Skip to main content
Log in

5-Aminolevulinic acid fluorescence in brain non-neoplastic lesions: a systematic review and case series

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) is used to assist brain tumor resection, especially for high-grade gliomas but also for low-grade gliomas, metastasis, and meningiomas. With the increasing use of this technique, even to assist biopsies, high-grade glioma–mimicking lesions had misled diagnosis by showing 5-ALA fluorescence in non-neoplastic lesions such as radiation necrosis and inflammatory or infectious disease. Since only isolated reports have been published, we systematically review papers reporting non-neoplastic lesion cases with 5-ALA according with the PRISMA guidelines, present our series, and discuss its pathophysiology. In total, 245 articles were identified and 12 were extracted according to our inclusion criteria. Analyzing 27 patients, high-grade glioma was postulated as preoperative diagnosis in 48% of the cases. Microsurgical resection was performed in 19 cases (70%), while 8 patients were submitted to biopsy (30%). We found 4 positive cases in demyelinating disease (50%), 4 in brain abscess (80%), 1 in neurocysticercosis (33%), 1 in neurotoxoplasmosis, infarction, and hematoma (100%), 4 in inflammatory disease (80%), and 3 in cortical dysplasia (100%). New indications are being considered especially in benign lesion biopsies with assistance of 5-ALA. Using fluorescence as an aid in biopsies may improve procedure time, number of samples, and necessity of intraoperative pathology. Further studies should include this technology to encourage more beneficial uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bärtschi P, Luna E, González-López P, Abarca J, Herrero J, Costa E, Paya A, Sales J, Moreno P (2019) A very rare case of right insular lobe Langerhans cell histiocytosis (CD1a+) mimicking glioblastoma multiforme in a young adult. World Neurosurg 121:4–11. https://doi.org/10.1016/j.wneu.2018.09.093

    Article  PubMed  Google Scholar 

  2. Behling F, Hennersdorf F, Bornemann A, Tatagiba M, Skardelly M (2016) 5-Aminolevulinic acid accumulation in a cerebral infarction mimicking high-grade glioma. World Neurosurg 92:586.e5-586.e8. https://doi.org/10.1016/j.wneu.2016.05.009

    Article  Google Scholar 

  3. Bergmann A, Floyd K, Key M, Dameron C, Rees KC, Thornton LB, Whitehead DC, Hamza I, Dou Z (2020) Toxoplasma gondii requires its plant-like heme biosynthesis pathway for infection. PLOS Pathog 16:e1008499. https://doi.org/10.1371/journal.ppat.1008499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bissonnette R, Zeng H, McLean DI, Korbelik M, Lui H (2007) Oral aminolevulinic acid induces protoporphyrin IX fluorescence in psoriatic plaques and peripheral blood cells†¶. Photochem Photobiol 74:339–345. https://doi.org/10.1562/0031-8655(2001)0740339OAAIPI2.0.CO2

    Article  Google Scholar 

  5. Brazier JS (1990) Analysis of the porphyrin content of fluorescent pus by absorption spectrophotometry and high performance liquid chromatography. J Med Microbiol 33. https://doi.org/10.1099/00222615-33-1-29

  6. Calzavara-Pinton P, Rossi MT, Sala R, Venturini M (2012) Photodynamic antifungal chemotherapy†. Photochem Photobiol 88:512–522. https://doi.org/10.1111/j.1751-1097.2012.01107.x

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhary N, Xi G (2017) Histopathology of intracerebral hemorrhage. Prim Cerebrovasc Dis Second Ed 117–120. https://doi.org/10.1016/B978-0-12-803058-5.00023-0

  8. Choo J, Takeuchi K, Nagata Y, Ohka F, Kishida Y, Watanabe T, Satoh Y, Nagatani T, Kato K, Wakabayashi T, Natsume A (2018) Neuroendoscopic cylinder surgery and 5-aminolevulinic acid photodynamic diagnosis of deep-seated intracranial lesions. World Neurosurg 116:e35–e41. https://doi.org/10.1016/j.wneu.2018.03.112

    Article  PubMed  Google Scholar 

  9. Coluccia D, Fandino J, Fujioka M, Cordovi S, Muroi C, Landolt H (2010) Intraoperative 5-aminolevulinic-acid-induced fluorescence in meningiomas. Acta Neurochir (Wien) 152:1711–1719. https://doi.org/10.1007/s00701-010-0708-4

