Skip to main content

Advertisement

Log in

Nanotechnology in stem cell research and therapy

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The ability for stem cell therapy in degenerative diseases and the replacement of organs has shown promising results in preclinical research. However, its therapeutic use remains limited even after several years of study. There is currently no single product or protocol based on stem cell therapy. Nanotechnology has shown tremendous potential and gained momentum in stem cell research and therapy due to its several characteristics like tunnel effects, quantum size effects, scale, and surface effects. Its importance is now being recognized specifically in the conformity, replication, and differentiation of stem cells. It has always been an area of interesting study for tissue engineering and regenerative medicine. Although there are many possibilities that nanotechnology may improve cell therapy and stem cell technology, still there are many cytotoxic threats, affecting the viability, stem cell differentiation, etc., that are associated. In this paper, some of the advancements and viewpoints on the use of nanotechnology in stem cell research and stem cell therapy have been discussed along with the application of nanoparticle in isolation tracking, regulation, and enhancing retention of stem cells. The article also discusses the problems, implementations, and challenges in the field that would strengthen the viewpoint and open up new directions/paths for future studies in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Farzamfar S et al (2019) Will nanotechnology bring new hope for stem cell therapy? Cells Tissues Organs 206(4–5):229–241

    Google Scholar 

  2. Weissman IL (2002) Stem cells — scientific, medical, and political issues. N Engl J Med 346(20):1576–1579. https://doi.org/10.1056/nejmsb020693

    Article  Google Scholar 

  3. Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3(4):567–578. https://doi.org/10.2217/17435889.3.4.567

    Article  CAS  Google Scholar 

  4. Gomes MJ, das Neves J, Sarmento B (2014) Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 9:1757–1769. https://doi.org/10.2147/IJN.S45886

    Article  CAS  Google Scholar 

  5. Orkin SH, Morrison SJ (2002) Stem-cell competition. Nature 418(6893):25–27. https://doi.org/10.1038/418025a

    Article  CAS  Google Scholar 

  6. Jiang Y et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49. https://doi.org/10.1038/nature00870

    Article  CAS  Google Scholar 

  7. Khurana V, Kwatra D, Shah S, Mandal A, Mitra AK (2017) Emerging nanotechnology for stem cell therapy. In: Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier Inc, pp 85–103. https://www.worldcat.org/title/emerging-nanotechnologies-for-diagnostics-drug-delivery-and-medical-devices/oclc/959875453

  8. Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F (2016) Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells 8(4):118–135

    Article  Google Scholar 

  9. Metcalf D (2007) Concise review: Hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions. Stem Cells 25(10):2390–2395. https://doi.org/10.1634/stemcells.2007-0544

    Article  Google Scholar 

  10. M Calin, D Stan, and V Simion. Stem cell regenerative potential combined with nanotechnology and tissue engineering for myocardial regeneration.

  11. Cui D (2007) Advances and prospects on biomolecules functionalized carbon nanotubes. J Nanosci Nanotechnol 7(4–5):1298–1314. https://doi.org/10.1166/jnn.2007.654

    Article  CAS  Google Scholar 

  12. Ferreira L, Karp JM, Nobre L, Langer R (2008) New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3(2):136–146. https://doi.org/10.1016/j.stem.2008.07.020

    Article  CAS  Google Scholar 

  13. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330. https://doi.org/10.1096/fj.04-2747rev

    Article  CAS  Google Scholar 

  14. Sun Y, Lu Y, Yin L, Liu Z (2020) The roles of nanoparticles in stem cell-based therapy for cardiovascular disease. Front Bioeng Biotechnol 8:947. https://doi.org/10.3389/FBIOE.2020.00947/BIBTEX

    Article  Google Scholar 

  15. Mwai LM, Kyama MC, Ngugi CW, Walong E (2020) Bioconjugation of AuNPs with HPV 16/18 E6 antibody through physical adsorption technique. J Nanotechnol Nanomater 1(1):16–22. https://doi.org/10.33696/NANOTECHNOL.1.004

