Skip to main content

Advertisement

Log in

Sustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

By-products from the dairy industry and mining activities represent a great environmental overload, which justify research for value-added reuse of these by-products (dairy sludge and dacite rock powder). Dairy sludge is generated at a rate of about 0.2–10 l per liter of processed milk, and dacite powder, from rock mining extraction and processing, is generated for about 52,400 m3 per year in Nova Prata city, Southern Brazil. For both by-products, the compositions of calcium (Ca), magnesium (Mg), potassium (K) and phosphorous (P), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were determined by using appropriate analytical techniques. A greenhouse experiment was conducted to determine release of macronutrients, such as Ca, K, Mg, and P, from by-products to support black oat (Avena strigosa) and maize nutrition. Twelve by-products doses were blended with a typic Hapludox soil and were applied to pots with five replications each. Black oat (first cultivation) and, sequentially, maize (second cultivation) were cultivated for 70 days each. Ameliorations in soil chemical attributes, leaf dry matter yield, and plant nutritional status were evaluated at the end of each cultivation. There was a significant (p < 0.05) increase in all parameters evaluated in a dose of 7251 kg ha−1 of dacite rock powder and 20,594 kg ha−1 of dairy sludge. Compared to the control treatments, both crops grew well better on all mixtures. The presence of potentially toxic elements in both by-products was irrelevant, indicating that effective blending of dacite rock powder along with dairy sludge could be a potential source of Ca, K, Mg, and P in agriculture without posing a risk of contamination to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Anjanadevi, I. P., John, N. S., John, K. S., Jeeva, M. L., & Misra, R. S. (2016). Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology, 56, 67–77.

    Google Scholar 

  • Balannec, B., Vourch, M., Rabiller-Baudry, M., & Chaufer, B. (2005). Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Separation and Purification Technology, 42, 195–200.

    Google Scholar 

  • Basak, B. B., Sarkar, B., Biswas, D. R., Sarkar, S., Sanderson, P., & Naidu, R. (2017). Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities. Advances in Agronomy, 141, 115–145.

    Google Scholar 

  • Basak, B. B. (2019). Waste mica as alternative source of plant available potassium: Evaluation of agronomic potential through chemical and biological methods. Natural Resources Research, 28(3), 953–965.

    Google Scholar 

  • Basak, B. B., Sarkar, B., & Naidu, R. (2020). Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00677-1

    Article  Google Scholar 

  • Bhadouria, B. S., & Sai, V. S. (2011). Utilization and treatment of dairy effluent through biogas generation-A case study. International Journal of Environmental Sciences, 1, 1621.

    Google Scholar 

  • Brazil. (2006). Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente. Resolução n. 375, de 29 de agosto de 2006. Define critérios e procedimentos, para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados. Brasília. http://www.mma.gov.br/port/conama/res/res06/res37506.pdf. Accessed 19 May 2020.

  • Brazil. (2016). Instrução Normativa Nº 05 de 10 de março de 2016. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf. Accessed 28 May 2020.

  • Cavallaro, N., Padilla, N., & Villarrubia, J. (1993). Sewage sludge effects on chemical properties of acid soils. Soil Science, 156, 63–70.

    Google Scholar 

  • Dalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432.

    Google Scholar 

  • De Conti, L., Ceretta, C. A., Melo, G. W. B., Tiecher, T. L., Silva, L. O. S., Garlet, L. P., Mimmo, T., Cesco, S., & Brunetto, G. (2019). Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 216, 147–156.

    Google Scholar 

  • Donagema, G. K., Campos, D. V. B., Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (2011). Manual de métodos de análise de solo. 2. ed. rev. Rio de Janeiro: Embrapa Solos, 230 p.

  • European Union - E.U. (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01986L0278-20090420&qid=1439354498400&from=DE. Accessed 25 May 2020.

  • Fageria, N. K. (2009). The use of nutrients in crop plants (p. 430). CRC Press.

    Google Scholar 

  • Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L. S., Saikia, B. K., & Oliveira, L. F. S. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production., 208, 297–306.

    Google Scholar 

  • Fornasieri Filho, D. (2007). Manual da Cultura do Milho (p. 574p). Funep.

    Google Scholar 

  • Frac, M., Jezierska-Tys, S., Oszust, K., Gryta, A., & Pastor, M. (2017). Assessment of microbiological and biochemical properties of dairy sewage sludge. International Journal of Environmental Science and Technology, 14, 679–688.

    Google Scholar 

  • Furrer, O. J., Gupta, S. K., & Stauffer, W. (1984). Sludge as a source of phosphorus and consequences of phosphorus accumulation in soils. In P. L’Hermite (Ed.), Processing and use of sewage sludge. proceedings of the third international symposium held at Brighton (pp. 279–294). Dordrecht: Reidel Publishing Co.

