis: mechanisms and functional significance. Development 141:1983–1986

    Article  CAS  PubMed  Google Scholar 

  85. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  86. Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, Avila J, Llorens-Martin M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560

    Article  CAS  PubMed  Google Scholar 

  87. Choi SH, Tanzi RE (2019) Is Alzheimer’s Disease a Neurogenesis Disorder? Cell Stem Cell 25:7–8

    Article  CAS  PubMed  Google Scholar 

  88. Wang ZF, Tang LL, Yan H, Wang YJ, Tang XC (2006) Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice. Pharmacol Biochem Behav 83:603–611

    Article  CAS  PubMed  Google Scholar 

  89. Ma T, Gong K, Yan Y, Zhang L, Tang P, Zhang X, Gong Y (2013) Huperzine A promotes hippocampal neurogenesis in vitro and in vivo. Brain Res 1506:35–43

    Article  CAS  PubMed  Google Scholar 

  90. Zhang L, Yang X, Yang S, Zhang J (2011) The Wnt /beta-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 33:1–8

    Article  PubMed  Google Scholar 

  91. Zhu N, Lin J, Wang K, Wei M, Chen Q, Wang Y (2015) Huperzine A protects neural stem cells against Abeta-induced apoptosis in a neural stem cells and microglia co-culture system. Int J Clin Exp Pathol 8:6425–6433

    PubMed  PubMed Central  Google Scholar 

  92. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802:2–10

    Article  CAS  PubMed  Google Scholar 

  93. Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13:195–208

    Article  CAS  PubMed  Google Scholar 

  94. Perez Ortiz JM, Swerdlow RH (2019) Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 176:3489–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adh Migr 3:88–93

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pohanka M, Hrabinova M, Zemek F, Drtinova L, Bandouchova H, Pikula J (2011) Huperzine induces alteration in oxidative balance and antioxidants in a guinea pig model. Neuro Endocrinol Lett 32(Suppl 1):95–100

    CAS  PubMed  Google Scholar 

  97. Qian ZM, Ke Y (2014) Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimer’s Disease? Front Aging Neurosci 6:216

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang HY (2012) New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 33:1170–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang L, Ye CY, Huang XT, Tang XC, Zhang HY (2012) Decreased accumulation of subcellular amyloid-beta with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J Alzheimers Dis 31:131–142

    Article  CAS  PubMed  Google Scholar 

  100. Xiao X, Chen Q, Zhu X, Wang Y (2019) ABAD/17beta-HSD10 reduction contributes to the protective mechanism of huperzine a on the cerebral mitochondrial function in APP/PS1 mice. Neurobiol Aging 81:77–87

    Article  CAS  PubMed  Google Scholar 

  101. Zheng CY, Zhang HY, Tang XC (2008) Huperzine A attenuates mitochondrial dysfunction after middle cerebral artery occlusion in rats. J Neurosci Res 86:2432–2440

    Article  CAS  PubMed  Google Scholar 

  102. Clementi ME, Marini S, Coletta M, Orsini F, Giardina B, Misiti F (2005) Abeta(31-35) and Abeta(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: Role of the redox state of methionine-35. FEBS Lett 579:2913–2918

    Article  CAS  PubMed  Google Scholar 

  103. Gao X, Tang XC (2006) Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res 83:1048–1057

    Article  CAS  PubMed  Google Scholar 

  104. Xiao XQ, Wang R, Tang XC (2000) Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res 61:564–569

    Article  CAS  PubMed  Google Scholar 

  105. Lei Y, Yang L, Ye CY, Qin MY, Yang HY, Jiang HL, Tang XC, Zhang HY (2015) Involvement of Intracellular and Mitochondrial Abeta in the Ameliorative Effects of Huperzine A against Oligomeric Abeta42-Induced Injury in Primary Rat Neurons. PLoS ONE 10:e0128366

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tao LX, Huang XT, Chen YT, Tang XC, Zhang HY (2016) Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin 37:1391–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shi Q, Fu J, Ge D, He Y, Ran J, Liu Z, Wei J, Diao T, Lu Y (2012) Huperzine A ameliorates cognitive deficits and oxidative stress in the hippocampus of rats exposed to acute hypobaric hypoxia. Neurochem Res 37:2042–2052

