Skip to main content
Log in

Stability analysis for the Whipple bicycle dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

It has been known that bicycle stability is closely linked to a pair of ordinary differential equations (ODEs). The linearization technique used to derive these ODEs, nevertheless, has yet to be thoroughly examined. For this purpose, we conduct an analysis of the dynamics of the Whipple bicycle, starting with the contact kinematics, using the Gibbs–Appell method. The effort results in a complete nonlinear model with minimal dimensions, from which equilibrium points during the bicycle’s straight and circular motions can be determined. The model can be linearized around these points via a perturbation analysis under no additional assumptions. Given the non-hyperbolic nature of the equilibria, we apply the center manifold theorem to analyze their stability, offering a rigorous derivation of the (well-know) exponential stability of the bicycle in its leaning and steering motions. Finally, a dimensionless index is defined to characterize the influence of physical parameters on the bicycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It is worth noting that the structures of these matrices are closely related to the definitions of the body-fixed coordinate systems. The coordinate systems selected in this paper are different with those in [20]: the \(\mathbf{k}\)-axis of the inertial coordinate system \(\mathcal{F}_{I}\) takes an opposite direction of that in [20], and the \(\mathbf{e}_{h,3}\)-axis of \(\mathcal{F}_{h}\) and the \(\mathbf{e} _{f,3}\)-axis of \(\mathcal{F}_{f}\) are defined along the direction of the steering axis in the ad hoc configuration shown in Fig. 1 rather than the vertical direction as defined in [20]. Therefore, the vertical components of points \(O _{b}\) and \(O_{h}\) (\(z_{b}\) and \(z_{h}\)) in this paper and those from [20] differ by signs. Based on the coordinate transformation, we also convert the inertia matrices of the benchmark bicycle found from [20] into the inertia matrices currently defined by the coordinate systems established in this paper.

  2. The curve parameter \(\vartheta _{f}\) satisfies the second equation of (12).

References

  1. Åström, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Syst. Mag. 25(4), 26–47 (2005). https://doi.org/10.1109/MCS.2005.1499389

    Article  MathSciNet  MATH  Google Scholar 

  2. Baruh, H.: Analytical Dynamics. WCB/McGraw-Hill, Boston (1999)

    Google Scholar 

  3. Basu-Mandal, P., Chatterjee, A., Papadopoulos, J.M.: Hands-free circular motions of a benchmark bicycle. Proc. R. Soc. A, Math. Phys. Eng. Sci. 463(2084), 1983–2003 (2007). https://doi.org/10.1098/rspa.2007.1849

    Article  MathSciNet  MATH  Google Scholar 

  4. Bloch, A.M.: Nonholonomic mechanics. In: Nonholonomic Mechanics and Control, pp. 207–276. Springer, Berlin (2003)

    Chapter  Google Scholar 

  5. Cain, S.M., Perkins, N.C.: Comparison of experimental data to a model for bicycle steady-state turning. Veh. Syst. Dyn. 50(8), 1341–1364 (2012). https://doi.org/10.1080/00423114.2011.650181

    Article  Google Scholar 

  6. Carr, J.: Applications of Centre Manifold Theory. Springer, Berlin (1981)

    Book  Google Scholar 

  7. Carvallo, E.: Théorie du movement du monocycle, part 2: Théorie de la bicyclette. J. Éc. Polytech. Paris 6, 1–118 (1901)

    Google Scholar 

  8. Chen, B.: Analytical Dynamics. Peking University, Beijing (2012) (in Chinese)

    Google Scholar 

  9. Dikarev, E., Dikareva, S., Fufaev, N.: Effect of inclination of steering axis and of stagger of the front wheel on stability of motion of a bicycle. Izv. Akad. Nauk SSSR, Meh. Tverd. Tela 16, 69–73 (1981)

    Google Scholar 

  10. Escalona, J.L., Recuero, A.M.: A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody Syst. Dyn. 27(3), 383–402 (2012). https://doi.org/10.1007/s11044-011-9282-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Hand, R.S.: Comparisons and stability analysis of linearized equations of motion for a basic bicycle model. Master’s thesis, Cornell University (1988)

  12. Hubbard, M.: Lateral dynamics and stability of the skateboard. J. Appl. Mech. 46(4), 931–936 (1979). https://doi.org/10.1115/1.3424680