    Article  Google Scholar 

  16. Gavas S, Quazi S, Karpiński TM (2021) Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res. Lett 16(1):1–21. https://doi.org/10.1186/S11671-021-03628-6

    Article  Google Scholar 

  17. Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W (2016) Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano 10(4):3918–3935. https://doi.org/10.1021/ACSNANO.6B01401/ASSET/IMAGES/LARGE/NN-2016-01401D_0006.JPEG

    Article  CAS  Google Scholar 

  18. Werengowska-Ciećwierz K, Wis̈niewski KM, Terzyk AP, Furmaniak S (2015) The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv. Condens. Matter Phys 2015:1–27. https://doi.org/10.1155/2015/198175

    Article  Google Scholar 

  19. Stephan MT, Moon JJ, Um SH, Bersthteyn A, Irvine DJ (2010) Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med 16(9):1035–1041. https://doi.org/10.1038/NM.2198

    Article  CAS  Google Scholar 

  20. Bhana S, Wang Y, Huang X (2015) Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine 10(12):1973–1990. https://doi.org/10.2217/nnm.15.32

    Article  CAS  Google Scholar 

  21. He J, Huang M, Wang D, Zhang Z, Li G (2014) Magnetic separation techniques in sample preparation for biological analysis: a review. J Pharm Biomed Anal 101:84–101. https://doi.org/10.1016/j.jpba.2014.04.017

    Article  CAS  Google Scholar 

  22. Chandra S, Nigam S, Bahadur D (2014) Combining unique properties of dendrimers and magnetic nanoparticles towards cancer theranostics. J Biomed Nanotechnol 10(1):32–49. https://doi.org/10.1166/jbn.2014.1698

    Article  CAS  Google Scholar 

  23. Wang R, Hu Y, Zhao N, Xu FJ (2016) Well-defined peapod-like magnetic nanoparticles and their controlled modification for effective imaging guided gene therapy. ACS Appl Mater Interfaces 8(18):11298–11308. https://doi.org/10.1021/acsami.6b01697

    Article  CAS  Google Scholar 

  24. Wang Z, Ruan J, Cui D (2009) Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett 4(7):593–605. https://doi.org/10.1007/s11671-009-9292-z

    Article  CAS  Google Scholar 

  25. Jing Y et al (2007) Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol Bioeng 96(6):1139–1154. https://doi.org/10.1002/bit.21202

    Article  CAS  Google Scholar 

  26. Patel S, Lee K-B (2015) Probing stem cell behavior using nanoparticle-based approaches. Wiley Interdiscip Rev Nanomedicine Nanobiotechnol 7(6):759–778. https://doi.org/10.1002/wnan.1346

    Article  CAS  Google Scholar 

  27. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13(6):1266–1276. https://doi.org/10.1007/s00330-002-1721-7

    Article  Google Scholar 

  28. Hsiao JK et al (2007) Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 58(4):717–724. https://doi.org/10.1002/mrm.21377

    Article  CAS  Google Scholar 

  29. Murahari M, Yergeri M (2013) Identification and usage of fluorescent probes as nanoparticle contrast agents in detecting cancer. Curr Pharm Des 19(25):4622–4640. https://doi.org/10.2174/1381612811319250009

    Article  CAS  Google Scholar 

  30. Jendelová P et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76(2):232–243. https://doi.org/10.1002/jnr.20041

    Article  CAS  Google Scholar 

  31. Jin XH, Yang L, Duan XJ, Xie B, Li Z, Tan HB (2007) In vivo MR imaging tracking of supermagnetic iron-oxide nanoparticle-labeled bone marrow mesenchymal stem cells injected into intra-articular space of knee joints: experiment with rabbit. Natl Med J China 87(45):3213–3218

