Skip to main content

Advertisement

Log in

Pharmaceutical equivalent 5-aminolevulinic acid fluorescence guided resection of central nervous system tumors: feasibility, safeness and cost-benefit considerations

  • Case Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

5-aminolevulinic acid (5-ALA) fluorescence-guided resection (FGR) has been an essential tool in the ‘standard of care’ of malignant gliomas. Over the last two decades, its indications have been extended to other neoplasms, such as metastases and meningiomas. However, its availability and cost-benefit still pose a challenge for widespread use. The present article reports a retrospective series of 707 cases of central nervous system (CNS) tumors submitted to FGR with pharmacological equivalent 5-ALA and discusses financial implications, feasibility and safeness.

Methods

From December 2015 to February 2024, a retrospective single institution series of 707 cases of 5-ALA FGR were analyzed. Age, gender, 5-ALA dosage, intraoperative fluorescence finding, diagnosis and adverse effects were recorded. Financial impact in the surgical treatment cost were also reported.

Results

there was an additional cost estimated in $300 dollars for each case, increasing from 2,37 to 3,28% of the total hospitalization cost. There were 19 (2,69%) cases of asymptomatic photosensitive reaction and 2 (0,28%) cases of photosensitive reaction requiring symptomatic treatment. 1 (0,14%) patient had a cutaneous rash sustained for up to 10 days. No other complications related to the method were evident. In 3 (0,42%) cases of patients with intracranial hypertension, there was vomiting after administration.

Conclusion

FGR with pharmacological equivalent 5-ALA can be considered safe and efficient and incorporates a small increase in hospital expenses. It constitutes a reliable solution in avoiding prohibitive costs worldwide, especially in countries where commercial 5-ALA is unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abraham P, Sarkar R, Brandel MG, Wali AR, Rennert RC, Lopez Ramos C, Padwal J, Steinberg JA, Santiago-Dieppa DR, Cheung V, Pannell JS, Murphy JD, Khalessi AA (2019) Cost-effectiveness of Intraoperative MRI for treatment of high-Grade Gliomas. Radiology 291:689–697. https://doi.org/10.1148/radiol.2019182095

    Article  PubMed  Google Scholar 

  2. Bekelis K, Valdes PA, Erkmen K, Leblond F, Kim A, Wilson BC, Harris BT, Paulsen KD, Roberts DW (2011) Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas. Neurosurg Focus 30:E8. https://doi.org/10.3171/2011.2.FOCUS1112

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chohan MO, Berger MS (2019) 5-Aminolevulinic acid fluorescence guided surgery for recurrent high-grade gliomas. J Neurooncol 141:517–522. https://doi.org/10.1007/s11060-018-2956-8

    Article  CAS  PubMed  Google Scholar 

  4. Coluccia D, Fandino J, Fujioka M, Cordovi S, Muroi C, Landolt H (2010) Intraoperative 5-aminolevulinic-acid-induced fluorescence in meningiomas. Acta Neurochir (Wien) 152:1711–1719. https://doi.org/10.1007/s00701-010-0708-4

    Article  PubMed  Google Scholar 

  5. Da Silva EB Jr, Ramina R, Coelho Neto M, Machado GAS, Cavalcanti MS, da Silva JFC (2019) Extending the indications of 5-Aminolevulinic acid for fluorescence-guided surgery for different Central Nervous System tumors: a Series of 255 cases in Latin America. Arq Bras Neurocir 41:e35–e42. https://doi.org/10.1055/s-0041-1739272

    Article  Google Scholar 

  6. Diez Valle R, Slof J, Galvan J, Arza C, Romariz C, Vidal C (2014) Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (the VISIONA study). Neurologia 29:131–138

    CAS  PubMed  Google Scholar 

  7. Duarte JFS, Jung GS, da Silva EB Jr, de Almeida Teixeira BC, Cavalcanti MS, Ramina R (2022) 5-Aminolevulinic acid fluorescence in brain non-neoplastic lesions: a systematic review and case series. Neurosurg Rev 45:3139–3148. https://doi.org/10.1007/s10143-022-01843-y

    Article  PubMed  Google Scholar 

  8. Eljamel MS, Mahboob SO (2016) The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI. Photodiagnosis Photodyn Ther 16:35–43. https://doi.org/10.1016/j.pdpdt.2016.07.012

    Article  PubMed  Google Scholar 

  9. Esteves S, Alves M, Castel-Branco M, Stummer W (2015) A pilot cost-effectiveness analysis of treatments in newly diagnosed high-grade gliomas: the example of 5-aminolevulinic acid compared with white-light surgery. Neurosurgery 76:552–562. https://doi.org/10.1227/NEU.0000000000000673

