Skip to main content
Log in

Porous FeVO4 nanorods: synthesis, characterization, and gas-sensing properties toward volatile organic compounds

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study reports a facile hydrothermal approach for the synthesis of shape-controlled FeVO4·1.1H2O nanorods and the subsequent conversion into FeVO4 nanorods upon calcination at 500 °C for 2 h. The lengths of the synthesized FeVO4 nanorods vary from 0.7–3.5 μm, with the widths ranging from 70–270 nm. The proposed synthesis strategy does not involve the use of surfactants and requires only a very short reaction time, which is highly beneficial for the scale-up preparation. The anions of the Fe precursor are found to directly influence the shape and composition of the resultant hydrated FeVO4 products, due to the differences in their ionic strength and their abilities to intercalate into the layered structure of FeVO4·1.1H2O. The Cl ions are particularly useful in limiting the growth of the nanorods in the lateral direction without being strongly intercalated into the layered structure. The porous FeVO4 nanorods exhibit higher selectivity and sensitivity toward n-butanol compared to FeVO4 nanoparticles, due to the high surface area and porosity. The findings demonstrate for the first time the potential of nanosized FeVO4 as a sensor material for the detection of volatile gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21(27):9841–9848. doi:10.1039/C0JM04239K

    Article  Google Scholar 

  • Choopun S, Tubtimtae A, Santhaveesuk T, Nilphai S, Wongrat E, Hongsith N (2009) Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl Surf Sci 256(4):998–1002. doi:10.1016/j.apsusc.2009.05.139

    Article  Google Scholar 

  • Deng J, Jiang J, Zhang Y, Lin X, Du C, Xiong Y (2008) FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl Catal B 84(3–4):468–473. doi:10.1016/j.apcatb.2008.04.029

    Article  Google Scholar 

  • Dhayal Raj A, Pazhanivel T, Suresh Kumar P, Mangalaraj D, Nataraj D, Ponpandian N (2010) Self assembled V2O5 nanorods for gas sensors. Curr Appl Phys 10(2):531–537. doi:10.1016/j.cap.2009.07.015

    Article  Google Scholar 

  • Ding N, Liu S, Feng X, Gao H, Fang X, Xu J, Tremel W, Lieberwirth I, Chen C (2009) Hydrothermal growth and characterization of nanostructured vanadium-based oxides. Cryst Growth Des 9(4):1723–1728. doi:10.1021/cg800645c

    Article  Google Scholar 

  • Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6):5469–5502. doi:10.3390/s100605469

    Article  Google Scholar 

  • Fu H, Jiang X, Yang X, Yu A, Su D, Wang G (2012) Glycothermal synthesis of assembled vanadium oxide nanostructures for gas sensing. J Nanopart Res 14(6):1–14. doi:10.1007/s11051-012-0871-z

    Google Scholar 

  • Grigorieva AV, Badalyan SM, Goodilin EA, Rumyantseva MN, Gaskov AM, Birkner A, Tretyakov YD (2010) Synthesis, structure, and sensor properties of vanadium pentoxide nanorods. Eur J Inorg Chem 33:5247–5253. doi:10.1002/ejic.201000372

    Article  Google Scholar 

  • Han C, Pi Y, An Q, Mai L, Xie J, Xu X, Xu L, Zhao Y, Niu C, Khan AM, He X (2012) Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries. Nano Lett 12(9):4668–4673. doi:10.1021/nl301993v

    Article  Google Scholar 

  • Hao Sim D, Rui X, Chen J, Tan H, Lim TM, Yazami R, Hng HH, Yan Q (2012) Direct growth of FeVO4 nanosheet arrays on stainless steel foil as high-performance binder-free Li ion battery anode. RSC Adv 2(9):3630–3633. doi:10.1039/C2RA20058A

    Article  Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed 40(23):4330–4361. doi:10.1002/1521-3773(20011203)40:23<4330:aid-anie4330>3.0.co;2-w

  • Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122(2):659–671. doi:10.1016/j.snb.2006.06.022

    Article  Google Scholar 

  • Huang J, Xu X, Gu C, Yang M, Yang M, Liu J (2011) Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. J Mater Chem 21(35):13283–13289. doi:10.1039/c1jm11292a

    Article  Google Scholar 

  • Huang J, Xu X, Gu C, Wang W, Geng B, Sun Y, Liu J (2012) Size-controlled synthesis of porous ZnSnO3 cubes and their gas-sensing and photocatalysis properties. Sens Actuators B 171–172:572–579. doi:10.1016/j.snb.2012.05.036

    Article  Google Scholar 

  • Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, George S, Xia T, Nel AE, Zink JI (2012) Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6(6):5366–5380. doi:10.1021/nn3012114

