Skip to main content

Advertisement

Log in

Medulloblastoma epigenetics and the path to clinical innovation

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma.

Methods

Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features.

Summary

Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential.

Conclusion

The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Consent for publication

All authors have reviewed and given consent to this submission of this manuscript.

References

  1. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL et al (2015) Alex’s Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(Suppl 10):x1–x36

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  3. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G et al (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121(3):381–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F et al (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131(6):821–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blaeschke F, Paul MC, Schuhmann MU, Rabsteyn A, Schroeder C, Casadei N et al (2019) Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy. Cytotherapy 21(9):973–986

    Article  CAS  PubMed  Google Scholar 

  6. Yi J, Wu J (2018) Epigenetic regulation in medulloblastoma. Mol Cell Neurosci 87:65–76

    Article  CAS  PubMed  Google Scholar 

  7. Roussel MF, Stripay JL (2018) Epigenetic drivers in pediatric medulloblastoma. Cerebellum 17(1):28–36

    Article  CAS  PubMed  Google Scholar 

  8. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toyota M, Issa JP (2005) Epigenetic changes in solid and hematopoietic tumors. Semin Oncol 32(5):521–530

    Article  CAS  PubMed  Google Scholar 

  10. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413

    Article  CAS  PubMed  Google Scholar 

  11. Estecio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R et al (2007) LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS ONE 2(5):e399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernandez AF, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H et al (2012) A DNA methylation fingerprint of 1628 human samples. Genome Res 22(2):407–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J et al (2017) DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA 114(28):7414–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  16. Moran S, Martinez-Cardus A, Sayols S, Musulen E, Balana C, Estival-Gonzalez A et al (2016) Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 17(10):1386–1395

    Article  PubMed  Google Scholar 

  17. Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA et al (2014) Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510(7506):537–541

    Article  CAS  PubMed  Google Scholar 

  18. Lindsey JC, Schwalbe EC, Potluri S, Bailey S, Williamson D, Clifford SC (2014) TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours. Acta Neuropathol 127(2):307–309

    Article  PubMed  Google Scholar 

  19. Korshunov A, Sahm F, Zheludkova O, Golanov A, Stichel D, Schrimpf D et al (2019) DNA methylation profiling is a method of choice for molecular verification of pediatric WNT-activated medulloblastomas. Neuro-oncology 21(2):214–221

    Article  CAS  PubMed  Google Scholar 

  20. Sharma T, Schwalbe EC, Williamson D, Sill M, Hovestadt V, Mynarek M et al (2019) Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol 138(2):309–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472

    Article  CAS  PubMed  Google Scholar 

  22. Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D et al (2017) Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18(7):958–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwalbe EC, Williamson D, Lindsey JC, Hamilton D, Ryan SL, Megahed H et al (2013) DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol 125(3):359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Garancher A, Ramaswamy V, Wechsler-Reya RJ (2018) Medulloblastoma: from molecular subgroups to molecular targeted therapies. Annu Rev Neurosci 41:207–232

    Article  CAS  PubMed  Google Scholar 

  25. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29(11):1424–1430

    Article  PubMed  Google Scholar 

  26. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3(8):e3088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414

    Article  PubMed  Google Scholar 

  28. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC et al (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24(12):1924–1931

    Article  CAS  PubMed  Google Scholar 

  29. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31(6):737-754.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547(7663):311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96(15):8681–8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lindsey JC, Lusher ME, Anderton JA, Bailey S, Gilbertson RJ, Pearson AD et al (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25(5):661–668

    Article  CAS  PubMed  Google Scholar 

  33. Shahi MH, Afzal M, Sinha S, Eberhart CG, Rey JA, Fan X et al (2010) Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma. BMC Cancer 10:614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shahi MH, Afzal M, Sinha S, Eberhart CG, Rey JA, Fan X et al (2011) Human hedgehog interacting protein expression and promoter methylation in medulloblastoma cell lines and primary tumor samples. J Neurooncol 103(2):287–296