    Article  MathSciNet  Google Scholar 

  13. Hurwitz, A.: Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Math. Ann. 46(2), 273–284 (1895). https://doi.org/10.1007/BF01446812

    Article  MathSciNet  MATH  Google Scholar 

  14. Jones, D.E.: The stability of the bicycle. Phys. Today 23(4), 34–40 (1970)

    Article  Google Scholar 

  15. Kang, H., Liu, C., Jia, Y.B.: Inverse dynamics and energy optimal trajectories for a wheeled mobile robot. Int. J. Mech. Sci. 134, 576–588 (2017). https://doi.org/10.1016/j.ijmecsci.2017.10.044

    Article  Google Scholar 

  16. Klein, F., Sommerfeld A.: Über die Theorie des Kreisels. BG Teubner, Leipzig (1898), 2–3

    MATH  Google Scholar 

  17. Kooijman, J.D.G., Schwab, A.L., Meijaard, J.P.: Experimental validation of a model of an uncontrolled bicycle. Multibody Syst. Dyn. 19(1–2), 115–132 (2008). https://doi.org/10.1007/s11044-007-9050-x

    Article  MATH  Google Scholar 

  18. Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011). https://doi.org/10.1126/science.1201959

    Article  MathSciNet  MATH  Google Scholar 

  19. Meijaard, J.P., Schwab, A.L.: Linearized equations for an extended bicycle model. In: III European Conference on Computational Mechanics, p. 772. Springer, Berlin (2006). https://doi.org/10.1007/1-4020-5370-3_772

    Chapter  Google Scholar 

  20. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc. R. Soc. A, Math. Phys. Eng. Sci. 463(2084), 1955–1982 (2007). https://doi.org/10.1098/rspa.2007.1857

    Article  MathSciNet  MATH  Google Scholar 

  21. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: Historical Review of Thoughts on Bicycle Self-Stability. Cornell University, Ithaca (2011)

    Google Scholar 

  22. Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, Inc., New York (1970)

    MATH  Google Scholar 

  23. Neĭmark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translation of Mathematical Monographs, vol. 33. Amer. Math. Soc., Providence (1972)

    MATH  Google Scholar 

  24. Orsino, R.M.M.: A contribution on modeling methodologies for multibody systems. PhD thesis, University of São Paulo, Brazil (2016)

  25. Papadopoulos, J.M.: Bicycle Steering Dynamics and Self-Stability: A Summary Report on Work in Progress. Cornell Bicycle Research Project, Cornell University, Ithaca (1987)

    Google Scholar 

  26. Peterson, D., Hubbard, M.: Analysis of the holonomic constraint in the Whipple bicycle model (p267). In: The Engineering of Sport 7, pp. 623–631. Springer, Berlin (2008)

    Chapter  Google Scholar 

  27. Peterson, D.L.: Bicycle dynamics: modelling and experimental validation. PhD thesis, University of California, Davis (2013)

  28. Peterson, D.L., Gede, G., Hubbard, M.: Symbolic linearization of equations of motion of constrained multibody systems. Multibody Syst. Dyn. 33(2), 143–161 (2015). https://doi.org/10.1007/s11044-014-9436-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Psiaki, M.L.: Bicycle stability: A mathematical and numerical analysis. Undergraduate thesis, Physics Dept, Princeton University (1979)

  30. Schwab, A.L., Meijaard, J.P.: A review on bicycle dynamics and rider control. Veh. Syst. Dyn. 51(7), 1059–1090 (2013). https://doi.org/10.1080/00423114.2013.793365

    Article  Google Scholar 

  31. Schwab, A.L., Meijaard, J.P., Papadopoulos, J.M.: Benchmark results on the linearized equations of motion of an uncontrolled bicycle. J. Mech. Sci. Technol. 19(1), 292–304 (2005). https://doi.org/10.1007/BF02916147

    Article  Google Scholar 

  32. Sharp, R.S.: The stability and control of motorcycles. J. Mech. Eng. Sci. 13(5), 316–329 (1971). https://doi.org/10.1243/JMES_JOUR_1971_013_051_02

    Article  Google Scholar 

  33. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  34. Varszegi, B., Takacs, D., Stepan, G., Hogan, S.J.: Stabilizing skateboard speed-wobble with reflex delay. J. R. Soc. Interface 13(121), 20160,345 (2016). https://doi.org/10.1098/rsif.2016.0345.