    Article  PubMed  Google Scholar 

  10. Ferraro N, Barbarite E, Albert TR, Berchmans E, Shah AH, Bregy A, Ivan ME, Brown T, Komotar RJ (2016) The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review. Neurosurg Rev 39:545–555. https://doi.org/10.1007/s10143-015-0695-2

    Article  PubMed  Google Scholar 

  11. Garfias Arjona S, Lara Almunia M, Ibáñez Domínguez JÁ, Delgado Sánchez O, Villalonga P, Villalonga-Planells R, Pierola Lopetegui J, Bestard Escalas J, Maimó Barceló A, Brell Doval M (2019) Comparison of commercial 5-aminolevulinic acid (Gliolan®) and the pharmacy-compounded solution fluorescence in glioblastoma. Acta Neurochir (Wien) 161:1733–1741. https://doi.org/10.1007/s00701-019-03930-4

    Article  PubMed  Google Scholar 

  12. Georges JF, Valeri A, Wang H, Brooking A, Kakareka M, Cho SS, Al-Atrache Z, Bamimore M, Osman H, Ifrach J, Yu S, Li C, Appelt D, Lee JYK, Nakaji P, Brill K, Yocom S (2019) Delta-Aminolevulinic acid-mediated photodiagnoses in Surgical Oncology: a historical review of clinical trials. Front Surg 6:45. https://doi.org/10.3389/fsurg.2019.00045

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goel NJ, Bird CE, Hicks WH, Abdullah KG (2021) Economic implications of the modern treatment paradigm of glioblastoma: an analysis of global cost estimates and their utility for cost assessment. J Med Econ 24:1018–1024. https://doi.org/10.1080/13696998.2021.1964775

    Article  PubMed  Google Scholar 

  14. Hadjipanayis CG, Stummer W (2019) 5-ALA and FDA approval for glioma surgery. J Neurooncol 141:479–486. https://doi.org/10.1007/s11060-019-03098-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hadjipanayis CG, Widhalm G, Stummer W (2015) What is the Surgical Benefit of utilizing 5-Aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 77:663– 73. https://doi.org/10.1227/NEU.0000000000000929

  16. Haider SA, Lim S, Kalkanis SN, Lee IY (2019) The impact of 5-aminolevulinic acid on extent of resection in newly diagnosed high grade gliomas: a systematic review and single institutional experience. J Neurooncol 141:507–515. https://doi.org/10.1007/s11060-018-03061-3

    Article  PubMed  Google Scholar 

  17. Huang CY, Li JC, Chen KT, Lin YJ, Feng LY, Liu HL, Wei KC (2024) Evaluation the Effect of Sonodynamic Therapy with 5-Aminolevulinic acid and Sodium Fluorescein by Preclinical Animal Study. Cancers (Basel) 16:253. https://doi.org/10.3390/cancers16020253

    Article  CAS  PubMed  Google Scholar 

  18. Kamp MA, Fischer I, Bühner J, Turowski B, Cornelius JF, Steiger HJ, Rapp M, Slotty PJ, Sabel M (2016) 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget 7:66776–66789. https://doi.org/10.18632/oncotarget.11488

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kamp MA, Grosser P, Felsberg J, Slotty PJ, Steiger HJ, Reifenberger G, Sabel M (2012) 5-aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir (Wien) 154:223–228. https://doi.org/10.1007/s00701-011-1200-5

    Article  PubMed  Google Scholar 

  20. Kamp MA, Munoz-Bendix C, Mijderwijk HJ, Turowski B, Dibué-Adjei M, von Saß C, Cornelius JF, Steiger HJ, Rapp M, Sabel M (2019) Is 5-ALA fluorescence of cerebral metastases a prognostic factor for local recurrence and overall survival? J Neurooncol 141:547–553. https://doi.org/10.1007/s11060-018-03066-y

    Article  CAS  PubMed  Google Scholar 

  21. Lakomkin N, Hadjipanayis CG (2018) Fluorescence-guided surgery for high-grade gliomas. J Surg Oncol 118:356–361. https://doi.org/10.1002/jso.25154

    Article  PubMed  Google Scholar 

  22. Mansouri A, Mansouri S, Hachem LD, Klironomos G, Vogelbaum MA, Bernstein M, Zadeh G (2016) The role of 5-aminolevulinic acid in enhancing surgery for high-grade glioma, its current boundaries, and future perspectives: a systematic review. Cancer 122:2469–2478. https://doi.org/10.1002/cncr.30088