    Article  Google Scholar 

  • Jin W, Dong B, Chen W, Zhao C, Mai L, Dai Y (2010) Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sens Actuators B 145(1):211–215. doi:10.1016/j.snb.2009.11.059

    Article  Google Scholar 

  • Kamimura T, Nasu S, Segi T, Tazaki T, Miyuki H, Morimoto S, Kudo T (2005) Influence of cations and anions on the formation of β-FeOOH. Corros Sci 47(10):2531–2542. doi:10.1016/j.corsci.2004.10.014

    Article  Google Scholar 

  • Kaneti YV, Yue J, Jiang X, Yu A (2013) Controllable synthesis of ZnO nanoflakes with exposed (10-10) for enhanced gas sensing performance. J Phys Chem C 117(25):13153–13162. doi:10.1021/jp404329q

    Article  Google Scholar 

  • Kida T, Doi T, Shimanoe K (2010) Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chem Mater 22(8):2662–2667. doi:10.1021/cm100228d

    Article  Google Scholar 

  • Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23. doi:10.1016/j.mseb.2007.01.044

    Article  Google Scholar 

  • Kurzawa M, Tomaszewicz E (1999) Diffuse reflectance spectra of iron(III) vanadates. Spectrochim Acta A 55(14):2889–2892. doi:10.1016/S1386-1425(99)00112-2

    Article  Google Scholar 

  • Li Z, Zhao Q, Fan W, Zhan J (2011) Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale 3(4):1646–1652. doi:10.1039/CONR00728E

    Article  Google Scholar 

  • Liu J, Wang X, Peng Q, Li Y (2005) Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv Mater 17(6):764–767. doi:10.1002/adma.200400993

    Article  Google Scholar 

  • Liu D, Liu T, Zhang H, Lv C, Zeng W, Zhang J (2012) Gas sensing mechanism and properties of Ce-doped SnO2 sensors for volatile organic compounds. Mater Sci Semicond Process 15(4):438–444. doi:10.1016/j.mssp.2012.02.015

    Article  Google Scholar 

  • Ma H, Zhang S, Ji W, Tao Z, Chen J (2008) α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J Am Ceram Soc 130(15):5361–5367. doi:10.1021/ja800109u

    Google Scholar 

  • Ma H, Yang X, Tao Z, Liang J, Chen J (2011) Controllable synthesis and characterization of porous FeVO4 nanorods and nanoparticles. CrystEngComm 13(3):897–901. doi:10.1039/C0CE00273A

    Article  Google Scholar 

  • Nithya VD, Kalai Selvan R (2011) Synthesis, electrical and dielectric properties of FeVO4 nanoparticles. Phys B Condens Matter 406(1):24–29. doi:10.1016/j.physb.2010.10.004

    Article  Google Scholar 

  • Nithya VD, Selvan RK, Sanjeeviraja C, Radheep DM, Arumugam S (2011) Synthesis and characterization of FeVO4 nanoparticles. Mater Res Bull 46(10):1654–1658. doi:10.1016/j.materresbull.2011.06.005

    Article  Google Scholar 

  • Oka Y, Yao T, Yamamoto N, Ueda Y, Kawasaki S, Azuma M, Takano M (1996) Hydrothermal synthesis, crystal structure, and magnetic properties of FeVO4-II. J Solid State Chem 123(1):54–59. doi:10.1006/jssc.1996.0151

    Article  Google Scholar 

  • Park J, Shen X, Wang G (2009) Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens Actuators B 136(2):494–498. doi:10.1016/j.snb.2008.11.041

    Article  Google Scholar 

  • Poizot P, Baudrin E, Laruelle S, Dupont L, Touboul M, Tarascon JM (2000) Low temperature synthesis and electrochemical performance of crystallized FeVO4·1.1H2O. Solid State Ion 138(1–2):31–40. doi:10.1016/S0167-2738(00)00784-0

    Article  Google Scholar 

  • Robertson B, Kostiner E (1972) Crystal structure and Mössbauer effect investigation of FeVO4. J Solid State Chem 4(1):29–37. doi:10.1016/0022-4506(72)90128-4

    Article  Google Scholar 

  • Routray K, Zhou W, Kiely CJ, Wachs IE (2010) Catalysis science of methanol oxidation over iron vanadate catalysts: nature of the catalytic active sites. ACS Catal 1(1):54–66. doi:10.1021/cs1000569

    Article  Google Scholar 

  • Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Selvin PC (2010) Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries. J Phys Chem C 114(17):8099–8107. doi:10.1021/jp1005692

    Article  Google Scholar 

  • Sankaran S, Panigrahi S (2012) Development and evaluation of ZnO–Fe2O3 based nanocomposite sensors for butanol detection. J Nanosci Nanotech 12(3):2346–2352. doi:10.1166/jnn.2012.5747