    Article  Google Scholar 

  35. Varszegi, B., Takacs, D., Stepan, G.: Stability of damped skateboards under human control. J. Comput. Nonlinear Dyn. 12, 051,014 (2017). https://doi.org/10.1115/1.4036482

    Article  Google Scholar 

  36. Wang, E.X., Zou, J., Xue, G., Liu, Y., Li, Y., Fan, Q.: Development of efficient nonlinear benchmark bicycle dynamics for control applications. IEEE Trans. Intell. Transp. Syst. 16(4), 2236–2246 (2015). https://doi.org/10.1109/TITS.2015.2404339

    Article  Google Scholar 

  37. Whipple, F.J.W.: The stability of the motion of a bicycle. Q. J. Pure Appl. Math. 30(120), 312–348 (1899)

    MATH  Google Scholar 

  38. Zhao, Z., Liu, C.: Contact constraints and dynamical equations in Lagrangian systems. Multibody Syst. Dyn. 38(1), 77–99 (2016). https://doi.org/10.1007/s11044-016-9503-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed under the support of the National Natural Science Foundation of China (NSFC:11932001,11702002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caishan Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Analytic solutions of the geometric constraint equations at the wheel–ground contacts

Using the second equation in (11) and the first equation in (12) to eliminate \(z\), we obtain

$$ A\cdot c_{\vartheta _{f}} - B\cdot s_{\vartheta _{f}}=C, $$

where

$$ C=-\frac{1}{R_{f}} \bigl((\xi _{r} s_{\varphi }- \zeta _{r} c_{\varphi }+R_{r})c_{\theta }+A\xi _{f} \bigr). $$

Combining the above equation with the second equation in (12), we easily obtain

$$ A^{2}+B^{2}=C^{2}, $$

which, together with \(s_{\varphi }^{2}+c_{\varphi }^{2}=1\), results in the identity

$$ \kappa _{1}s_{\varphi }^{2}+\kappa _{2}s_{\varphi }+\kappa _{3}=-(\kappa _{4}s_{\varphi }+\kappa _{5})c_{\varphi }, $$

where \(\kappa _{i},\;i=1,\ldots ,5\) are functions with respect to \(\theta \) and \(\delta \). This equation can be written as a quartic polynomial equation about \(s_{\varphi }\) with coefficients that depend on \(\theta \) and \(\delta \) only:

$$ \bigl(\kappa _{1}s_{\varphi }^{2}+\kappa _{2}s_{\varphi }+\kappa _{3} \bigr) ^{2}=(\kappa _{4}s_{\varphi }+\kappa _{5})^{2} \bigl(1-s_{\varphi }^{2} \bigr). $$

Therefore, an analytic solution for the geometric constraint \(\varphi =\varphi (\theta ,\delta )\) can be obtained. Accordingly, the explicit expression for another geometric constraint, \(z=z(\theta ,\delta )\), can also be found.

Appendix B: Coefficients of the velocity constraints

The expression of the coefficient matrix of the velocity constraints, designated by \(\mathbf{W}\), is

$$\begin{aligned} \mathbf{W}= \left [ \textstyle\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} 1 & 0 & 0 & \mathit{as}_{\theta }c_{\psi }-\mathit{bs}_{\psi }& \mathit{ac}_{\theta }s_{\psi }& \mathit{ac} _{\psi }-\mathit{bs}_{\theta }s_{\psi }& 0 & -R_{r}c_{\psi }& 0 \\ 0 & 1 & 0 & \mathit{as}_{\theta }s_{\psi }+\mathit{bc}_{\psi }& -\mathit{ac}_{\theta }c_{\psi }& \mathit{as}_{\psi }+\mathit{bs}_{\theta }c_{\psi }& 0 & -R_{r}s_{\psi }& 0 \\ 0 & 0 & 1 & 0 & -\mathit{as}_{\theta }& -\mathit{bc}_{\theta }& 0 & 0 & 0 \\ 1 & 0 & 0 & W_{44} & W_{45} & W_{46} & W_{47} & 0 & W_{49} \\ 0 & 1 & 0 & W_{54} & W_{55} & W_{56} & W_{57} & 0 & W_{59} \\ 0 & 0 & 1 & 0 & W_{65} & W_{66} & W_{67} & 0 & 0 \\ \end{array}\displaystyle \right ], \end{aligned}$$