    Article  Google Scholar 

  10. da Silva EB Jr, Ricardo R, Coelho Neto M, de Souza Machado GA, Cavalcanti MS, da Silva JFC (2022) Extending the indications of 5-aminolevulinic acid for fluorescence-guided surgery for different central nervous system tumors: a series of 255 cases in Latin America. Arq Bras Neurocir Braz Neurosurg. https://doi.org/10.1055/s-0041-1739272

  11. de Laurentis C, Del Bene M, Fociani P, Tonello C, Pollo B, DiMeco F (2019) 5-ALA fluorescence in case of brain abscess by Aggregatibacter mimicking glioblastoma. World Neurosurg 125. https://doi.org/10.1016/j.wneu.2019.01.190

  12. Eicker SO, Floeth FW, Kamp M, Steiger HJ, Hänggi D (2013) The impact of fluorescence guidance on spinal intradural tumour surgery. Eur Spine J 22:1394–1401. https://doi.org/10.1007/s00586-013-2657-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ennis S, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, Smith D, Keep R (2003) Transport of 5-aminolevulinic acid between blood and brain. Brain Res 959:226–234. https://doi.org/10.1016/S0006-8993(02)03749-6

    Article  CAS  PubMed  Google Scholar 

  14. Franken ACW, Lokman BC, Ram AFJ, Punt PJ, van den Hondel CAMJJ, de Weert S (2011) Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 91:447–460. https://doi.org/10.1007/s00253-011-3391-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Franken ACW, Lokman BC, Ram AFJ, Punt PJ, Van Den Hondel CAMJJ, De Weert S (2011) Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 91

  16. Goryaynov SA, Widhalm G, Goldberg MF, Chelushkin D, Spallone A, Chernyshov KA, Ryzhova M, Pavlova G, Revischin A, Shishkina L, Jukov V, Savelieva T, Victor L, Potapov A (2019) The role of 5-ALA in low-grade gliomas and the influence of antiepileptic drugs on intraoperative fluorescence. Front Oncol 9. https://doi.org/10.3389/fonc.2019.00423

  17. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3. https://doi.org/10.1039/b311900a

  18. Harris F, Pierpoint L (2012) Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev 32:1292–1327. https://doi.org/10.1002/med.20251

    Article  CAS  PubMed  Google Scholar 

  19. Hebeda KM, Saarnak AE, Olivo M, Sterenborg HJCM, Wolbers JG (1998) 5-Aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain. Acta Neurochir (Wien) 140:503–513. https://doi.org/10.1007/s007010050132

    Article  CAS  Google Scholar 

  20. Ishikawa T, Nakagawa H, Hagiya Y, Nonoguchi N, Miyatake S, Kuroiwa T (2010) Key role of human ABC transporter ABCG2 in photodynamic therapy and photodynamic diagnosis. Adv Pharmacol Sci 2010:1–13. https://doi.org/10.1155/2010/587306

    Article  CAS  Google Scholar 

  21. Kamp MA, Felsberg J, Sadat H, Kuzibaev J, Steiger HJ, Rapp M, Reifenberger G, Dibué M, Sabel M (2015) 5-ALA-induced fluorescence behavior of reactive tissue changes following glioblastoma treatment with radiation and chemotherapy. Acta Neurochir (Wien) 157:207–214. https://doi.org/10.1007/s00701-014-2313-4

    Article  Google Scholar 

  22. Kennedy JC, Pottier RH RR Photochemotherapeutic method using 5-aminolevulinic acid and other precursors of endogenous porphyrins

  23. Kosman DJ (1994) Transition metal ion uptake in yeasts and filamentous fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Mercel Dekker, New York, pp 1–38

    Google Scholar 

  24. Larralde C, Sassa S, Vanderkooi JM, Koloczek H, Laclette JP, Goodsaid F, Sciutto E, Owen CS (1987) Analysis of porphyrins and enzymes in porphyrin synthesis in Taenia solium cysticercus from man and pig. Mol Biochem Parasitol 22:203–213. https://doi.org/10.1016/0166-6851(87)90051-X

    Article  CAS  PubMed  Google Scholar 

  25. Larralde C, Zedillo GM, Lagunoff D, Ludowyke R, Montoya RM, Goodsaid F, Dreyfus G, Sciutto E, Govezensky T, Diaz ML (1986) Porphyrin content of the cysticercus of Taenia solium. J Parasitol 72:569–577

