Skip to main content

Advertisement

Log in

Rationale for the advancement of PI3K pathway inhibitors for personalized chordoma therapy

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Chordomas are rare and serious tumors with few effective treatments outside of aggressive surgery and radiation. Targeted therapies may present a more effective option for a subset of patients with lesions possessing certain genetic biomarkers.

Methods

A small molecule inhibitor library was tested in patient-derived UM-Chor1 cells to identify targeted therapies with potential efficacy. Targeted exome sequencing of UM-Chor1 and UM-Chor2 cells was performed to investigate genetic aberrations in relevant pathways. Chordoma cell lines were treated with inhibitors of the phosphotidylinositol 3-kinase (PI3K), epidermal growth factor receptor (EGFR), and cyclin dependent kinase (CDK) pathways, and responses were determined using resazurin cell viability assays, Annexin V apoptosis assays, and western blotting. Pan-PI3K inhibitor BKM120 was also tested in five chordoma xenograft models.

Results

Unbiased small molecule profiling nominated PI3K-AKT-mTOR pathway inhibitors as a promising therapy in chordoma, and genetic analyses of UM-Chor1 and UM-Chor2 cell lines revealed aberrations in PTEN, EGFR, and CDKN2A. Treatment of UM-Chor1 and UM-Chor2 with targeted PI3K, EGFR, and CDK inhibitors inhibited growth and proliferation and induced apoptosis more robustly than imatinib, a currently used chordoma therapy. Furthermore, BKM120 significantly inhibited tumor growth in a subset of the xenograft models tested.

Conclusion

Targeted therapies, especially those inhibiting PI3K, display promising effects in multiple chordoma cell line and xenograft models. Nevertheless, the limited effects of PI3K, EGFR, and CDK targeting agents in other models reveal the presence of resistance mechanisms, which motivates future research to both identify biomarkers of response and develop combination therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smoll NR, Gautschi OP, Radovanovic I, Schaller K, Weber DC (2013) Incidence and relative survival of chordomas: the standardized mortality ratio and the impact of chordomas on a population. Cancer 119(11):2029–2037. https://doi.org/10.1002/cncr.28032

    Article  PubMed  Google Scholar 

  2. Lanzino G, Dumont AS, Lopes MB, Laws ER Jr (2001) Skull base chordomas: overview of disease, management options, and outcome. Neurosurg Focus 10(3):E12

    Article  CAS  Google Scholar 

  3. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  Google Scholar 

  4. Chugh R, Tawbi H, Lucas DR, Biermann JS, Schuetze SM, Baker LH (2007) Chordoma: the nonsarcoma primary bone tumor. Oncologist 12(11):1344–1350. https://doi.org/10.1634/theoncologist.12-11-1344

    Article  PubMed  Google Scholar 

  5. Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ (2012) Chordoma: current concepts, management, and future directions. Lancet Oncol 13(2):e69–76. https://doi.org/10.1016/s1470-2045(11)70337-0

    Article  PubMed  Google Scholar 

  6. Tzortzidis F, Elahi F, Wright D, Natarajan SK, Sekhar LN (2006) Patient outcome at long-term follow-up after aggressive microsurgical resection of cranial base chordomas. Neurosurgery 59(2):230–237. https://doi.org/10.1227/01.Neu.0000223441.51012.9d. (discussion 230–237)

    Article  PubMed  Google Scholar 

  7. Di Maio S, Yip S, Al Zhrani GA, Alotaibi FE, Al Turki A, Kong E, Rostomily RC (2015) Novel targeted therapies in chordoma: an update. Ther Clin Risk Manag 11:873–883. https://doi.org/10.2147/tcrm.S50526

    Article  PubMed  PubMed Central  Google Scholar 

  8. Noel G, Habrand JL, Jauffret E, de Crevoisier R, Dederke S, Mammar H, Haie-Meder C, Pontvert D, Hasboun D, Ferrand R, Boisserie G, Beaudre A, Gaboriaud G, Guedea F, Petriz L, Mazeron JJ (2003) Radiation therapy for chordoma and chondrosarcoma of the skull base and the cervical spine. Prognostic factors and patterns of failure. Strahlenther Onkol 179(4):241–248. https://doi.org/10.1007/s00066-003-1065-5