    Google Scholar 

  32. Shen J et al (2009) Magnetic resonance imaging of mesenchymal stem cells labeled with dual (MR and fluorescence) agents in rat spinal cord injury. Acad Radiol 16(9):1142–1154. https://doi.org/10.1016/j.acra.2009.03.016

    Article  Google Scholar 

  33. Liu Y et al (2011) Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury. Brain Res 1391:24–35. https://doi.org/10.1016/j.brainres.2011.03.032

    Article  CAS  Google Scholar 

  34. S Danner, H Benzin, T Vollbrandt, J Oder, A Richter, and C Kruse. Quantum dots do not alter the differentiation potential of pancreatic stem cells and are distributed randomly among daughter cells.Int J Cell Biolhttps://doi.org/10.1155/2013/918242

  35. Lin S et al (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7(1):67. https://doi.org/10.1186/1472-6750-7-67

    Article  CAS  Google Scholar 

  36. Barnett JM, Penn JS, Jayagopal A (2013) Imaging of endothelial progenitor cell subpopulations in angiogenesis using quantum dot nanocrystals. Methods Mol Biol 2013:45–56

    Article  Google Scholar 

  37. B Shah, P Clark, M Stroscio, and J Mao (2006) Labeling and imaging of human mesenchymal stem cells with quantum dot bioconjugates during proliferation and osteogenic differentiation in long term. In: Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings 2006 1470–1473 https://doi.org/10.1109/IEMBS.2006.260082.

  38. Li J et al (2016) Multifunctional quantum dot nanoparticles for effective differentiation and long-term tracking of human mesenchymal stem cells in vitro and in vivo. Adv Healthc Mater 5(9):1049–1057. https://doi.org/10.1002/adhm.201500879

    Article  CAS  Google Scholar 

  39. Ricles LM, Nam SY, Sokolov K, Emelianov SY, Suggs LJ (2011) Function of mesenchymal stem cells following loading of gold nanotracers. Int J Nanomedicine 6:407–416. https://doi.org/10.2147/ijn.s16354

    Article  CAS  Google Scholar 

  40. Nam SY, Ricles LM, Suggs LJ, Emelianov SY (2012) In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS ONE 7(5):e37267. https://doi.org/10.1371/journal.pone.0037267

    Article  CAS  Google Scholar 

  41. Ricles LM, Nam SY, Treviño EA, Emelianov SY, Suggs LJ (2014) A dual gold nanoparticle system for mesenchymal stem cell tracking. J Mater Chem B 2(46):8220–8230. https://doi.org/10.1039/c4tb00975d

    Article  CAS  Google Scholar 

  42. Accomasso L et al (2012) Fluorescent silica nanoparticles improve optical imaging of stem cells allowing direct discrimination between live and early-stage apoptotic cells. Small 8(20):3192–3200. https://doi.org/10.1002/smll.201200882

    Article  CAS  Google Scholar 

  43. Gallina C et al (2015) Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart. J Nanobiotechnol 13(1):77. https://doi.org/10.1186/s12951-015-0141-1

    Article  CAS  Google Scholar 

  44. JV Jokerst, C Khademi, and SS Gambhir (2013) Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Sci. Transl. Med 5(177) https://doi.org/10.1126/scitranslmed.3005228

  45. Novotna B et al (2016) The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells. Nanotoxicol 10(6):662–670. https://doi.org/10.3109/17435390.2015.1107144

    Article  CAS  Google Scholar 

  46. Lee JK, Chun SY, Im JY, Jin HK, Kwon TG, Bae JS (2012) Specific labeling of neurogenic, endothelial, and myogenic differentiated cells derived from human amniotic fluid stem cells with silica-coated magnetic nanoparticles. J Vet Med Sci 74(8):969–975. https://doi.org/10.1292/jvms.12-0016

    Article  CAS  Google Scholar 

  47. Menon PK et al (2017) Intravenous administration of functionalized magnetic iron oxide nanoparticles does not induce CNS injury in the rat: influence of spinal cord trauma and cerebrolysin treatment. Int Rev Neurobiol 137:47–63. https://doi.org/10.1016/BS.IRN.2017.08.005

