Skip to main content
Log in

Bi3O4Cl/Bi4NbO8Cl Z-scheme heterojunction catalysts for enhanced photocatalytic degradation of organic pollutants

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Although Bi3O4Cl is a kind of semiconductor catalyst driven by visible light, which possesses a layered structure and high chemical stability; however, the fast recombination of electron–hole pairs still limits its photocatalytic activity. In this work, the heterojunction combined Bi3O4Cl and Bi4NbO8Cl with a particle size of about 30–70 nm is constructed by a solid-state reaction method to improve the photocatalytic performance. XRD, TEM, XPS, and some other measurements are used to characterize the structure, morphology, and optical properties of the samples. Compared with Bi3O4Cl, the Bi3O4Cl/Bi4NbO8Cl Z-scheme photocatalyst shows a better photocatalytic performance, with 80% removal for ciprofloxacin (CIP) and 78% for bisphenol A (BPA) after 3-h illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8

Similar content being viewed by others

References

  1. Jiang E, Liu X, Che H, Liu C, Dong H, Che G (2018) Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. RSC Adv 8(65):37200–37207. https://doi.org/10.1039/c8ra07482h

    Article  CAS  Google Scholar 

  2. Habibi-Yangjeh A, Feizpoor S, Seifzadeh D, Ghosh S (2020) Improving visible-light-induced photocatalytic ability of TiO2 through coupling with Bi3O4Cl and carbon dot nanoparticles. Sep Purif Technol 238:116404. https://doi.org/10.1016/j.seppur.2019.116404

    Article  CAS  Google Scholar 

  3. Qu J, Du Y, Feng Y, Wang J, He B, Du M, Liu Y, Jiang N (2020) Visible-light-responsive K-doped g-C3N4/BiOBr hybrid photocatalyst with highly efficient degradation of Rhodamine B and tetracycline. Mater Sci Semicond Process 112:105023. https://doi.org/10.1016/j.mssp.2020.105023

    Article  CAS  Google Scholar 

  4. Huang H, Han X, Li X, Wang S, Chu PK, Zhang Y (2015) Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures. ACS Appl Mater Interfaces 7(1):482–492. https://doi.org/10.1021/am5065409

    Article  CAS  Google Scholar 

  5. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6(4):2009–2026. https://doi.org/10.1039/c3nr05529a

    Article  CAS  Google Scholar 

  6. Wu L, Zhang Q, Li Z, Liu X (2020) Mechanochemical syntheses of a series of bismuth oxyhalide composites to progressively enhance the visible-light responsive activities for the degradation of bisphenol-A. Mater Sci Semicond Process 105:104733. https://doi.org/10.1016/j.mssp.2019.104733

    Article  CAS  Google Scholar 

  7. Meng X, Zhang Z (2018) New insight into BiOX (X = Cl, Br, and I) hierarchical microspheres in photocatalysis. Mater Lett 225:152–156. https://doi.org/10.1016/j.matlet.2018.04.086

    Article  CAS  Google Scholar 

  8. Li J, Li H, Zhan G, Zhang L (2017) Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc Chem Res 50(1):112–121. https://doi.org/10.1021/acs.accounts.6b00523

    Article  CAS  Google Scholar 

  9. Wang Z, Chen M, Huang D, Zeng G, Xu P, Zhou C, Lai C, Wang H, Cheng M, Wang W (2019) Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chem Eng J 374:1025–1045. https://doi.org/10.1016/j.cej.2019.06.018

    Article  CAS  Google Scholar 

  10. Xiong J, Song P, Di J, Li H (2020) Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis. Journal of Materials Chemistry A 8(41):21434–21454. https://doi.org/10.1039/d0ta06044e

    Article  CAS  Google Scholar 

  11. Lou Z, Wang P, Huang B, Dai Y, Qin X, Zhang X, Wang Z, Liu Y (2017) Enhancing charge separation in photocatalysts with internal polar electric fields. ChemPhotoChem 1(5):136–147. https://doi.org/10.1002/cptc.201600057

    Article  CAS  Google Scholar 

  12. Liu H, Zhou H, Liu X, Li H, Ren C, Li X, Li W, Lian Z, Zhang M (2019) Engineering design of hierarchical g-C3N4@Bi/BiOBr ternary heterojunction with Z-scheme system for efficient visible-light photocatalytic performance. J Alloy Compd 798:741–749. https://doi.org/10.1016/j.jallcom.2019.05.303

    Article  CAS  Google Scholar 

  13. Ning S, Ding L, Lin Z, Lin Q, Zhang H, Lin H, Long J, Wang X (2016) One-pot fabrication of Bi3O4Cl/BiOCl plate-on-plate heterojunction with enhanced visible-light photocatalytic activity. Appl Catal B 185:203–212. https://doi.org/10.1016/j.apcatb.2015.12.021