    Article  PubMed  Google Scholar 

  9. Azzarelli A, Quagliuolo V, Cerasoli S, Zucali R, Bignami P, Mazzaferro V, Dossena G, Gennari L (1988) Chordoma: natural history and treatment results in 33 cases. J Surg Oncol 37(3):185–191

    Article  CAS  Google Scholar 

  10. Fischbein NJ, Kaplan MJ, Holliday RA, Dillon WP (2000) Recurrence of clival chordoma along the surgical pathway. AJNR Am J Neuroradiol 21(3):578–583

    PubMed  CAS  Google Scholar 

  11. Chambers PW, Schwinn CP (1979) Chordoma. A clinicopathologic study of metastasis. Am J Clin Pathol 72(5):765–776

    Article  CAS  Google Scholar 

  12. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM (2001) Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 12(1):1–11

    Article  CAS  Google Scholar 

  13. Stacchiotti S, Longhi A, Ferraresi V, Grignani G, Comandone A, Stupp R, Bertuzzi A, Tamborini E, Pilotti S, Messina A, Spreafico C, Gronchi A, Amore P, Vinaccia V, Casali PG (2012) Phase II study of imatinib in advanced chordoma. J Clin Oncol 30(9):914–920. https://doi.org/10.1200/jco.2011.35.3656

    Article  PubMed  CAS  Google Scholar 

  14. Birkeland AC, Ludwig ML, Meraj TS, Brenner JC, Prince ME (2015) The tip of the iceberg: clinical implications of genomic sequencing projects in head and neck cancer. Cancers (Basel) 7(4):2094–2109. https://doi.org/10.3390/cancers7040879

    Article  Google Scholar 

  15. Birkeland AC, Brenner JC (2015) Personalizing medicine in head and neck squamous cell carcinoma: the rationale for combination therapies. Med Res Arch. https://doi.org/10.18103/mra.v0i3.77

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ludwig ML, Birkeland AC, Hoesli R, Swiecicki P, Spector ME, Brenner JC (2016) Changing the paradigm: the potential for targeted therapy in laryngeal squamous cell carcinoma. Cancer Biol Med 13(1):87–100. https://doi.org/10.28092/j.issn.2095-3941.2016.0010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Michmerhuizen NL, Birkeland AC, Bradford CR, Brenner JC (2016) Genetic determinants in head and neck squamous cell carcinoma and their influence on global personalized medicine. Genes Cancer 7(5–6):182–200. https://doi.org/10.18632/genesandcancer.110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tsimberidou AM, Hong DS, Ye Y, Cartwright C, Wheler JJ, Falchook GS, Naing A, Fu S, Piha-Paul S, Janku F, Meric-Bernstam F, Hwu P, Kee B, Kies MS, Broaddus R, Mendelsohn J, Hess KR, Kurzrock R (2017) Initiative for molecular profiling and advanced cancer therapy (IMPACT): an MD Anderson precision medicine study. JCO Precis Oncol. https://doi.org/10.1200/po.17.00002

    Article  PubMed  PubMed Central  Google Scholar 

  19. von Witzleben A, Goerttler LT, Marienfeld R, Barth H, Lechel A, Mellert K, Bohm M, Kornmann M, Mayer-Steinacker R, von Baer A, Schultheiss M, Flanagan AM, Moller P, Bruderlein S, Barth TF (2015) Preclinical characterization of novel chordoma cell systems and their targeting by pharmocological inhibitors of the CDK4/6 cell-cycle pathway. Cancer Res 75(18):3823–3831. https://doi.org/10.1158/0008-5472.can-14-3270