    Article  CAS  Google Scholar 

  48. Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell-substrate interactions. Ann Biomed Eng 34(1):59–74. https://doi.org/10.1007/s10439-005-9006-3

    Article  Google Scholar 

  49. Adams GB et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076):599–603. https://doi.org/10.1038/nature04247

    Article  CAS  Google Scholar 

  50. Dolatshahi-Pirouz A, Nikkhah M, Kolind K, Dokmeci MR, Khademhosseini A (2011) Micro- and nanoengineering approaches to control stem cell-biomaterial interactions. J Funct Biomater 2(3):88–106. https://doi.org/10.3390/jfb2030088

    Article  CAS  Google Scholar 

  51. Dolatshahi-Pirouz A et al (2015) A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 4(1):1–9. https://doi.org/10.1038/srep03896

    Article  CAS  Google Scholar 

  52. Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22(41):4567–4590. https://doi.org/10.1002/adma.201000369

    Article  CAS  Google Scholar 

  53. Wang D, Tong G, Dong R, Zhou Y, Shen J, Zhu X (2014) Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chem Commun 50(81):11994–12017. https://doi.org/10.1039/c4cc03155e

    Article  CAS  Google Scholar 

  54. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE 1(1):e119. https://doi.org/10.1371/journal.pone.0000119

    Article  CAS  Google Scholar 

  55. Koutsopoulos S, Zhang S (2013) Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels. Matrigel and collagen I Acta Biomater 9(2):5162–5169. https://doi.org/10.1016/j.actbio.2012.09.010

    Article  CAS  Google Scholar 

  56. Giri S, Nieber K, Acikgöz A, Pavlica S, Keller M, Bader A (2010) Telomerase activity and hepatic functions of rat embryonic liver progenitor cell in nanoscaffold-coated model bioreactor. Mol Cell Biochem 336(1–2):137–149. https://doi.org/10.1007/s11010-009-0266-3

    Article  CAS  Google Scholar 

  57. Castells-Sala C, Sanchez B, Recha-Sancho L, Puig V, Bragos R, Semino CE (2012) Influence of electrical stimulation on 3D-cultures of adipose tissue derived progenitor cells (ATDPCs) behavior. Proc Annu Int Conf IEEE Eng Med Biol Soc 2012:5658–5661. https://doi.org/10.1109/EMBC.2012.6347278

    Article  CAS  Google Scholar 

  58. Tam K et al (2014) A nanoscaffold impregnated with human Wharton’s jelly stem cells or its secretions improves healing of wounds. J Cell Biochem 115(4):794–803. https://doi.org/10.1002/jcb.24723

    Article  CAS  Google Scholar 

  59. Elkhenany H et al (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374. https://doi.org/10.1002/jat.3024

    Article  CAS  Google Scholar 

  60. Mousavi SH, Abroun S, Soleimani M, Mowla SJ (2022) Expansion of human cord blood hematopoietic stem/progenitor cells in three-dimensional nanoscaffold coated with fibronectin. Int. J. Hematol. Stem Cell Res 9(7):72

    Google Scholar 

  61. Aligholi H et al (2016) Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: a comparative methodological study. Brain Res 1642:197–208. https://doi.org/10.1016/j.brainres.2016.03.043

    Article  CAS  Google Scholar 

  62. Mashhadikhan M, Soleimani M, Parivar K, Yaghmaei P (2020) ADSCs on PLLA/PCL hybrid nanoscaffold and gelatin modification: cytocompatibility and mechanical properties. Avicenna J Med Biotechnol 7(1):32–38

    Google Scholar 

  63. Gorjikhah F et al (2016) Improving ‘lab-on-a-chip’ techniques using biomedical nanotechnology: a review. Artif Cells Nanomedicine Biotechnol 44(7):1609–1614. https://doi.org/10.3109/21691401.2015.1129619