    Article  CAS  Google Scholar 

  14. Cui Z, Dong X, Sun Y, Zhou Y, Zhang Y, Dong F (2018) Simultaneous introduction of oxygen vacancies and Bi metal onto the 001 facet of Bi3O4Cl woven nanobelts for synergistically enhanced photocatalysis. Nanoscale 10(35):16928–16934. https://doi.org/10.1039/c8nr05322g

    Article  CAS  Google Scholar 

  15. Che H, Che G, Dong H, Hu W, Hu H, Liu C, Li C (2018) Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity. Appl Surf Sci 455:705–716. https://doi.org/10.1016/j.apsusc.2018.06.038

    Article  CAS  Google Scholar 

  16. You Y, Wang S, Xiao K, Ma T, Zhang Y, Huang H (2018) Z-Scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustain Chem Eng 6(12):16219–16227. https://doi.org/10.1021/acssuschemeng.8b03075

    Article  CAS  Google Scholar 

  17. Xu Y, You Y, Huang H, Guo Y, Zhang Y (2020) Bi4NbO8Cl 001 nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J Hazard Mater 381:121159. https://doi.org/10.1016/j.jhazmat.2019.121159

    Article  CAS  Google Scholar 

  18. Ogawa K, Nakada A, Suzuki H, Tomita O, Higashi M, Saeki A, Kageyama H, Abe R (2019) Flux synthesis of layered oxyhalide Bi4NbO8Cl photocatalyst for efficient Z-scheme water splitting under visible light. ACS Appl Mater Interfaces 11(6):5642–5650. https://doi.org/10.1021/acsami.8b06411

    Article  CAS  Google Scholar 

  19. Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R (2016) Layered perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting. J Am Chem Soc 138(7):2082–2085. https://doi.org/10.1021/jacs.5b11191

    Article  CAS  Google Scholar 

  20. Qu X, Liu M, Zhang W, Sun Z, Meng W, Shi L, Du F (2020) A facile route to construct NiTiO3/Bi4NbO8Cl heterostructures for enhanced photocatalytic water purification. J Mater Sci 55(22):9330–9342. https://doi.org/10.1007/s10853-020-04664-w

    Article  CAS  Google Scholar 

  21. Huang Y, He Y, Cui M, Nong Q, Yu J, Wu F, Meng X (2016) Synthesis of AgCl/Bi3O4Cl composite and its photocatalytic activity in RhB degradation under visible light. Catal Commun 76:19–22. https://doi.org/10.1016/j.catcom.2015.12.018

    Article  CAS  Google Scholar 

  22. Kunioku H, Higashi M, Tomita O, Yabuuchi M, Kato D, Fujito H, Kageyama H, Abe R (2018) Strong hybridization between Bi-6s and O-2p orbitals in Sillén-Aurivillius perovskite Bi4MO8X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation. J Mater Chem A 6(7):3100–3107. https://doi.org/10.1039/c7ta08619a

    Article  CAS  Google Scholar 

  23. Lin X, Huang T, Huang F, Wang W, Shi J (2007) Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl. J Mater Chem 17(20):2145–2150. https://doi.org/10.1039/b615903f

    Article  CAS  Google Scholar 

  24. Zhong J, Li J, Wang T, Zeng J, Si Y, Cheng C, Li M, Wang P, Ding J (2015) Improved solar-driven photocatalytic performance of Ag3PO4/ZnO composites benefiting from enhanced charge separation with a typical Z-scheme mechanism. Appl Phys A 122(1):4. https://doi.org/10.1007/s00339-015-9516-2

    Article  CAS  Google Scholar 

  25. Hu Z, Chen D, Zhan X, Wang F, Qin L, Huang Y (2017) Synthesis of Ag-loaded SrTiO3/TiO2 heterostructure nanotube arrays for enhanced photocatalytic performances. Appl Phys A 123(6):399. https://doi.org/10.1007/s00339-017-1014-2

    Article  CAS  Google Scholar 

  26. Zheng L, Wang S, Zhao L, Zhao S (2016) Core/shell Fe3O4/BiOI nanoparticles with high photocatalytic activity and stability. J Nanopart Res 18(11):318. https://doi.org/10.1007/s11051-016-3636-2

    Article  CAS  Google Scholar 

  27. Qiu S, Wang W, Yu J, Tian X, Li X, Deng Z, Lin F, Zhang Y (2022) Enhanced photocatalytic degradation efficiency of formaldehyde by in-situ fabricated TiO2/C/CaCO3 heterojunction photocatalyst from mussel shell extract. J Solid State Chem 311:123110. https://doi.org/10.1016/j.jssc.2022.123110