where \(a=\zeta _{r}\cos {\varphi }-\xi _{r}\sin {\varphi }-R_{r}\), \(b=\zeta _{r}\sin \varphi +\xi _{r}\cos \varphi \), and the other symbols are defined as follows:Footnote 2

$$\begin{aligned} W_{44}= &-R_{f}s_{\vartheta _{f}}(c_{(\lambda -\varphi )}c_{\psi }s_{ \theta }+s_{(\lambda -\varphi )}s_{\psi }) \\ &+(\xi _{f}+R_{f}c_{\vartheta _{f}}) (s_{(\lambda -\varphi )}c_{\psi }c _{\delta }s_{\theta }-c_{(\lambda -\varphi )}s_{\psi }c_{\delta }-c _{\psi }s_{\delta }c_{\theta }), \\ W_{45}= &-R_{f}s_{\vartheta _{f}}c_{(\lambda -\varphi )}s_{\psi }c_{ \theta }+( \xi _{f}+R_{f}c_{\vartheta _{f}}) (s_{(\lambda -\varphi )}c _{\delta }c_{\theta }+s_{\delta }s_{\theta })s_{\psi }, \\ W_{46}= &-R_{f}s_{\vartheta _{f}}(s_{(\lambda -\varphi )}s_{\psi }s _{\theta }+c_{(\lambda -\varphi )}c_{\psi }) \\ &+(\xi _{f}+R_{f}c_{\vartheta _{f}}) (-c_{(\lambda -\varphi )}s_{\psi }c _{\delta }s_{\theta }+s_{(\lambda -\varphi )}c_{\psi }c_{\delta }), \\ W_{47}= &(\xi _{f}+R_{f}c_{\vartheta _{f}}) (s_{(\varphi -\lambda )}s _{\psi }s_{\delta }s_{\theta }-c_{(\lambda -\varphi )}c_{\psi }s_{ \delta }-s_{\psi }c_{\delta }c_{\theta }), \\ W_{49}= &R_{f}c_{\vartheta _{f}}(-c_{(\lambda -\varphi )}s_{\psi }s _{\theta }+s_{(\lambda -\varphi )}c_{\psi }) \\ &+R_{f}s_{\vartheta _{f}}(-c_{(\lambda -\varphi )}c_{\psi }c_{\delta }+s_{\psi }s_{\delta }c_{\theta }-s_{(\lambda -\varphi )}s_{\psi }s _{\theta }c_{\delta }), \\ W_{54}= &-R_{f}s_{\vartheta _{f}}(c_{(\lambda -\varphi )}s_{\psi }s _{\theta }-s_{(\lambda -\varphi )}c_{\psi }) \\ &+(\xi _{f}+R_{f}c_{\vartheta _{f}}) (s_{(\lambda -\varphi )}s_{\psi }c _{\delta }s_{\theta }+c_{(\lambda -\varphi )}c_{\psi }c_{\delta }-s _{\psi }s_{\delta }c_{\theta }), \\ W_{55}= &R_{f}s_{\vartheta _{f}}c_{(\lambda -\varphi )}c_{\psi }c_{ \theta }-( \xi _{f}+R_{f}c_{\vartheta _{f}}) (s_{(\lambda -\varphi )}c _{\delta }c_{\theta }+s_{\delta }s_{\theta })c_{\psi }, \\ W_{56}= &R_{f}s_{\vartheta _{f}}(s_{(\lambda -\varphi )}c_{\psi }s_{ \theta }-c_{(\lambda -\varphi )}s_{\psi }) \\ &+(\xi _{f}+R_{f}c_{\vartheta _{f}}) (c_{(\lambda -\varphi )}c_{\psi }c _{\delta }s_{\theta }+s_{(\lambda -\varphi )}s_{\psi }c_{\delta }), \\ W_{57}= &(\xi _{f}+R_{f}c_{\vartheta _{f}}) (s_{(\lambda -\varphi )}c _{\psi }s_{\delta }s_{\theta }-c_{(\lambda -\varphi )}s_{\psi }s_{ \delta }+c_{\psi }c_{\delta }c_{\theta }), \\ W_{59}= &{R_{f}c_{\vartheta _{f}}(c_{(\lambda -\varphi )}c_{\psi }s _{\theta }+s_{(\lambda -\varphi )}s_{\psi })} \\ &+R_{f}s_{\vartheta _{f}}(-c_{(\lambda -\varphi )}s_{\psi }c_{\delta }-c_{\psi }s_{\delta }c_{\theta }+s_{(\lambda -\varphi )}c_{\psi }s _{\theta }c_{\delta }), \\ W_{65}= &(\xi _{f}+R_{f}c_{\vartheta _{f}}) (-s_{(\lambda -\varphi )}s _{\theta }c_{\delta }+c_{\theta }s_{\delta })+R_{f}s_{\vartheta _{f}}s _{\theta }c_{(\lambda -\varphi )}, \\ W_{66}= &-(\xi _{f}+R_{f}c_{\vartheta _{f}})c_{(\lambda -\varphi )}c _{\theta }c_{\delta }-R_{f}s_{\vartheta _{f}}c_{\theta }s_{(\lambda - \varphi )}, \\ W_{67}= &{ (\xi _{f}+R_{f}c_{\vartheta _{f}}) (-s_{(\lambda -\varphi )}c _{\theta }s_{\delta }+s_{\theta }c_{\delta })}. \end{aligned}$$