    Article  CAS  Google Scholar 

  64. Sciancalepore AG et al (2014) A bioartificial renal tubule device embedding human renal stem/progenitor cells. PLoS ONE 9(1):e87496. https://doi.org/10.1371/journal.pone.0087496

    Article  CAS  Google Scholar 

  65. YS Zhang et al (2015) From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater (Bristol) 10(3) https://doi.org/10.1088/1748-6041/10/3/034006

  66. Jastrzebska E, Tomecka E, Jesion I (2016) Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 75:67–81. https://doi.org/10.1016/j.bios.2015.08.012

    Article  CAS  Google Scholar 

  67. Li S et al (2014) Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab Chip 14(23):4475–4485. https://doi.org/10.1039/c4lc00956h

    Article  CAS  Google Scholar 

  68. Mooney E, Dockery P, Greiser U, Murphy M, Barron V (2008) Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett 8(8):2137–2143. https://doi.org/10.1021/nl073300o

    Article  CAS  Google Scholar 

  69. Konstantinov KB, Cooney CL (2014) White paper on continuous bioprocessing. May 20-21, 2014 continuous manufacturing symposium. J Pharm Sci 104(3):813–820. https://doi.org/10.1002/jps.24268

    Article  CAS  Google Scholar 

  70. Zydney AL (2015) Perspectives on integrated continuous bioprocessing - opportunities and challenges. Curr Opin Chem Eng 10:8–13. https://doi.org/10.1016/j.coche.2015.07.005

    Article  Google Scholar 

  71. Pörtner R (2015) Bioreactors for mammalian cells 89–135. https://doi.org/10.1007/978-3-319-10320-4_4

  72. RD Levit et al (2013) Cellular encapsulation enhances cardiac repair. J Am Heart Assoc 2(5) https://doi.org/10.1161/JAHA.113.000367

  73. Tabei R et al (2019) Development of a transplant injection device for optimal distribution and retention of human induced pluripotent stem cell-derived cardiomyocytes. J Hear Lung Transplant 38(2):203–214. https://doi.org/10.1016/j.healun.2018.11.002

    Article  Google Scholar 

  74. Huang Z et al (2013) Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem Cell Res Ther 4(6):149. https://doi.org/10.1186/scrt360

    Article  Google Scholar 

  75. Gil S, Correia CR, Mano JF (2015) Magnetically labeled cells with surface-modified Fe3O4 spherical and rod-shaped magnetic nanoparticles for tissue engineering applications. Adv Healthc Mater 4(6):883–891. https://doi.org/10.1002/adhm.201400611

    Article  CAS  Google Scholar 

  76. Herea DD et al (2019) Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting. Mater Sci Eng C 94:666–676. https://doi.org/10.1016/j.msec.2018.10.019

    Article  CAS  Google Scholar 

  77. Schultze JL (2019) Myocardial infarction cell by cell. Nature Immunology 20(1):7–9. https://doi.org/10.1038/s41590-018-0277-x

    Article  CAS  Google Scholar 

  78. Kyrtatos PG et al (2009) Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC Cardiovasc Interv 2(8):794–802. https://doi.org/10.1016/j.jcin.2009.05.014

    Article  Google Scholar 

  79. Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA (2013) Overcoming nonviral gene delivery barriers: perspective and future. Mol Pharm 10(11):4082–4098. https://doi.org/10.1021/mp400467x

    Article  CAS  Google Scholar 

  80. Kamimura K, Suda T, Zhang G, Liu D (2011) Advances in gene delivery systems. Pharm Med 25(5):293–306. https://doi.org/10.2165/11594020-000000000-00000

    Article  Google Scholar 

  81. Mali S (2013) Delivery systems for gene therapy. Indian J Human Genet 19(1):3–8. https://doi.org/10.4103/0971-6866.112870

    Article  CAS  Google Scholar 

  82. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Dis 4(7):581–593. https://doi.org/10.1038/nrd1775