    Article  PubMed  CAS  Google Scholar 

  35. Sexton-Oates A, MacGregor D, Dodgshun A, Saffery R (2015) The potential for epigenetic analysis of paediatric CNS tumours to improve diagnosis, treatment and prognosis. Ann Oncol 26(7):1314–1324

    Article  CAS  PubMed  Google Scholar 

  36. von Bueren AO, Bacolod MD, Hagel C, Heinimann K, Fedier A, Kordes U et al (2012) Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours. Br J Cancer 107(8):1399–1408

    Article  CAS  Google Scholar 

  37. Pritchard JI, Olson JM (2008) Methylation of PTCH1, the Patched-1 gene, in a panel of primary medulloblastomas. Cancer Genet Cytogenet 180(1):47–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kongkham PN, Northcott PA, Croul SE, Smith CA, Taylor MD, Rutka JT (2010) The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene 29(20):3017–3024

    Article  CAS  PubMed  Google Scholar 

  39. Unland R, Kerl K, Schlosser S, Farwick N, Plagemann T, Lechtape B et al (2014) Epigenetic repression of the dopamine receptor D4 in pediatric tumors of the central nervous system. J Neurooncol 116(2):237–249

    Article  CAS  PubMed  Google Scholar 

  40. Pfister S, Schlaeger C, Mendrzyk F, Wittmann A, Benner A, Kulozik A et al (2007) Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res 35(7):e51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El-Ayadi M, Egervari K, Merkler D, McKee TA, Gumy-Pause F, Stichel D et al (2018) Concurrent IDH1 and SMARCB1 mutations in pediatric medulloblastoma: a case report. Front Neurol 9:398

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P et al (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153(5):1134–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeong M, Sun D, Luo M, Huang Y, Challen GA, Rodriguez B et al (2014) Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet 46(1):17–23

    Article  CAS  PubMed  Google Scholar 

  47. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236

    Article  CAS  PubMed  Google Scholar 

  49. Lin CY, Erkek S, Tong Y, Yin L, Federation AJ, Zapatka M et al (2016) Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530(7588):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506(7489):445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36

    Article  CAS  PubMed  Google Scholar 

  52. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  53. Sadakierska-Chudy A, Filip M (2015) A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 27(2):172–197

    Article  CAS  PubMed  Google Scholar 

  54. Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18(2):90–101

    Article  CAS  PubMed  Google Scholar 

  55. Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14

    Article  CAS  PubMed  Google Scholar 

  56. Biswas S, Rao CM (2018) Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 837:8–24

    Article  CAS  PubMed  Google Scholar 

  57. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  58. Batora NV, Sturm D, Jones DT, Kool M, Pfister SM, Northcott PA (2014) Transitioning from genotypes to epigenotypes: why the time has come for medulloblastoma epigenomics. Neuroscience 264:171–185

    Article  CAS  PubMed  Google Scholar 

  59. Dubuc AM, Remke M, Korshunov A, Northcott PA, Zhan SH, Mendez-Lago M et al (2013) Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol 125(3):373–384

    Article  CAS  PubMed  Google Scholar 

  60. Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M et al (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488(7409):100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T et al (2012) Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488(7409):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6(7):a018762

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C et al (2008) The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer 122(6):1207–1213

    Article  CAS  PubMed  Google Scholar 

  64. Malatesta M, Steinhauer C, Mohammad F, Pandey DP, Squatrito M, Helin K (2013) Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res 73(20):6323–6333

    Article  CAS  PubMed  Google Scholar 

  65. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J et al (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488(7409):106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L et al (2012) Novel mutations target distinct subgroups of medulloblastoma. Nature 488(7409):43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coni S, Antonucci L, D’Amico D, Di Magno L, Infante P, De Smaele E et al (2013) Gli2 acetylation at lysine 757 regulates hedgehog-dependent transcriptional output by preventing its promoter occupancy. PLoS ONE 8(6):e65718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T et al (2015) Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun 3:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P et al (2010) HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 16(12):3240–3252