    Article  Google Scholar 

  • Scott RWJ, Yang SM, Chabanis G, Coombs N, Williams DE, Ozin GA (2001) Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv Mater 13(19):1468–1472. doi:10.1002/1521-4095(200110)13:19<1468:aid-adma1468>3.0.co;2-o

    Article  Google Scholar 

  • Song H-J, Jia X-H, Qi H, Yang X-F, Tang H, Min C-Y (2012a) Flexible morphology-controlled synthesis of monodisperse α-Fe2O3 hierarchical hollow microspheres and their gas-sensing properties. J Mater Chem 22(8):3508–3516

    Article  Google Scholar 

  • Song P, Wang Q, Yang Z (2012b) Biomorphic synthesis and gas response of In2O3 microtubules using cotton fibers as templates. Sens Actuators B 168:421–428. doi:10.1016/j.snb.2012.04.054

    Article  Google Scholar 

  • Sun X, Wang J, Xing Y, Zhao Y, Liu X, Liu B, Hou S (2011) Surfactant-assisted hydrothermal synthesis and electrochemical properties of nanoplate-assembled 3D flower-like Cu3V2O7(OH)2·2H2O microstructures. CrystEngComm 13(1):367–370. doi:10.1039/C0CE00083C

    Article  Google Scholar 

  • Šurca Vuk A, Orel B, Dražič G (2001) IR spectroelectrochemical studies of Fe2V4O13, FeVO4 and InVO4 thin films obtained via sol–gel synthesis. J Solid State Electrochem 5(7–8):437–449. doi:10.1007/s100080000183

    Google Scholar 

  • Tan OK, Cao W, Zhu W, Chai JW, Pan JS (2003) Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions. Sens Actuators B 93(1–3):396–401. doi:10.1016/S0925-4005(03)00191-6

    Article  Google Scholar 

  • Tobias DJ, Hemminger JC (2008) Getting specific about specific ion effects. Science 319(5867):1197–1198. doi:10.1126/science.1152799

    Article  Google Scholar 

  • Vuk A, Orel B, Dražič G, Decker F, Colomban P (2002) UV-visible and IR spectroelectrochemical studies of FeVO4 sol–gel films for electrochromic applications. J Sol Gel Sci Technol 23(2):165–181. doi:10.1023/a:1013755618889

    Article  Google Scholar 

  • Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125(52):16176–16177. doi:10.1021/ja037743f

    Article  Google Scholar 

  • Wang M, Liu Q, Jiang CZ (2011) Characterization and photocatalytic activity of FeVO4 photocatalysts synthesized via a surfactant-assisted sol–gel method. Adv Mater Res 197–198:926–930. doi:10.4028/www.scientific.net/AMR.197-198.926

    Google Scholar 

  • Williams DE (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B 57(1–3):1–16. doi:10.106/S0925-4005(99)00133-1

    Article  Google Scholar 

  • Yue J, Jiang X, Yu A (2011) Experimental and theoretical study on the β-FeOOH nanorods: growth and conversion. J Nanopart Res 13(9):3961–3974. doi:10.1007/s11051-011-0320-4

    Article  Google Scholar 

  • Zhang Y, Xu J, Xiang Q, Li H, Pan Q, Xu P (2009) Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J Phys Chem C 113(9):3430–3435. doi:10.1021/jp8092258

    Article  Google Scholar 

  • Zhang H, He Q, Zhu X, Pan D, Deng X, Jiao Z (2012) Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties. CrystEngComm 14(9):3169–3176. doi:10.1039/c2ce06558d

    Article  Google Scholar 

  • Zhao Y, Xie Y, Zhu X, Yan S, Wang S (2008) Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries. Chem Eur J 14(5):1601–1606. doi:10.1002/chem.200701053

    Article  Google Scholar 

  • Zhu G, Xi C, Xu H, Zheng D, Liu Y, Xu X, Shen X (2012) Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv 2(10):4236–4241. doi:10.1039/c2ra01307j

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Australian Research Council (ARC) projects and the access to the UNSW node of the Australian Microscopy and Microanalysis Research Facilities (AMMRF). We also thank Dr. J. Scott of Particle Catalysis Group (PARTCAT) for the assistance with the BET measurements, Mr. Pramod Koshy for proof-reading the manuscript, and Ms. K. Levick and Ms. R. Wen for the HRTEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuchuan Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2013_1948_MOESM1_ESM.docx

List of samples, schematic diagram of the gas sensing measurement system, N2 adsorption–desorption, FT-IR, XPS, size distribution and additional gas-sensor results. (DOCX 6225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneti, Y.V., Zhang, Z., Yue, J. et al. Porous FeVO4 nanorods: synthesis, characterization, and gas-sensing properties toward volatile organic compounds. J Nanopart Res 15, 1948 (2013). https://doi.org/10.1007/s11051-013-1948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1948-z

Keywords

Navigation