    Article  CAS  Google Scholar 

  83. Stuckey DW, Shah K (2014) Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer 14(10):683–691. https://doi.org/10.1038/nrc3798

    Article  CAS  Google Scholar 

  84. Smith DJ et al (2015) Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc Natl Acad Sci U S A 112(5):1523–1528. https://doi.org/10.1073/pnas.1424877112

    Article  CAS  Google Scholar 

  85. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15(7):445–451. https://doi.org/10.1038/nrg3742

    Article  CAS  Google Scholar 

  86. Kotterman MA, Vazin T, Schaffer DV (2015) Enhanced selective gene delivery to neural stem cells in vivo by an adeno-associated viral variant. Dev 142(10):1885–1892. https://doi.org/10.1242/dev.115253

    Article  CAS  Google Scholar 

  87. Li S (2014) Electroporation protocols: preclinical and clinical gene medicine, 2nd edn. Humana Press, New York

    Book  Google Scholar 

  88. Tavri S, Vezeridis A, Cui W, Mattrey RF (2015) In vivo transfection and detection of gene expression of stem cells preloaded with DNA-carrying microbubbles. Radiol 276(2):518–525. https://doi.org/10.1148/radiol.15141380

    Article  Google Scholar 

  89. Liu Y, Wang DA (2015) Viral vector-mediated transgenic cell therapy in regenerative medicine: safety of the process. Expert Opin Biol Ther 15(4):559–567. https://doi.org/10.1517/14712598.2015.995086

    Article  CAS  Google Scholar 

  90. Appaiahgari MB, Vrati S (2015) Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther 15(3):337–351. https://doi.org/10.1517/14712598.2015.993374

    Article  CAS  Google Scholar 

  91. Shao N, Dai T, Liu Y, Cheng Y (2015) A supramolecular approach to improve the gene transfection efficacy of dendrimers. Chem Commun 51(47):9741–9743. https://doi.org/10.1039/c5cc02300a

    Article  CAS  Google Scholar 

  92. Srivastava A, Cunningham C, Pandit A, Wall JG (2015) Improved gene transfection efficacy and cytocompatibility of multifunctional polyamidoamine-cross-linked hyaluronan particles. Macromol Biosci 15(5):682–690. https://doi.org/10.1002/mabi.201400401

    Article  CAS  Google Scholar 

  93. Patil A et al (2018) Nanotechnology derived nanotools in biomedical perspectives: an update. Curr Nanosci 15(2):137–146. https://doi.org/10.2174/1573413714666180426112851

    Article  CAS  Google Scholar 

  94. Pickard M, Adams C, Barraud P, Chari D (2015) Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. J Funct Biomater 6(2):259–276. https://doi.org/10.3390/jfb6020259

    Article  CAS  Google Scholar 

  95. Y Wang et al (2014) A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 9(7) https://doi.org/10.1371/journal.pone.0102886

  96. Dolatabadi JEN, Valizadeh H, Hamishehkar H (2015) Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull 5(2):151–159. https://doi.org/10.15171/apb.2015.022

    Article  CAS  Google Scholar 

  97. Wonder E et al (2016) Optimization of peptide-tagged cationic lipid nanoparticles for targeted gene delivery. Biophys J 110(3):41a. https://doi.org/10.1016/j.bpj.2015.11.288

    Article  Google Scholar 

  98. Fàbregas A et al (2014) A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: development, characterization and DNA binding efficiency of TCERG1 expression plasmid. Int J Pharm 473(1–2):270–279. https://doi.org/10.1016/j.ijpharm.2014.06.022

    Article  CAS  Google Scholar 

  99. Bondi ML et al (2007) Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. J Drug Target 15(4):295–301. https://doi.org/10.1080/10611860701324698

    Article  CAS  Google Scholar 

  100. U Gupta (2014) Hyper-branched dendrimers in drug delivery and solubilization.SOJ Pharm Pharm Scihttps://doi.org/10.15226/2374-6866/1/3/00113