    Article  PubMed  Google Scholar 

  23. McCracken DJ, Schupper AJ, Lakomkin N, Malcolm J, Painton Bray D, Hadjipanayis CG (2022) Turning on the light for brain tumor surgery: a 5-aminolevulinic acid story. Neuro Oncol 24:S52–S61. https://doi.org/10.1093/neuonc/noac191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mercea PA, Mischkulnig M, Kiesel B, Wadiura LI, Roetzer T, Prihoda R, Heicappell P, Kreminger J, Furtner J, Woehrer A, Preusser M, Roessler K, Berghoff AS, Widhalm G (2021) Prognostic value of 5-ALA fluorescence, Tumor Cell Infiltration and Angiogenesis in the Peritumoral Brain tissue of Brain metastases. Cancers (Basel) 13:603. https://doi.org/10.3390/cancers13040603

    Article  CAS  PubMed  Google Scholar 

  25. Millesi M, Kiesel B, Mischkulnig M, Martinez-Moreno M, Wohrer A, Wolfsberger S, Knosp E, Widhalm G (2016) Analysis of the surgical benefits of 5-ALA-induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg 125:1408–1419. https://doi.org/10.3171/2015.12.JNS151513

    Article  CAS  PubMed  Google Scholar 

  26. Ontario Health (Quality) (2020) 5-Aminolevulinic acid hydrochloride (5-ALA)-Guided Surgical Resection of High-Grade Gliomas: A Health Technology Assessment. Ont Health Technol Assess Ser 20:1–92

    Google Scholar 

  27. Raizer JJ, Fitzner KA, Jacobs DI, Bennett CL, Liebling DB, Luu TH, Trifilio SM, Grimm SA, Fisher MJ, Haleem MS, Ray PS, McKoy JM, DeBoer R, Tulas KM, Deeb M, McKoy JM (2015) Economics of malignant gliomas: a critical review. J Oncol Pract 11:e59–65. https://doi.org/10.1200/JOP.2012.000560

    Article  PubMed  Google Scholar 

  28. Ramina R, Coelho Neto M, Giacomelli A, Barros E Jr, Vosgerau R, Nascimento A, Coelho G (2010) Optimizing costs of intraoperative magnetic resonance imaging. A series of 29 glioma cases. Acta Neurochir (Wien) 152:27–33. https://doi.org/10.1007/s00701-009-0430-2

    Article  PubMed  Google Scholar 

  29. Ramina R, da Silva EB Jr, Constanzo F, Coelho Neto M (2018) Indications of 5-Aminolevulinic acid and intraoperative MRI in glioma surgery: first cases in Latin America in a single reference Center. Arq Bras Neurocir 37:088–094. https://doi.org/10.1055/s-0038-1667182

    Article  Google Scholar 

  30. Raw AS, Lionberger R, Yu LX (2011) Pharmaceutical equivalence by design for generic drugs: modified-release products. Pharm Res 28:1445–1453. https://doi.org/10.1007/s11095-011-0397-6

    Article  CAS  PubMed  Google Scholar 

  31. Ruschel LG, Ramina R, da Silva EB Jr, Cavalcanti MS, Duarte JFS (2018) 5-Aminolevulinic acid fluorescence-guided surgery for spinal cord melanoma metastasis: a technical note. Acta Neurochir (Wien) 160:1905–1908. https://doi.org/10.1007/s00701-018-3645-2

    Article  PubMed  Google Scholar 

  32. Schipmann S, Müther M, Stögbauer L, Zimmer S, Brokinkel B, Holling M, Grauer O, Suero Molina E, Warneke N, Stummer W (2020) Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg 134:426–436. https://doi.org/10.3171/2019.11.JNS192443

    Article  PubMed  Google Scholar 

  33. Schwake M, Schipmann S, Müther M, Köchling M, Brentrup A, Stummer W (2019) 5-ALA fluorescence-guided surgery in pediatric brain tumors-a systematic review. Acta Neurochir (Wien) 161:1099–1108. https://doi.org/10.1007/s00701-019-03898-1

    Article  PubMed  Google Scholar 

  34. Shah HA, Leskinen S, Khilji H, Narayan V, Ben-Shalom N, D’Amico RS (2022) Utility of 5-ALA for fluorescence-guided resection of brain metastases: a systematic review. J Neurooncol 160:669–675. https://doi.org/10.1007/s11060-022-04188-0

    Article  CAS  PubMed  Google Scholar 

  35. Slof J, Díez Valle R, Galván J (2015) Cost-effectiveness of 5-aminolevulinic acid-induced fluorescence in malignant glioma surgery. Neurologia 30:163–168. https://doi.org/10.1016/j.nrl.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  36. Schupper AJ, Rao M, Mohammadi N, Baron R, Lee JYK, Acerbi F, Hadjipanayis CG (2021) Fluorescence-guided surgery: a review on timing and use in brain tumor surgery. Front Neurol 12:682151. https://doi.org/10.3389/fneur.2021.682151