    Article  CAS  PubMed  Google Scholar 

  71. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4):479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dobson THW, Hatcher RJ, Swaminathan J, Das CM, Shaik S, Tao RH et al (2017) Regulation of USP37 expression by REST-associated G9a-dependent histone methylation. Mol Cancer Res 15(8):1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dobson THW, Tao RH, Swaminathan J, Maegawa S, Shaik S, Bravo-Alegria J et al (2019) Transcriptional repressor REST drives lineage stage-specific chromatin compaction at Ptch1 and increases AKT activation in a mouse model of medulloblastoma. Sci Signal 12(565):eaan8680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Su X, Gopalakrishnan V, Stearns D, Aldape K, Lang FF, Fuller G et al (2006) Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol Cell Biol 26(5):1666–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Taylor P, Fangusaro J, Rajaram V, Goldman S, Helenowski IB, MacDonald T et al (2012) REST is a novel prognostic factor and therapeutic target for medulloblastoma. Mol Cancer Ther 11(8):1713–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coni S, Mancuso AB, Di Magno L, Sdruscia G, Manni S, Serrao SM et al (2017) Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma. Sci Rep 7:44079

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu WD, Wang HW, Muguira M, Breslin MB, Lan MS (2006) INSM1 functions as a transcriptional repressor of the neuroD/beta2 gene through the recruitment of cyclin D1 and histone deacetylases. Biochem J 397(1):169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma JX, Li H, Chen XM, Yang XH, Wang Q, Wu ML et al (2013) Expression patterns and potential roles of SIRT1 in human medulloblastoma cells in vivo and in vitro. Neuropathology 33(1):7–16

    Article  CAS  PubMed  Google Scholar 

  80. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bandopadhayay P, Bergthold G, Nguyen B, Schubert S, Gholamin S, Tang Y et al (2014) BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res 20(4):912–925

    Article  CAS  PubMed  Google Scholar 

  82. Long J, Li B, Rodriguez-Blanco J, Pastori C, Volmar CH, Wahlestedt C et al (2014) The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J Biol Chem 289(51):35494–35502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P et al (2014) Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 20(7):732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  85. Hyun K, Jeon J, Park K, Kim J (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49(4):e324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY et al (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15(24):3286–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ge K (2012) Epigenetic regulation of adipogenesis by histone methylation. Biochim Biophys Acta 1819(7):727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC et al (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 331(6016):435–439

    Article  CAS  PubMed  Google Scholar 

  89. Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S et al (2009) Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41(4):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K et al (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26(23):2604–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bunt J, Hasselt NA, Zwijnenburg DA, Koster J, Versteeg R, Kool M (2013) OTX2 sustains a bivalent-like state of OTX2-bound promoters in medulloblastoma by maintaining their H3K27me3 levels. Acta Neuropathol 125(3):385–394

    Article  CAS  PubMed  Google Scholar 

  92. Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7(9):715–727

    Article  CAS  PubMed  Google Scholar 

  93. Van der Meulen J, Speleman F, Van Vlierberghe P (2014) The H3K27me3 demethylase UTX in normal development and disease. Epigenetics 9(5):658–668

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shi X, Zhang Z, Zhan X, Cao M, Satoh T, Akira S et al (2014) An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat Commun 5:5425

    Article  PubMed  Google Scholar 

  95. Parker LL, Atherton-Fessler S, Lee MS, Ogg S, Falk JL, Swenson KI et al (1991) Cyclin promotes the tyrosine phosphorylation of p34cdc2 in a wee1 + dependent manner. EMBO J 10(5):1255–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harris PS, Venkataraman S, Alimova I, Birks DK, Balakrishnan I, Cristiano B et al (2014) Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol Cancer 13:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mahajan K, Fang B, Koomen JM, Mahajan NP (2012) H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol 19(9):930–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mahajan K, Mahajan NP (2013) WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet 29(7):394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang J, Qiu Z, Wu Y (2018) Ubiquitin regulation: the histone modifying enzyme’s story. Cells 7(9):118