  101. Chaplot SP, Rupenthal ID (2014) Dendrimers for gene delivery - a potential approach for ocular therapy? J Pharm Pharmacol 66(4):542–556. https://doi.org/10.1111/jphp.12104

    Article  CAS  Google Scholar 

  102. Yang J, Zhang Q, Chang H, Cheng Y (2015) Surface-engineered dendrimers in gene delivery. Chem Rev 115(11):5274–5300. https://doi.org/10.1021/cr500542t

    Article  CAS  Google Scholar 

  103. Kabanov AV, Batrakova EV (2016) Polymer nanomaterials for drug delivery across the blood brain barrier. Springer International Publishing, Neuroimmune Pharmacology, pp 847–868

    Google Scholar 

  104. An M, Parkin SR, Derouchey JE (2014) Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture. Soft Matter 10(4):590–599. https://doi.org/10.1039/c3sm52096j

    Article  CAS  Google Scholar 

  105. Wang X, Shao N, Zhang Q, Cheng Y (2014) Mitochondrial targeting dendrimer allows efficient and safe gene delivery. J Mater Chem B 2(17):2546–2553. https://doi.org/10.1039/c3tb21348j

    Article  CAS  Google Scholar 

  106. Kong L et al (2015) RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces 7(8):4833–4843. https://doi.org/10.1021/am508760w

    Article  CAS  Google Scholar 

  107. Mai K, Zhang S, Liang B, Gao C, Du W, Zhang L-M (2015) Water soluble cationic dextran derivatives containing poly(amidoamine) dendrons for efficient gene delivery. Carbohydr Polym 123:237–245. https://doi.org/10.1016/j.carbpol.2015.01.042

    Article  CAS  Google Scholar 

  108. Kim HS, Nguyen V, Bom HS, Min JJ (2015) In vivo imaging of hemoglobin and melanin variations using photoacoustic tomography. J Nucl Med 56(3). https://jnm.snmjournals.org/content/56/supplement_3/1206/tab-article-info

  109. Kesharwani P, Iyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20(5):536–547. https://doi.org/10.1016/j.drudis.2014.12.012

    Article  CAS  Google Scholar 

  110. Liu K, Xu Z, Yin M (2015) Perylenediimide-cored dendrimers and their bioimaging and gene delivery applications. Prog Polym Sci 46:25–54. https://doi.org/10.1016/j.progpolymsci.2014.11.005

    Article  CAS  Google Scholar 

  111. Johnsen KB et al (2016) Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnol 68(5):2125–2138. https://doi.org/10.1007/s10616-016-9952-7

    Article  CAS  Google Scholar 

  112. Jodar M, Sendler E, Krawetz SA (2016) The protein and transcript profiles of human semen. Cell Tissue Res 363(1):85–96. https://doi.org/10.1007/s00441-015-2237-1

    Article  CAS  Google Scholar 

  113. E Willms et al () Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6 https://doi.org/10.1038/srep22519

  114. Wahlgren J, Statello L, Skogberg G, Telemo E, Valadi H (2016) Delivery of small interfering RNAS to cells via exosomes. Methods Mol Biol 1364:105–125

    Article  CAS  Google Scholar 

  115. Ferguson SW, Nguyen J (2016) Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release 228:179–190. https://doi.org/10.1016/j.jconrel.2016.02.037

    Article  CAS  Google Scholar 

  116. French KC, Antonyak MA, Cerione RA (2017) Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Semin Cell Dev Biol 67:48–55. https://doi.org/10.1016/j.semcdb.2017.01.002

    Article  CAS  Google Scholar 

  117. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. https://doi.org/10.1038/nbt.1807

    Article  CAS  Google Scholar 

  118. D Matsumoto et al (2015) Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci. Rep 5(1) https://doi.org/10.1038/srep15325

  119. Chiappini C et al (2015) Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater 14(5):532–539. https://doi.org/10.1038/nmat4249