    Article  Google Scholar 

  20. Choy E, MacConaill LE, Cote GM, Le LP, Shen JK, Nielsen GP, Iafrate AJ, Garraway LA, Hornicek FJ, Duan Z (2014) Genotyping cancer-associated genes in chordoma identifies mutations in oncogenes and areas of chromosomal loss involving CDKN2A, PTEN, and SMARCB1. PLoS ONE 9(7):e101283. https://doi.org/10.1371/journal.pone.0101283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rinner B, Froehlich EV, Buerger K, Knausz H, Lohberger B, Scheipl S, Fischer C, Leithner A, Guelly C, Trajanoski S, Szuhai K, Liegl B (2012) Establishment and detailed functional and molecular genetic characterisation of a novel sacral chordoma cell line, MUG-Chor1. Int J Oncol 40(2):443–451. https://doi.org/10.3892/ijo.2011.1235

    Article  PubMed  CAS  Google Scholar 

  22. Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, Diss T, Tirabosco R, Flanagan AM (2009) Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer 100(9):1406–1414. https://doi.org/10.1038/sj.bjc.6605019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hallor KH, Staaf J, Jonsson G, Heidenblad M, Vult von Steyern F, Bauer HC, Ijszenga M, Hogendoorn PC, Mandahl N, Szuhai K, Mertens F (2008) Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation. Br J Cancer 98(2):434–442. https://doi.org/10.1038/sj.bjc.6604130

    Article  PubMed  CAS  Google Scholar 

  24. Lee DH, Zhang Y, Kassam AB, Park MJ, Gardner P, Prevedello D, Henry S, Horbinski C, Beumer JH, Tawbi H, Williams BJ, Shaffrey ME, Egorin MJ, Abounader R, Park DM (2015) Combined PDGFR and HDAC inhibition overcomes PTEN disruption in chordoma. PLoS ONE 10(8):e0134426. https://doi.org/10.1371/journal.pone.0134426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Scheipl S, Barnard M, Cottone L, Jorgensen M, Drewry DH, Zuercher WJ, Turlais F, Ye H, Leite AP, Smith JA, Leithner A, Moller P, Bruderlein S, Guppy N, Amary F, Tirabosco R, Strauss SJ, Pillay N, Flanagan AM (2016) EGFR inhibitors Identified as a potential treatment for chordoma in a focused compound screen. J Pathol. https://doi.org/10.1002/path.4729

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ptaszynski K, Szumera-Cieckiewicz A, Owczarek J, Mrozkowiak A, Pekul M, Baranska J, Rutkowski P (2009) Epidermal growth factor receptor (EGFR) status in chordoma. Pol J Pathol 60(2):81–87

    PubMed  CAS  Google Scholar 

  27. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45(D1):D777–d783. https://doi.org/10.1093/nar/gkw1121

    Article  PubMed  CAS  Google Scholar 

  28. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. https://doi.org/10.1038/onc.2008.245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Vansteenkiste JF, Canon JL, Braud FD, Grossi F, De Pas T, Gray JE, Su WC, Felip E, Yoshioka H, Gridelli C, Dy GK, Thongprasert S, Reck M, Aimone P, Vidam GA, Roussou P, Wang YA, Di Tomaso E, Soria JC (2015) Safety and efficacy of buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the Phase II BASALT-1 study. J Thorac Oncol 10(9):1319–1327. https://doi.org/10.1097/jto.0000000000000607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ando Y, Iwasa S, Takahashi S, Saka H, Kakizume T, Natsume K, Suenaga N, Quadt C, Yamada Y (2019) Phase I study of alpelisib (BYL719), an alpha-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci 110(3):1021–1031. https://doi.org/10.1111/cas.13923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, Yamashita T, Lu YS, Inoue K, Takahashi M, Papai Z, Longin AS, Mills D, Wilke C, Hirawat S, Juric D (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380(20):1929–1940. https://doi.org/10.1056/NEJMoa1813904

    Article  PubMed  CAS  Google Scholar 

  32. Soulieres D, Faivre S, Mesia R, Remenar E, Li SH, Karpenko A, Dechaphunkul A, Ochsenreither S, Kiss LA, Lin JC, Nagarkar R, Tamas L, Kim SB, Erfan J, Alyasova A, Kasper S, Barone C, Turri S, Chakravartty A, Chol M, Aimone P, Hirawat S, Licitra L (2017) Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol 18(3):323–335. https://doi.org/10.1016/s1470-2045(17)30064-5