    Article  CAS  Google Scholar 

  26. Lau D, Hervey-Jumper SL, Chang S, Molinaro AM, McDermott MW, Phillips JJ, Berger MS (2016) A prospective phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg 124:1300–1309. https://doi.org/10.3171/2015.5.JNS1577

    Article  CAS  PubMed  Google Scholar 

  27. Marbacher S, Klinger E, Schwyzer L, Fischer I, Nevzati E, Diepers M, Roelcke U, Fathi AR, Coluccia D, Fandino J (2014) Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases. Neurosurg Focus 36:1–10. https://doi.org/10.3171/2013.12.FOCUS13464

    Article  Google Scholar 

  28. Mǎrgǎritescu O, Mogoantǎ L, Pirici I, Pirici D, Cernea D, Mǎrgǎritescu C (2008) Histopathological changes in acute ischemic stroke. Rom J Morphol Embryol 50:327–339

    Google Scholar 

  29. Masubuchi T, Kajimoto Y, Kawabata S, Nonoguchi N, Fujishiro T, Miyatake SI, Kuroiwa T (2013) Experimental study to understand nonspecific protoporphyrin ix fluorescence in brain tissues near tumors after 5-aminolevulinic acid administration. Photomed Laser Surg 31:428–433. https://doi.org/10.1089/pho.2012.3469

    Article  CAS  PubMed  Google Scholar 

  30. Millesi M, Kiesel B, Mischkulnig M, Martínez-Moreno M, Wöhrer A, Wolfsberger S, Knosp E, Widhalm G (2016) Analysis of the surgical benefits of 5-ALA–induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg 125:1408–1419. https://doi.org/10.3171/2015.12.JNS151513

    Article  CAS  PubMed  Google Scholar 

  31. Miyagi N, Nakashima S, Negoto T, Mori S, Komaki S, Morioka M, Sugita Y (2018) 5-aminolevulinic acid fluorescence in tumefactive demyelinating lesion. Neurosurg Rev 41:693–695. https://doi.org/10.1007/s10143-018-0958-9

    Article  PubMed  Google Scholar 

  32. Miyatake S-I, Kuroiwa T, Kajimoto Y, Miyashita M, Tanaka H, Tsuji M (2007) Fluorescence of non-neoplastic, magnetic resonance imaging-enhancing tissue by 5-aminolevulinic acid. Neurosurgery 61:E1101–E1104. https://doi.org/10.1227/01.neu.0000303209.38360.e6

    Article  PubMed  Google Scholar 

  33. Moon JH, Kim SH, Shim J-K, Roh T-H, Sung KS, Lee J-H, Park J, Choi J, Kim E-H, Kim SH, Kang S-G, Chang JH (2016) Histopathological implications of ventricle wall 5-aminolevulinic acid-induced fluorescence in the absence of tumor involvement on magnetic resonance images. Oncol Rep 36:837–844. https://doi.org/10.3892/or.2016.4881

    Article  CAS  PubMed  Google Scholar 

  34. Nestler U, Warter A, Cabre P, Manzo N (2012) A case of late-onset multiple sclerosis mimicking glioblastoma and displaying intraoperative 5-aminolevulinic acid fluorescence. Acta Neurochir (Wien) 154:899–901. https://doi.org/10.1007/s00701-012-1319-z

    Article  CAS  Google Scholar 

  35. Nitzan Y, Salmon-Divon M, Shporen E, Malik Z (2004) ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3:430. https://doi.org/10.1039/b315633h

    Article  CAS  PubMed  Google Scholar 

  36. Norskov-Lauritsen N (2014) Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 27. https://doi.org/10.1128/CMR.00103-13

  37. Nørskov-Lauritsen N (2014) Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 27. https://doi.org/10.1128/CMR.00103-13

  38. Omoto K, Matsuda R, Nakagawa I, Motoyama Y, Nakase H (2018) False-positive inflammatory change mimicking glioblastoma multiforme under 5-aminolevulinic acid-guided surgery: a case report. Surg Neurol Int 9. https://doi.org/10.4103/sni.sni_473_17

  39. Potapov AA, Nazarov VV, Goryaynov SA, Spallone A, Okhlopkov VA, Shishkina LV, Shurkhay VA, Loschenov VB, Saveleva TA, Kuzmin SG, Chumakova AP (2014) A case of brain abscess mimicking cystic brain tumor and showing intraoperative 5-aminolevulinic acid fluorescence: case report. Chir 27:257–260