    Article  CAS  PubMed  Google Scholar 

  108. Tang LL, Wang R, Tang XC (2005) Huperzine A protects SHSY5Y neuroblastoma cells against oxidative stress damage via nerve growth factor production. Eur J Pharmacol 519:9–15

    Article  CAS  PubMed  Google Scholar 

  109. Mao XY, Zhou HH, Li X, Liu ZQ (2016) Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway. Cell Mol Neurobiol 36:915–925

    Article  CAS  PubMed  Google Scholar 

  110. Wang Y, Wei Y, Oguntayo S, Doctor BP, Nambiar MP (2013) A combination of [+] and [-]-Huperzine A improves protection against soman toxicity compared to [+]-Huperzine A in guinea pigs. Chem Biol Interact 203:120–124

    Article  CAS  PubMed  Google Scholar 

  111. Yang X, Wei HM, Hu GY, Zhao J, Long LN, Li CJ, Zhao ZJ, Zeng HK, Nie H (2020) Combining antioxidant astaxantin and cholinesterase inhibitor huperzine A boosts neuroprotection. Mol Med Rep 21:1043–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shi J, Liu Q, Wang Y, Luo G (2010) Coadministration of huperzine A and ligustrazine phosphate effectively reverses scopolamine-induced amnesia in rats. Pharmacol Biochem Behav 96:449–453

    Article  CAS  PubMed  Google Scholar 

  113. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sivaprakasam K (2006) Towards a unifying hypothesis of Alzheimer’s disease: cholinergic system linked to plaques, tangles and neuroinflammation. Curr Med Chem 13:2179–2188

    Article  CAS  PubMed  Google Scholar 

  115. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dursun E, Gezen-Ak D, Hanagasi H, Bilgic B, Lohmann E, Ertan S, Atasoy IL, Alaylioglu M, Araz OS, Onal B, Gunduz A, Apaydin H, Kiziltan G, Ulutin T, Gurvit H, Yilmazer S (2015) The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 283:50–57

    Article  CAS  PubMed  Google Scholar 

  117. Kong YR, Tay KC, Su YX, Wong CK, Tan WN, Khaw KY (2021) Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases.Molecules 26

  118. Xie L, Jiang C, Wang Z, Yi X, Gong Y, Chen Y, Fu Y (2016) Effect of Huperzine A on Abeta-induced p65 of astrocyte in vitro. Biosci Biotechnol Biochem 80:2334–2337

    Article  CAS  PubMed  Google Scholar 

  119. Mohseni-Moghaddam P, Sadr SS, Roghani M, Arabzadeh S, Khamse S, Zamani E, Hosseini M, Moradi F (2019) Huperzine A ameliorates cognitive dysfunction and neuroinflammation in kainic acid-induced epileptic rats by antioxidant activity and NLRP3/caspase-1 pathway inhibition. Clin Exp Pharmacol Physiol 46:360–372

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Dong Z, Song W (2020) NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct Target Ther 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mei Z, Zheng P, Tan X, Wang Y, Situ B (2017) Huperzine A alleviates neuroinflammation, oxidative stress and improves cognitive function after repetitive traumatic brain injury. Metab Brain Dis 32:1861–1869

    Article  CAS  PubMed  Google Scholar 

  122. Ying YM, Xu YL, Yu HF, Zhang CX, Mao W, Tong CP, Zhang ZD, Tang QY, Zhang Y, Shan WG, Zhan ZJ (2019) Biotransformation of Huperzine A by Irpex lacteus-A fungal endophyte of Huperzia serrata. Fitoterapia 138:104341

    Article  CAS  PubMed  Google Scholar 

  123. Huang W, Zhu S, Liu X, Huang L, Han Y, Han Q, Xie D, Zeng H (2016) [Cholinergic anti-inflammatory pathway involves in the neuroprotective effect of huperzine A on sepsis-associated encephalopathy]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 28:450–454

    PubMed  Google Scholar 

  124. Ruan Q, Hu X, Ao H, Ma H, Gao Z, Liu F, Kong D, Bao Z, Yu Z (2014) The neurovascular protective effects of huperzine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology 60:424–439