    Article  PubMed  CAS  Google Scholar 

  33. Davies JM, Robinson AE, Cowdrey C, Mummaneni PV, Ducker GS, Shokat KM, Bollen A, Hann B, Phillips JJ (2014) Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma. J Neurosurg 120(2):331–336. https://doi.org/10.3171/2013.10.Jns13598

    Article  PubMed  Google Scholar 

  34. Tauziede-Espariat A, Bresson D, Polivka M, Bouazza S, Labrousse F, Aronica E, Pretet JL, Projetti F, Herman P, Salle H, Monnien F, Valmary-Degano S, Laquerriere A, Pocard M, Chaigneau L, Isambert N, Aubriot-Lorton MH, Feuvret L, George B, Froelich S, Adle-Biassette H (2016) Prognostic and therapeutic markers in chordomas: a study of 287 tumors. J Neuropathol Exp Neurol 75(2):111–120. https://doi.org/10.1093/jnen/nlv010

    Article  PubMed  CAS  Google Scholar 

  35. Schwab J, Antonescu C, Boland P, Healey J, Rosenberg A, Nielsen P, Iafrate J, Delaney T, Yoon S, Choy E, Harmon D, Raskin K, Yang C, Mankin H, Springfield D, Hornicek F, Duan Z (2009) Combination of PI3K/mTOR inhibition demonstrates efficacy in human chordoma. Anticancer Res 29(6):1867–1871

    PubMed  CAS  Google Scholar 

  36. Magnaghi P, Salom B, Cozzi L, Amboldi N, Ballinari D, Tamborini E, Gasparri F, Montagnoli A, Raddrizzani L, Somaschini A, Bosotti R, Orrenius C, Bozzi F, Pilotti S, Galvani A, Sommer J, Stacchiotti S, Isacchi A (2018) Afatinib is a new therapeutic approach in chordoma with a unique ability to target EGFR and brachyury. Mol Cancer Ther 17(3):603–613. https://doi.org/10.1158/1535-7163.Mct-17-0324

    Article  PubMed  CAS  Google Scholar 

  37. de Castro CV, Guimaraes G, Aguiar S Jr, Lopes A, Baiocchi G, da Cunha IW, Campos AH, Soares FA, Begnami MD (2013) Tyrosine kinase receptor expression in chordomas: phosphorylated AKT correlates inversely with outcome. Hum Pathol 44(9):1747–1755. https://doi.org/10.1016/j.humpath.2012.11.024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge South Texas Accelerated Research Therapeutics (START) for evaluating inhibitors in xenograft chordoma models in conjunction with the Chordoma Foundation.

Funding

This study was funded using internal funds from the University of Michigan. NLM was supported by NSF Grant DGE-1256260, and MEHN was supported by an American Association for Otolaryngology – Head and Neck Surgery Fellowship (513933). Research reported in this publication using the services of the University of Michigan Flow Cytometry Core was supported by the National Cancer Institute of the National Institutes of Health under award number P30CA046592.

Author information

Authors and Affiliations

Authors

Contributions

NLM, MEPP, and JCB contributed to the study conception and design. NLM and JCB performed study development and established methodology. NLM, EL, JEM, and JW collected the data, and NLM, EL, JEM, JW, JZ, HJ, MEP, and JCB analyzed and interpreted the results. NLM, JHO, MEH, JBM, MEPP, and JCB provided administrative, technical, or material support. NLM, MEH, and JCB prepared the manuscript, which was reviewed and approved by all authors.

Corresponding author

Correspondence to J. C. Brenner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Institutional Animal Care and Use Committee protocol at START (#09-001).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michmerhuizen, N.L., Owen, J.H., Heft Neal, M.E. et al. Rationale for the advancement of PI3K pathway inhibitors for personalized chordoma therapy. J Neurooncol 147, 25–35 (2020). https://doi.org/10.1007/s11060-020-03418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03418-7

Keywords

Navigation