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schupper AJ, Yong RL, Hadjipanayis CG (2021) The neurosurgeon’s armamentarium for gliomas: an update on Intraoperative Technologies to improve extent of Resection. J Clin Med 10:236. https://doi.org/10.3390/jcm10020236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stummer W, Beck T, Beyer W, Mehrkens JH, Obermeier A, Etminan N, Stepp H, Tonn JC, Baumgartner R, Herms J, Kreth FW (2008) Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol 87:103–109. https://doi.org/10.1007/s11060-007-9497-x

    Article  CAS  PubMed  Google Scholar 

  39. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013. https://doi.org/10.3171/jns.2000.93.6.1003

    Article  CAS  PubMed  Google Scholar 

  40. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicenter phase III trial. Lancet Oncol 7:392–401. https://doi.org/10.1016/S1470-2045(06)70665-9

    Article  CAS  PubMed  Google Scholar 

  41. Stummer W, Stepp H, Moller G, Ehrhardt A, Leonhard M, Reulen HJ (1998) Technical principles for protoporphyrin-ix-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir 140:995–1000. https://doi.org/10.1007/s007010050206

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi J, Nagasawa S, Doi M, Takahashi M, Narita Y, Yamamoto J, Ikemoto MJ, Iwahashi H (2021) In vivo study of the efficacy and safety of 5-Aminolevulinic Radiodynamic Therapy for Glioblastoma Fractionated Radiotherapy. Int J Mol Sci 22:9762. https://doi.org/10.3390/ijms22189762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taylor JW, Armstrong T, Kim AH, Venere M, Acquaye A, Schrag D, Wen PY (2019) The lomustine crisis: awareness and impact of the 1500% price hike. Neuro Oncol 21:1–3. https://doi.org/10.1093/neuonc/noy189

    Article  PubMed  Google Scholar 

  44. Valdes PA, Millesi M, Widhalm G, Roberts DW (2019) 5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluorescence guidance in meningioma surgery. J Neurooncol 141:555–565. https://doi.org/10.1007/s11060-018-03079-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vermandel M, Dupont C, Lecomte F, Leroy HA, Tuleasca C, Mordon S, Hadjipanayis CG, Reyns N (2021) Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: a preliminary analysis of the INDYGO clinical trial. J Neurooncol 152:501–514. https://doi.org/10.1007/s11060-021-03718-6

    Article  CAS  PubMed  Google Scholar 

  46. Wadiura LI, Millesi M, Makolli J, Wais J, Kiesel B, Mischkulnig M, Mercea PA, Roetzer T, Knosp E, Rössler K, Widhalm G (2021) High diagnostic accuracy of visible 5-ALA fluorescence in Meningioma surgery according to histopathological analysis of Tumor Bulk and Peritumoral tissue. Lasers Surg Med 53:300–308. https://doi.org/10.1002/lsm.23294

    Article  PubMed  Google Scholar 

  47. Warsi NM, Zewude R, Karmur B, Pirouzmand N, Hachem L, Mansouri A (2020) The cost-effectiveness of 5-ALA in high-Grade glioma surgery: a quality-based systematic review. Can J Neurol Sci 47:793–799. https://doi.org/10.1017/cjn.2020.78

    Article  PubMed  Google Scholar 

  48. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, Woodcock J (2014) Understanding pharmaceutical quality by design. AAPS J 16:771–783. https://doi.org/10.1208/s12248-014-9598-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, Shi C, Liu Y, Teng L, Han D, Chen X, Yang G, Wang L, Shen C, Li H (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS ONE 8:e63682. https://doi.org/10.1371/journal.pone.0063682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank professor Fábio Alberto Silva for the assistance with the grammar revision.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: da Silva Jr EB; data collection: Novak Filho JL, Bornancin GX; analysis and interpretation of results: Jung GS, Neto MC, Ramina R; draft manuscript preparation: da Silva Jr EB, Ramina R. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Erasmo Barros da Silva Jr.

Ethics declarations

Ethical approval

Ethical approval was waived by the local ethical committee due to the retrospective nature of this study. All procedures performed in this article were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All patients submitted to 5-ALA FGR were informed about the off-label character of the compound and provided informed consent. All cases were discussed and approved by interdisciplinary neuro-oncological tumor board.

Consent for participate

Informed consent was obtained from all individual participants submitted to 5-ALA FGR included in the retrospective series of this study.

Consent for publication

The author confirms that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any; that its publication has been approved (tacitly or explicitly) by the responsible authorities at the institution where the work is carried out.

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers? bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Jr, E.B., Ramina, R., Novak Filho, J.L. et al. Pharmaceutical equivalent 5-aminolevulinic acid fluorescence guided resection of central nervous system tumors: feasibility, safeness and cost-benefit considerations. J Neurooncol (2024). https://doi.org/10.1007/s11060-024-04698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11060-024-04698-z

Keywords

Navigation