    Article  CAS  PubMed  Google Scholar 

  125. Mao XY, Cao DF, Li X, Yin JY, Wang ZB, Zhang Y, Mao CX, Zhou HH, Liu ZQ (2014) Huperzine A ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Int J Mol Sci 15:7667–7683

    Article  PubMed  PubMed Central  Google Scholar 

  126. Morasch KC, Aaron CL, Moon JE, Gordon RK (2015) Physiological and neurobehavioral effects of cholinesterase inhibition in healthy adults. Physiol Behav 138:165–172

    Article  CAS  PubMed  Google Scholar 

  127. Xing SH, Zhu CX, Zhang R, An L (2014) Huperzine a in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid Based Complement Alternat Med 2014:363985

    Article  PubMed  PubMed Central  Google Scholar 

  128. Rafii MS, Walsh S, Little JT, Behan K, Reynolds B, Ward C, Jin S, Thomas R, Aisen PS, Alzheimer’s Disease Cooperative S (2011) A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 76:1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang T, Liu N, Cao H, Wei W, Ma L, Li H (2020) Different Doses of Pharmacological Treatments for Mild to Moderate Alzheimer’s Disease: A Bayesian Network Meta-Analysis. Front Pharmacol 11:778

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chen Y, Cheng G, Hu R, Chen S, Lu W, Gao S, Xia H, Wang B, Sun C, Nie X, Shen Q, Fang W (2019) A Nasal Temperature and pH Dual-Responsive In Situ Gel Delivery System Based on Microemulsion of Huperzine A: Formulation, Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 20:301

    Article  PubMed  Google Scholar 

  131. Huperzine A in Alzheimer’s Disease.https://clinicaltrials.gov/ct2/show/NCT00083590

  132. Xu SS, Gao ZX, Weng Z, Du ZM, Xu WA, Yang JS, Zhang ML, Tong ZH, Fang YS, Chai XS et al (1995) Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Zhongguo Yao Li Xue Bao 16:391–395

    CAS  PubMed  Google Scholar 

  133. Zunming D, Shulan L, Bing L, Keming L, Qichang S, Zhenhua T, Haibao X, Sisun X (1997) Efficacy of tablet huperzine-A on memory and cognition in patients with benign senescent forgetfulness. 2:1–3

  134. Xu SS, Cai ZY, Qu ZW, Yang RM, Cai YL, Wang GQ, Su XQ, Zhong XS, Cheng RY, Xu WA, Li JX, Feng B (1999) Huperzine-A in capsules and tablets for treating patients with Alzheimer disease. Zhongguo Yao Li Xue Bao 20:486–490

    CAS  PubMed  Google Scholar 

  135. Zhang Z, Wang X, Chen Q, Shu L, Wang J, Shan G (2002) [Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial]. Zhonghua Yi Xue Za Zhi 82:941–944

    CAS  PubMed  Google Scholar 

  136. Cui CC, Sun Y, Wang XY, Zhang Y, Xing Y (2019) The effect of anti-dementia drugs on Alzheimer disease-induced cognitive impairment: A network meta-analysis. Med (Baltim) 98:e16091

    Article  Google Scholar 

  137. Gul A, Bakht J, Mehmood F (2019) Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J Chin Med Assoc 82:40–43

    Article  PubMed  Google Scholar 

  138. Perng CH, Chang YC, Tzang RF (2018) The treatment of cognitive dysfunction in dementia: a multiple treatments meta-analysis. Psychopharmacology 235:1571–1580

    Article  CAS  PubMed  Google Scholar 

  139. Wu SL, Gan J, Rao J, He SJ, Zhu WW, Zhao Y, Lv YN, Huang JG, Liu YN (2017) Pharmacokinetics and tolerability of oral dosage forms of huperzine a in healthy Chinese male volunteers: a randomized, single dose, three-period, six-sequence crossover study. J Huazhong Univ Sci Technolog Med Sci 37:795–802