    Google Scholar 

  40. Rittenhouse-Diakun K, VAN Leengoed H, Morgan J, Hryhorenko E, Paszkiewicz G, Whitaker JE, Oseroff AR (1995) The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor δ-aminolevulinic acid (ALA). Photochem Photobiol 61. https://doi.org/10.1111/j.1751-1097.1995.tb02356.x

  41. Roberts DW, Bravo JJ, Olson JD, Hickey WF, Harris BT, Nguyen LN, Hong J, Evans LT, Fan X, Wirth D, Wilson BC, Paulsen KD (2019) 5-aminolevulinic acid-induced fluorescence in focal cortical dysplasia: report of 3 cases. Oper Neurosurg 16:403–414. https://doi.org/10.1093/ons/opy116

    Article  Google Scholar 

  42. Schupper AJ, Baron RB, Cheung W, Rodriguez J, Kalkanis SN, Chohan MO, Andersen BJ, Chamoun R, Nahed BV, Zacharia BE, Kennedy J, Moulding HD, Zucker L, Chicoine MR, Olson JJ, Jensen RL, Sherman JH, Zhang X, Price G, Fowkes M, Germano IM, Carter BS, Hadjipanayis CG, Yong RL (2022) 5-Aminolevulinic acid for enhanced surgical visualization of high-grade gliomas: a prospective, multicenter study. J Neurosurg 136:1525–1534. https://doi.org/10.3171/2021.5.JNS21310

    Article  Google Scholar 

  43. Solis WG, Hansen M (2017) Fluorescence in a cryptococcoma following administration of 5-aminolevulinic acid hydrochloride (Gliolan). BMJ Case Rep 2017:5–7. https://doi.org/10.1136/bcr-2017-219469

    Article  Google Scholar 

  44. Sonneville R, Ruimy R, Benzonana N, Riffaud L, Carsin A, Tadié J-M, Piau C, Revest M, Tattevin P (2017) An update on bacterial brain abscess in immunocompetent patients. Clin Microbiol Infect 23. https://doi.org/10.1016/j.cmi.2017.05.004

  45. Steinmann J, Rapp M, Turowski B, Steiger H-J, Cornelius JF, Sabel M, Kamp MA (2018) 5-ALA fluorescence behavior of cerebral infectious and inflammatory disease. Neurosurg Rev 41. https://doi.org/10.1007/s10143-017-0867-3

  46. Stummer W, Stepp H, Möller G, Ehrhardt A, Leonhard M, Reulen HJ (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 140. https://doi.org/10.1007/s007010050206

  47. Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74. https://doi.org/10.1227/NEU.0000000000000267

  48. Valdés PA, Moses ZB, Kim A, Belden CJ, Wilson BC, Paulsen KD, Roberts DW, Harris BT (2012) Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown. J Neuropathol Exp Neurol 71:806–813. https://doi.org/10.1097/NEN.0b013e31826775a1

    Article  CAS  PubMed  Google Scholar 

  49. Voellger B, Klein J, Mawrin C, Firsching R (2014) 5-Aminolevulinic acid (5-ALA) fluorescence in infectious disease of the brain. Acta Neurochir (Wien) 156:1977–1978. https://doi.org/10.1007/s00701-014-2169-7

    Article  Google Scholar 

  50. Xia L, Fang C, Chen G, Sun C (2018) Relationship between the extent of resection and the survival of patients with low-grade gliomas: a systematic review and meta-analysis. BMC Cancer 18:1–10. https://doi.org/10.1186/s12885-017-3909-x

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the neurosurgical residents for their assistance throughout all aspects of our study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Joel Sanabria and Gustavo Jung. Bernardo Correa prepared the MRI images and Marcela Santos the histological images. The first draft of the manuscript was written by Joel Sanabria and all authors commented on previous versions of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Joel F. Sanabria Duarte.

Ethics declarations

Ethics approval and consent to participate

This research study was conducted retrospectively from data obtained for clinical purposes. The Hospital Research Ethics Committee has confirmed that no ethical approval is required. Informed consent was obtained from all individual participants included in our case series.

Competing interests

The authors declare no competing interests.

Human and animal ethics

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, J.F.S., Jung, G.S., da Silva, E.B. et al. 5-Aminolevulinic acid fluorescence in brain non-neoplastic lesions: a systematic review and case series. Neurosurg Rev 45, 3139–3148 (2022). https://doi.org/10.1007/s10143-022-01843-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-022-01843-y

Keywords

Navigation