    Article  CAS  PubMed Central  Google Scholar 

  100. Catania A, Maira F, Skarmoutsou E, D’Amico F, Abounader R, Mazzarino MC (2012) Insight into the role of microRNAs in brain tumors (review). Int J Oncol 40(3):605–624

    CAS  PubMed  Google Scholar 

  101. Garg N, Vijayakumar T, Bakhshinyan D, Venugopal C, Singh SK (2015) MicroRNA regulation of brain tumour initiating cells in central nervous system tumours. Stem Cells Int 2015:141793

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hummel R, Maurer J, Haier J (2011) MicroRNAs in brain tumors: a new diagnostic and therapeutic perspective? Mol Neurobiol 44(3):223–234

    Article  CAS  PubMed  Google Scholar 

  103. Joshi P, Katsushima K, Zhou R, Meoded A, Stapleton S, Jallo G et al (2019) The therapeutic and diagnostic potential of regulatory noncoding RNAs in medulloblastoma. Neurooncol Adv 1(1):vdz023

    PubMed  PubMed Central  Google Scholar 

  104. Leichter AL, Sullivan MJ, Eccles MR, Chatterjee A (2017) MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer 16(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Mollashahi B, Aghamaleki FS, Movafagh A (2019) The roles of miRNAs in medulloblastoma: a systematic review. J Cancer Prev 24(2):79–90

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pang JC, Kwok WK, Chen Z, Ng HK (2009) Oncogenic role of microRNAs in brain tumors. Acta Neuropathol 117(6):599–611

    Article  CAS  PubMed  Google Scholar 

  107. Pezuk JA, Salomao KB, Baroni M, Pereira CA, Geron L, Brassesco MS (2019) Aberrantly expressed microRNAs and their implications in childhood central nervous system tumors. Cancer Metastasis Rev 38(4):813–828

    Article  CAS  PubMed  Google Scholar 

  108. Shalaby T, Fiaschetti G, Baumgartner M, Grotzer MA (2014) MicroRNA signatures as biomarkers and therapeutic target for CNS embryonal tumors: the pros and the cons. Int J Mol Sci 15(11):21554–21586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang X, Holgado BL, Ramaswamy V, Mack S, Zayne K, Remke M et al (2018) miR miR on the wall, who’s the most malignant medulloblastoma miR of them all? Neuro-oncology 20(3):313–323

    Article  CAS  PubMed  Google Scholar 

  110. Zhi F, Wang S, Wang R, Xia X, Yang Y (2013) From small to big: microRNAs as new players in medulloblastomas. Tumour Biol 34(1):9–15

    Article  CAS  PubMed  Google Scholar 

  111. Bai AH, Milde T, Remke M, Rolli CG, Hielscher T, Cho YJ et al (2012) MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathol 123(4):529–538

    Article  CAS  PubMed  Google Scholar 

  112. Genovesi LA, Carter KW, Gottardo NG, Giles KM, Dallas PB (2011) Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells. PLoS ONE 6(9):e23935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jin Y, Xiong A, Zhang Z, Li S, Huang H, Yu TT et al (2014) MicroRNA-31 suppresses medulloblastoma cell growth by inhibiting DNA replication through minichromosome maintenance 2. Oncotarget 5(13):4821–4833

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pal R, Greene S (2015) microRNA-10b is overexpressed and critical for cell survival and proliferation in medulloblastoma. PLoS ONE 10(9):e0137845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Tanno B, Babini G, Leonardi S, Giardullo P, De Stefano I, Pasquali E et al (2016) Ex vivo miRNome analysis in Ptch1+/- cerebellum granule cells reveals a subset of miRNAs involved in radiation-induced medulloblastoma. Oncotarget 7(42):68253–68269

    Article  PubMed  PubMed Central  Google Scholar 

  116. Venkataraman S, Alimova I, Fan R, Harris P, Foreman N, Vibhakar R (2010) MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS ONE 5(6):e10748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kadin ME, Rubinstein LJ, Nelson JS (1970) Neonatal cerebellar medulloblastoma originating from the fetal external granular layer. J Neuropathol Exp Neurol 29(4):583–600