    CAS  PubMed  Google Scholar 

  140. Mazurek A (2000) An open-label trial of huperzine A in the treatment of Alzheimer’s disease.Alternative Therapies5

  141. Shao ZQ (2015) Comparison of the efficacy of four cholinesterase inhibitors in combination with memantine for the treatment of Alzheimer’s disease. Int J Clin Exp Med 8:2944–2948

    PubMed  PubMed Central  Google Scholar 

  142. Tabira T, Kawamura N (2018) A Study of a Supplement Containing Huperzine A and Curcumin in Dementia Patients and Individuals with Mild Cognitive Impairment. J Alzheimers Dis 63:75–78

    Article  CAS  PubMed  Google Scholar 

  143. Zafonte RD, Fregni F, Bergin MJG, Goldstein R, Boudreau N, Monge I, Luz M, Frazier J, Giacino JT (2020) Huperzine A for the treatment of cognitive, mood, and functional deficits after moderate and severe TBI (HUP-TBI): results of a Phase II randomized controlled pilot study: implications for understanding the placebo effect. Brain Inj 34:34–41

    Article  PubMed  Google Scholar 

  144. Yang G, Wang Y, Tian J, Liu JP (2013) Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS ONE 8:e74916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yue J, Dong BR, Lin X, Yang M, Wu HM, Wu T (2012) Huperzine A for mild cognitive impairment. Cochrane Database Syst Rev 12:CD008827

    PubMed  Google Scholar 

  146. Hao Z, Liu M, Liu Z, Lv D (2009) Huperzine A for vascular dementia.Cochrane Database Syst Rev:CD007365

  147. Li J, Meng X, Li F, Liu J, Ma M, Chen W (2021) Huperzine A combined with hyperbaric oxygen on the effect on cognitive function and serum hypoxia-inducible factor-1alpha Level in elderly patients with vascular dementia. Am J Transl Res 13:6897–6904

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Farooq MU, Min J, Goshgarian C, Gorelick PB (2017) Pharmacotherapy for Vascular Cognitive Impairment. CNS Drugs 31:759–776

    Article  CAS  PubMed  Google Scholar 

  149. Liang J, Li J, Jia R, Wang Y, Wu R, Zhang H, Hang L, Xu Y (2018) Identification of the optimal cognitive drugs among Alzheimer’s disease: a Bayesian meta-analytic review. Clin Interv Aging 13:2061–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ghassab-Abdollahi N, Mobasseri K, Dehghani Ahmadabad A, Nadrian H, Mirghafourvand M (2021) The effects of Huperzine A on dementia and mild cognitive impairment: An overview of systematic reviews. Phytother Res 35:4971–4987

    Article  CAS  PubMed  Google Scholar 

  151. Callizot N, Campanari ML, Rouvière L, Jacquemot G, Henriques A, Garayev E, Poindron P (2021) Huperzia serrata Extract ‘NSP01’ With Neuroprotective Effects-Potential Synergies of Huperzine A and Polyphenols. Front Pharmacol 12:681532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li F, Hu R, Wang B, Gui Y, Cheng G, Gao S, Ye L, Tang J (2017) Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm Sin B 7:353–360

    Article  PubMed  PubMed Central  Google Scholar 

  153. Shi J, Cong W, Wang Y, Liu Q, Luo G (2012) Microemulsion-based patch for transdermal delivery of huperzine A and ligustrazine phosphate in treatment of Alzheimer’s disease. Drug Dev Ind Pharm 38:752–761

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Chulabhorn Graduate Institute and Thailand Science Research and Innovation (Grant Number FFB640035 Project code 50181) Chulabhorn Royal Academy.

Author information

Authors and Affiliations

Authors

Contributions

MS wrote the first draft; PW wrote the second draft and PG wrote and finalized the final manuscript. All authors have read and agreed to the final manuscript.

Corresponding author

Correspondence to Piyarat Govitrapong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, M., Wongchitrat, P. & Govitrapong, P. A Synopsis of Multitarget Potential Therapeutic Effects of Huperzine A in Diverse Pathologies–Emphasis on Alzheimer’s Disease Pathogenesis. Neurochem Res 47, 1166–1182 (2022). https://doi.org/10.1007/s11064-022-03530-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03530-2

Keywords

Navigation