    Google Scholar 

  • García-Delgado, C., Calab, V., & Eymara, E. (2012). Inûuence of chemical and mineralogical properties of organic amendments on the selection of an adequate analytical procedure for trace elements determination. Talanta, 88, 375–384.

    Google Scholar 

  • Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390–399.

    Google Scholar 

  • Gupta, S., & Hani, H. (1979). Estimation of available phosphate content of sewage sludges. In D. Alexandre, & H. Ott (Eds.), Treatment and use of sewage sludge. Proceedings of the first European Symposium held in Cadarache, 1979. (pp. 261–268).

  • Haraldsen, T. K., & Pedersen, P. A. (2003). Mixtures of crushed rock, forest soils, and sewage sludge used as soils for grassed green areas. Urban Forestry & Urban Greening, 21, 41–51. https://doi.org/10.1078/1618-8667-00022

    Article  Google Scholar 

  • Hue, N. V., & Ranjith, S. A. (1994). Sewage sludges in Hawaii: chemical composition and reactions with soils and plants. Water Air Soil Pollution, 72, 265–283.

    Google Scholar 

  • Kwano, B. H., Moreira, A., Moraes, L. A. C., & Nogueira, M. A. (2017). Magnesium-manganese interaction in soybean cultivars with different nutritional requirements. Journal of Plant Nutrition, 40, 372–381.

    Google Scholar 

  • Li, Z., Zhang, R., Xia, S., Wang, L., Liu, C., Zhang, R., Fan, Z., Chen, F., & Liu, Y. (2019). Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2019.e00663

    Article  Google Scholar 

  • Lins, F. A. F. (2008). Panorama das rochas e minerais industriais no Brasil. http://mineralis.cetem.gov.br/bitstream/cetem/1031/1/01.Panorama%20da%20Produ%C3%A7%C3%A3o%20de%20RMIs%20%28novo%20texto%29.pdf. Accessed 17 May 2020.

  • López-Mosquera, M. E., Moirón, C., & Carral, E. (2000). Use of dairy-industry sludge as fertiliser for grasslands in northwest Spain: heavy metal levels in the soil and plants. Resources, Conservation & Recycling, 30, 95–109.

    Google Scholar 

  • López-Mosquera, M. E., Cascallana, V., & Seoane, S. (2002). Comparison of the effects of dairy sludge and a mineral NPK fertilizer on an acid soil. Instituto Nacional de Investigaciones Agrarias, 17, 87–99.

    Google Scholar 

  • Macoon, B., Woodard, K. R., Slooenberger, L. E., French, E. C., Portier, K. M., Graetz, D. A., Prine, G. M., & Van Horn, H. H. (2002). Dairy effluent effects on herbage yield and nutritive value of forage cropping systems. Agronomy Journal, 94, 1043–1049.

    Google Scholar 

  • Manning, D. A. (2018). Innovation in resourcing geological materials as crop nutrients. Natural Resources Research, 27(2), 217–227.

    Google Scholar 

  • Mclaughlin, M. J., & Champion, L. (1987). Sewage sludge as a phosphorus amendment for sesquioxic soils. Soil Science, 14, 45–75.

    Google Scholar 

  • Mohammed, S. M. O., Brandt, K., Gray, N. D., White, M. L., & Manning, D. A. C. (2014). Comparison of silicate minerals as sources of potassium for plant nutrition in sandy soil. European Journal of Soil Science, 65(5), 653–662.

    Google Scholar 

  • Moura, E., Gehring, C., Braun, H., Ferraz Junior, A., Reis, F., & Aguiar, A. (2016). Improving farming practices for sustainable soil use in the humid tropics and rainforest ecosystem health. Sustainability, 8, 841.

    Google Scholar 

  • Oszust, K., Frac, M., & Lipiec, J. (2015). Soil microbial functionality in response to dairy sewage sludge and mineral fertilisers application under winter rape. International Journal of Environmental Science and Technology, 12, 3675–3684.

    Google Scholar 

  • Pauletti, V. (2004). Nutrientes: Teores e interpretações. 2a edição, Fundação ABC para a Assistência e Divulgação Técnica Agropecuária. Castro, 86 p.

  • Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1–12.

    Google Scholar 

  • Ramos, C. G., Querol, X., Dalmora, A. C., Pires, K. C. J., Shneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706.

    Google Scholar 

  • Ramos, C. G., de Medeiros, D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Natural Resources Research, 28, 1–18.

    Google Scholar 

  • Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In V. Meena, B. Maurya, J. Verma, & R. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Rosling, A., Suttle, K. B., Johansson, E., van Hees, P. A., & Banfield, J. F. (2007). Phosphorous availability influences the dissolution of apatite by soil fungi. Geobiology, 5(3), 265–280.

    Google Scholar 

  • Santos, W. O., Mattiello, E. M., Vergutz, L., & Costa, R. F. (2016). Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, 179, 547–556.