    Article  CAS  Google Scholar 

  28. Xu B, Gao Y, Li Y, Liu S, Lv D, Zhao S, Gao H, Yang G, Li N, Ge L (2020) Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: The effect of defect states on photocatalytic performance. Appl Surf Sci 507:144806. https://doi.org/10.1016/j.apsusc.2019.144806

    Article  CAS  Google Scholar 

  29. Du M, Zhang S, Xing Z, Li Z, Chen P, Pan K, Zhou W (2020) Dual plasmons-promoted electron-hole separation for direct Z-scheme Bi3O4Cl/AgCl heterojunction ultrathin nanosheets and enhanced photocatalytic-photothermal performance. J Hazard Mater 384:121268. https://doi.org/10.1016/j.jhazmat.2019.121268

    Article  CAS  Google Scholar 

  30. Sun X, Zhang H, Wei J, Yu Q, Yang P, Zhang F (2016) Preparation of point-line Bi2WO6@TiO2 nanowires composite photocatalysts with enhanced UV/visible-light-driven photocatalytic activity. Mater Sci Semicond Process 45:51–56. https://doi.org/10.1016/j.mssp.2016.01.015

    Article  CAS  Google Scholar 

  31. Yu F, Liu Z, Li Y, Nan D, Wang B, He L, Zhang J, Tang X, Duan H, Liu Y (2020) Effect of oxygen vacancy defect regeneration on photocatalytic properties of ZnO nanorods. Appl Phys A 126(12):931. https://doi.org/10.1007/s00339-020-04117-w

    Article  CAS  Google Scholar 

  32. Majumdar A, Pal A (2020) Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics. J Environ Chem Eng 8(1):103645. https://doi.org/10.1016/j.jece.2019.103645

    Article  CAS  Google Scholar 

  33. Shi J-W, Liu C, Ai H-Y, Chen J-W, Xie C, Li G, Yang S, Li S (2015) One step to synthesize the nanocomposites of graphene nanosheets and N-doped titania nanoplates with exposed 001 facets for enhanced visible-light photocatalytic activity. J Nanopart Res 17(5):223. https://doi.org/10.1007/s11051-015-3014-5

    Article  CAS  Google Scholar 

  34. He F, Chen G, Miao J, Wang Z, Su D, Liu S, Cai W, Zhang L, Hao S, Liu B (2016) Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2 Evolution. ACS Energy Lett 1(5):969–975. https://doi.org/10.1021/acsenergylett.6b00398

    Article  CAS  Google Scholar 

  35. Liu QY, Zheng YF, Wang L, Song XC (2019) Synthesis of BiIO4/Ag3PO4 nanocomposite with enhanced photocatalytic activity for degradation of phenol. J Nanopart Res 21(2):32. https://doi.org/10.1007/s11051-019-4472-y

    Article  CAS  Google Scholar 

  36. Qi S, Liu X, Ma N, Xu H (2020) Construction and photocatalytic properties of WS2/BiOCl heterojunction. J Nanopart Res 22(12):357. https://doi.org/10.1007/s11051-020-05087-z

    Article  CAS  Google Scholar 

  37. Gupta G, Kansal SK (2019) Novel 3-D flower like Bi3O4Cl/BiOCl p-n heterojunction nanocomposite for the degradation of levofloxacin drug in aqueous phase. Process Saf Environ Prot 128:342–352. https://doi.org/10.1016/j.psep.2019.06.008

    Article  CAS  Google Scholar 

  38. Yu Y-N, Lu S-Y, Bao S-J (2015) Photocatalytic activity of Pt-modified Bi2WO6 nanoporous wall under sunlight. J Nanopart Res 17(7):323. https://doi.org/10.1007/s11051-015-3124-0

    Article  CAS  Google Scholar 

  39. Xu Y, Jin X, Ge T, Xie H, Sun R, Su F, Li X, Ye L (2021) Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4. Chem Eng J 409:128178. https://doi.org/10.1016/j.cej.2020.128178

    Article  CAS  Google Scholar 

  40. Jiang E, Song N, Zhang X, Yang L, Liu C, Dong H (2020) In-situ fabrication of Z-scheme Bi3O4Cl/Bi12O17Cl2 heterostructure by facile pH control strategy to boost removal of various pollutants in water. Chem Eng J 388:123483. https://doi.org/10.1016/j.cej.2019.123483

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the support provided by the National Natural Science Foundation of China (Grant No. 61504073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Qu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Shi, L., Li, Y. et al. Bi3O4Cl/Bi4NbO8Cl Z-scheme heterojunction catalysts for enhanced photocatalytic degradation of organic pollutants. J Nanopart Res 24, 220 (2022). https://doi.org/10.1007/s11051-022-05599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05599-w

Keywords

Navigation