    Article  CAS  PubMed  Google Scholar 

  118. Roussel MF, Hatten ME (2011) Cerebellum development and medulloblastoma. Curr Top Dev Biol 94:235–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27(19):2616–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murphy BL, Obad S, Bihannic L, Ayrault O, Zindy F, Kauppinen S et al (2013) Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res 73(23):7068–7078

    Article  CAS  PubMed  Google Scholar 

  121. Northcott PA, Fernandez LA, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y et al (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69(8):3249–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al (2009) The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106(8):2812–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A et al (2010) Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther 6(4):521–529

    Article  CAS  PubMed  Google Scholar 

  124. Kunder R, Jalali R, Sridhar E, Moiyadi A, Goel N, Goel A et al (2013) Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro-oncology 15(12):1644–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yogi K, Sridhar E, Goel N, Jalali R, Goel A, Moiyadi A et al (2015) MiR-148a, a microRNA upregulated in the WNT subgroup tumors, inhibits invasion and tumorigenic potential of medulloblastoma cells by targeting Neuropilin 1. Oncoscience 2(4):334–348

    Article  PubMed  PubMed Central  Google Scholar 

  126. Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ et al (2012) Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 123(4):539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Pt 2):24R–9R

    Google Scholar 

  128. Flotho C, Sommer S, Lubbert M (2018) DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia. Semin Cancer Biol 51:68–79

    Article  CAS  PubMed  Google Scholar 

  129. Yun S, Vincelette ND, Abraham I, Robertson KD, Fernandez-Zapico ME, Patnaik MM (2016) Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: a systematic review of hypomethylating agents trials. Clin Epigenet 8:68

    Article  CAS  Google Scholar 

  130. Thompson EM, Ashley D, Landi D (2020) Current medulloblastoma subgroup specific clinical trials. Transl Pediatr 9(2):157–162

    Article  PubMed  PubMed Central  Google Scholar 

  131. Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J et al (2010) Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol 28(22):3623–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hummel TR, Wagner L, Ahern C, Fouladi M, Reid JM, McGovern RM et al (2013) A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children’s Oncology Group phase 1 consortium study. Pediatr Blood Cancer 60(9):1452–1457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Callegari K, Maegawa S, Bravo-Alegria J, Gopalakrishnan V (2018) Pharmacological inhibition of LSD1 activity blocks REST-dependent medulloblastoma cell migration. Cell Commun Signal 16(1):60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I et al (2015) Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from Phase II Pediatric Brain Tumor Consortium studies PBTC-025B and PBTC-032. J Clin Oncol 33(24):2646–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Carballo GB, Honorato JR, de Lopes GPF, Spohr T (2018) A highlight on Sonic hedgehog pathway. Cell Commun Signal 16(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 8(2):22

    Article  CAS  Google Scholar 

  137. Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS et al (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124(3):568–577

    Article  CAS  PubMed  Google Scholar 

  138. Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7(9):R85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Liu W, Gong YH, Chao TF, Peng XZ, Yuan JG, Ma ZY et al (2009) Identification of differentially expressed microRNAs by microarray: a possible role for microRNAs gene in medulloblastomas. Chin Med J (Engl) 122(20):2405–2411

    CAS  Google Scholar 

  140. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E et al (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69(19):7569–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y et al (2009) miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 40(9):1234–1243

    Article  CAS  PubMed  Google Scholar 

  142. Pierson J, Hostager B, Fan R, Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90(1):1–7

    Article  CAS  PubMed  Google Scholar 

  143. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D et al (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE 4(3):e4998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in VG Lab is supported by Grants from the National Institutes of Health (R01NS079715 and R03NS077021), Cancer Prevention Research Institute of Texas (CPRIT-RP150301), Rally Foundation for Childhood Cancers, and Addis Faith Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vidya Gopalakrishnan or Soumen Khatua.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest or disclosure relevant to this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haltom, A.R., Toll, S.A., Cheng, D. et al. Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol 150, 35–46 (2020). https://doi.org/10.1007/s11060-020-03591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03591-9

Keywords

Navigation