    Google Scholar 

  • Sociedade Brasileira de Ciência do Solo – SBCS. (2004). Manual de Adubação e de Calagem: para os estados do Rio Grande do Sul e Santa Catarina. Comissão de Química e Fertilidade do Solo.

    Google Scholar 

  • Sommers, L. E., & Sutton A. L. (1980). Use of waste materials as sources of phosphorus, in the role of phosphorus in agriculture. R.C. Dinauer and M. Stelly (Eds.). American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.

  • Spohn, M., Zeißig, I., Brucker, E., Widdig, M., Lacher, U., & Aburto, F. (2020). Phosphorus solubilization in the rhizosphere in two saprolites with contrasting phosphorus fractions. Geoderma, 366, 114245.

    Google Scholar 

  • Stranghoener, M., Schippers, A., Dultz, S., & Behrens, H. (2018). Experimental microbial alteration and Fe mobilization from basaltic rocks of the ICDP HSDP2 drill core, Hilo, Hawaii. Frontiers in Microbiology, 9, 1252.

    Google Scholar 

  • Suárez, P. C., Seoane, S., Mosquera, O., Lopez, E., Solla-Grullin, F., & Merino, A. (2004). Dairy industry sewage sludge as a fertilizer for an acid soil: a laboratory experiment with Lolium multiflorium L. Spanish Journal of Agricultural Research, 2, 419–427.

    Google Scholar 

  • Theodoro, S. H., & Leonardos, O. H. (2006). The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78(4), 721–730.

    Google Scholar 

  • Theodoro, S. H., & Leonardos, O. H. (2014). Stonemeal: principles, potencial and Perspective from Brazil. In T. J. Goreau, R. W. Larson, & J. Campe (Eds.), Geotherapy: Innovative methods of soil fertility restoration, carbon sequestration and reversing CO2 increase (pp. 403–418). USA: CRC Press.

    Google Scholar 

  • Tikariha, A., & Sahu, O. (2014). Study of characteristics and treatments of dairy industry waste water. Journal of Applied & Environmental Microbiology, 2, 16–22.

    Google Scholar 

  • Toscan, L., Kautzmann, R. M., & Sabedot, S. (2007). O rejeito da mineração de basalto no nordeste do Estado do Rio Grande do Sul: diagnóstico do problema. Revista Escola de Minas, 60, 657–662.

    Google Scholar 

  • Turek, A., Wieczorek, K., & Wolf, W. M. (2019). Digestion procedure and determination of heavy metals in sewage sludge—An analytical problem. Sustainability, 11, 1753.

    Google Scholar 

  • USEPA. (1999). Title 40 CFR: part 503: final rules standards for the use for disposal of sewage sludge. Washington. https://www.epa.gov/sites/production/files/2017-1/documents/frn_part_503_february_19_1993_converted_20090305.pdf. Accessed 10 Jun 2020.

  • USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Agriculture Handbook.

    Google Scholar 

  • van Straaten, P. (2013). Which rocks for which crops? Ecophysiological and geological factors. II Congresso Brasileiro de Rochagem, Poços de Caldas. Annals... Poços de Caldas. Visconde do Rio Branco: Suprema (pp. 65–73).

  • van Straaten, P. (2016). ‘Rocks for crops’ in the world. III Congresso Brasileiro de Rochagem (pp. 59–69). Pelotas. Annals... Pelotas.

    Google Scholar 

  • Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource. New Phytologist, 157, 423–447.

    Google Scholar 

  • Velazco, C. L. (2013). Crop rotation design in view of soilborne pathogen dynamics: A methodological approach illustrated with sclerotium rolfsii and fusarium oxysporum f. sp. cepae. Wageningen University and Research.

  • Volf, M. R., Guimarães, T. M., Scudeletti, D., Cruz, I. V., & Rosolem, C. A. (2018). Potassium Dynamics in Ruzigrass Rhizosphere. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/18069657rbcs20170370

    Article  Google Scholar 

  • White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487–511.

    Google Scholar 

  • Withers, P. J., Rodrigues, M., Soltangheisi, A., Carvalho, T. S., Guilherme, L. R., Benites, V. D. M., Gatiboni, L. C., Sousa, D. M. G., Nunes, R. S., Rosolem, C. A., Andreote, F. D., Oliveira, A., Jr., Coutinho, E. L. M., & Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8(1), 2537.

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge Gustavo Brunetto for revision and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Edital 014/2012—BMT, for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudete Gindri Ramos or Luis Felipe Silva Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, C.G., Dalmora, A.C., Kautzmann, R.M. et al. Sustainable Release of Macronutrients to Black Oat and Maize Crops from Organically-Altered Dacite Rock Powder. Nat Resour Res 30, 1941–1953 (2021). https://doi.org/10.1007/s11053-021-09862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09862-0

Keywords

Navigation