    Article  CAS  Google Scholar 

  120. ICMR and DBT. The national guidelines for stem cell research. pp. 1–84, 2017. https://dbtindia.gov.in/sites/default/files/National_Guidelines_StemCellResearch-2017.pdf (Accessed on Octobet 10 2022)

  121. Cao FY et al (2015) Evaluating the effects of charged oligopeptide motifs coupled with RGD on osteogenic differentiation of mesenchymal stem cells. ACS Appl Mater Interfaces 7(12):6698–6705. https://doi.org/10.1021/acsami.5b00064

    Article  CAS  Google Scholar 

  122. Soenen SJ, Parak WJ, Rejman J, Manshian B (2015) (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115(5):2109–2135. https://doi.org/10.1021/cr400714j

    Article  CAS  Google Scholar 

  123. Chen X et al (2015) Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53:239–250. https://doi.org/10.1016/J.BIOMATERIALS.2015.02.071

    Article  CAS  Google Scholar 

  124. Zhu K et al (2016) Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair. Biomaterials 74:188–199. https://doi.org/10.1016/J.BIOMATERIALS.2015.10.010

    Article  CAS  Google Scholar 

  125. Zhao X, Huang Q, Jin Y (2015) Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation. Mater Sci Eng C 54:142–149. https://doi.org/10.1016/J.MSEC.2015.05.013

    Article  CAS  Google Scholar 

  126. Park JS, Yang HN, Yi SW, Kim JH, Park KH (2016) Neoangiogenesis of human mesenchymal stem cells transfected with peptide-loaded and gene-coated PLGA nanoparticles. Biomaterials 76:226–237. https://doi.org/10.1016/J.BIOMATERIALS.2015.10.062

    Article  CAS  Google Scholar 

  127. Yu Q et al (2015) Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles. Int J Nanomedicine 10:7097. https://doi.org/10.2147/IJN.S93122

    Article  CAS  Google Scholar 

  128. Loh XJ, Wu YL (2015) Cationic star copolymers based on β-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies. Chem Commun 51(54):10815–10818. https://doi.org/10.1039/C5CC03686K

    Article  CAS  Google Scholar 

  129. Di Mauro V et al (2016) Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine 11(8):891–906. https://doi.org/10.2217/NNM.16.26/SUPPL_FILE/NNM.16.26_SUPPLEMENTARY

    Article  Google Scholar 

  130. Wang Z et al (2015) Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells. Int J Nanomedicine 10:6675. https://doi.org/10.2147/IJN.S94689

    Article  CAS  Google Scholar 

  131. Frede A et al (2016) Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Control Release 222:86–96. https://doi.org/10.1016/J.JCONREL.2015.12.021

    Article  CAS  Google Scholar 

  132. Look J et al (2015) Ligand-modified human serum albumin nanoparticles for enhanced gene delivery. Mol Pharm 12(9):3202–3213. https://doi.org/10.1021/ACS.MOLPHARMACEUT.5B00153/ASSET/IMAGES/LARGE/MP-2015-00153C_0010.JPEG

    Article  CAS  Google Scholar 

  133. Cui ZK et al (2017) Simultaneous delivery of hydrophobic small molecules and siRNA using sterosomes to direct mesenchymal stem cell differentiation for bone repair. Acta Biomater 58:214–224. https://doi.org/10.1016/J.ACTBIO.2017.05.057

    Article  CAS  Google Scholar 

  134. Choi B, Cui ZK, Kim S, Fan J, Wu BM, Lee M (2015) Glutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation. J Mater Chem B 3(31):6448–6455. https://doi.org/10.1039/C5TB00843C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Institute of Technology (NIT), Raipur, Chhattisgarh, India, for providing the facility and space for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awanish Kumar.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this study, and they are joint first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, S., Anant, P.S. & Kumar, A. Nanotechnology in stem cell research and therapy. J Nanopart Res 25, 6 (2023). https://doi.org/10.1007/s11051-022-05654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05654-6

Keywords

Navigation