Skip to main content
Log in

Photocatalytic activity of Pt-modified Bi2WO6 nanoporous wall under sunlight

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, Bi2WO6 nanoporous wall was synthesized by using Bi2O3 as template and Bi source. Pt nanoparticles whose average size is about 8 nm were further immobilized on the Bi2WO6 nanoporous wall via a simple chemical reduction process. Their photocatalytic activity and the effect of Pt modification were studied by analyzing the degradation of an organic dye, rhodamine 6G (Rh6G), under simulated sunlight. It was found that the photocatalytic ability of Bi2WO6 nanoporous wall was enhanced by introducing Pt nanoparticles. Bare Bi2WO6 shows a degradation efficiency of 78 % after 1 h, while the degradation efficiency of 5 wt% Pt-modified Bi2WO6 was 99 %, and on further increasing the Pt content in the as-prepared Pt-modified Bi2WO6 catalysts, their photocatalytic ability will decrease. The optimal catalyst could be reused without any decrease for five cycles, which may due to Pt be able to help trap the conduction band electrons in the absence of Rh6G. A possible photocatalytic mechanism was proposed and further proved by transient photocurrent response experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Fu HB, Pan CS, Yao WQ, Zhu YF (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109:22432–22439. doi:10.1021/jp052995j

    Article  Google Scholar 

  • Fu HB, Zhang SC, Xu TG, Zhu YF, Chen JM (2008) Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ Sci Technol 42:2085–2091. doi:10.1021/es702495w

    Article  Google Scholar 

  • Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag–ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563–13570. doi:10.1021/jp802729a

    Article  Google Scholar 

  • Gou XL, Li R, Wang GX, Chen ZX, Wexler D (2009) Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology 20:5. doi:10.1088/0957-4484/20/49/495501

    Article  Google Scholar 

  • Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127:3928–3934. doi:10.1021/ja042925a

    Article  Google Scholar 

  • Huang H, Liu K, Chen K, Zhang Y, Zhang Y, Wang S (2014) Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J Phys Chem C 118:14379–14387. doi:10.1021/jp503025b

    Article  Google Scholar 

  • Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995. doi:10.1021/jp049556p

    Article  Google Scholar 

  • Kubacka A, Fernandez-Garcia M, Colon G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614. doi:10.1021/cr100454n

    Article  Google Scholar 

  • Lee C, Jeong S, Myung N, Rajeshwar K (2014) Preparation of Au–Bi2O3 nanocomposite by anodic electrodeposition combined with galvanic replacement. J Electrochem Soc 161:D499–D503. doi:10.1149/2.0421410jes

    Article  Google Scholar 

  • Liu S-J, Hou Y-F, Zheng S-L, Zhang Y, Wang Y (2013) One-dimensional hierarchical Bi2WO6 hollow tubes with porous walls: synthesis and photocatalytic property. CrystEngComm 15:4124–4130. doi:10.1039/c3ce40237a

    Article  Google Scholar 

  • Natarajan TS, Bajaj HC, Tayade RJ (2015) Synthesis of homogeneous sphere-like Bi2WO6 nanostructure by silica protected calcination with high visible-light-driven photocatalytic activity under direct sunlight. CrystEngComm 17:1037–1049. doi:10.1039/c4ce01839g

    Article  Google Scholar 

  • Peng Y, Yan M, Chen Q-G, Fan C-M, Zhou H-Y, Xu A-W (2014) Novel onedimensional Bi2O3–Bi2WO6 pn hierarchical heterojunction with enhanced photocatalytic activity. J Mater Chem A 2:8517–8524. doi:10.1039/c4ta00274a

    Article  Google Scholar 

  • Qamar M, Elsayed RB, Alhooshani KR, Ahmed MI, Bahemann DW (2015) Highly efficient and selective oxidation of aromatic alcohols photocatalyzed by nanoporous hierarchical Pt/Bi2WO6 in organic solvent-free environment. Acs Appl Mater Interfaces 7:1257–1269. doi:10.1021/am507428r

    Article  Google Scholar 

  • Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011. doi:10.1039/b714786b

    Article  Google Scholar 

  • Tang JW, Zou ZG, Ye JH (2004) Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal Lett 92:53–56. doi:10.1023/B:CATL.0000011086.20412.aa

    Article  Google Scholar 

  • Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910

    Article  Google Scholar 

  • Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462. doi:10.1016/j.stam.2007.05.006

    Article  Google Scholar 

  • Tian G, Chen Y, Zhou W, Pan K, Dong Y, Tian C, Fu H (2011) Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J Mater Chem 21:887–892. doi:10.1039/c0jm03040f

    Article  Google Scholar 

  • Tian N, Zhang Y, Huang H, He Y, Guo Y (2014) Influences of Gd substitution on the crystal structure and visible-light-driven photocatalytic performance of Bi2WO6. J Phys Chem C 118:15640–15648. doi:10.1021/jp500645p

    Article  Google Scholar 

  • Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic materials: possibilities and challenges. Advanced materials 24:229–251. doi:10.1002/adma.201102752

    Article  Google Scholar 

  • Wu Y, Zhang X, Zhang G, Guan W (2014) Visible light-assisted synthesis of Pt/Bi2WO6 and photocatalytic activity for ciprofloxacin. Micro Nano Lett 9:119–122. doi:10.1049/mnl.2013.0705

    Article  Google Scholar 

  • Xiang Q, Yu J, Wong PK (2011) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloid Interface Sci 357:163–167. doi:10.1016/j.jcis.2011.01.093

    Article  Google Scholar 

  • Zhang C, Zhu YF (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17:3537–3545. doi:10.1021/cm0501517

    Article  Google Scholar 

  • Zhang LS, Wang WZ, Chen ZG, Zhou L, Xu HL, Zhu W (2007) Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J Mater Chem 17:2526–2532. doi:10.1039/b616460a

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (21163021); Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Start-up grant under SWU111071 & SWU113077 from Southwest University and Chongqing Science and Technology Commission under cstc2011pt-sy90001 and cstc2012gjhz90002; Natural Science Foundation of Chongqing (cstc2013jcyjA5004); Fundamental Research Funds for the Central Universities (XDJK2013B031); and Program for Excellent Talents in Chongqing (102060-20600218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Juan Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, YN., Lu, SY. & Bao, SJ. Photocatalytic activity of Pt-modified Bi2WO6 nanoporous wall under sunlight. J Nanopart Res 17, 323 (2015). https://doi.org/10.1007/s11051-015-3124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3124-0

Keywords

Navigation