Appendix C: Coefficients of the linearized equations

The coefficients of the linearized equations (32) are given as follows:

$$\begin{aligned} M_{11}= &(I_{h,\mathit{xx}}-I_{h,\mathit{zz}})c_{\lambda }^{2}-I_{h,\mathit{xz}}s_{(2\lambda )}+m _{f}R_{f}^{2}+m_{r}R_{r}^{2} \\ &+m_{b}z_{b}^{2}+m_{h}z_{h}^{2}+I_{f,\mathit{xx}}+I_{h,\mathit{zz}}+I_{r,\mathit{xx}}+I_{b,\mathit{xx}}, \\ M_{12}= &\frac{1}{w}\big(2I_{h,\mathit{xz}} \mathit{cc}_{\lambda }^{3}+(I_{h,\mathit{xx}}-I_{h,\mathit{zz}}) \mathit{cs} _{\lambda }c_{\lambda }^{2} \\ &+\bigl(c(m_{h}\mathit{wz}_{h}-m_{b}x_{b}z_{b}-m_{h}x_{h}z_{h}+I_{b,\mathit{xz}}-I_{h,\mathit{xz}}) \\ &+m_{h}w^{2}z_{h}+w(I_{h,\mathit{xz}}-m_{h}x_{h}z_{h}) \bigr)c_{\lambda }-w\bigl(I_{f,\mathit{xx}}+I _{h,\mathit{zz}} \\ &+m_{f}R_{f}^{2}+m_{h}z_{h}^{2} \bigr)s_{\lambda }\big), \\ M_{21}= &M_{12}, \\ M_{22}= &\frac{1}{w^{2}}\big((I_{h,\mathit{zz}}-I_{h,\mathit{xx}})c^{2}c_{\lambda } ^{4}+2I_{h,\mathit{xz}}c^{2}s_{\lambda }c_{\lambda }^{3} \\ &+\bigl(m_{h}w^{4}+2m_{h}(c-x_{h})w^{3}+ \bigl(m_{h}\bigl(c^{2}-4\mathit{cx}_{h}+x_{h}^{2} \\ &-z_{h}^{2}\bigr)-m_{f}R_{f}^{2} \bigr)w^{2}+2c\bigl(m_{h}x_{h}^{2}-m_{h} \mathit{cx}_{h}+I _{h,\mathit{zz}} \\ &+I_{f,\mathit{xx}}\bigr)w+c^{2}\bigl(m_{b}x_{b}^{2}+m_{h}x_{h}^{2}+I_{b,\mathit{zz}}+I_{f,\mathit{xx}}+I _{h,\mathit{xx}} \\ &+I_{r,\mathit{xx}}\bigr)\bigr)c_{\lambda }^{2}+2 \bigl(-m_{h}z_{h}w^{3}+m_{h}z_{h}(x_{h}-c)w ^{2} \\ &+c(I_{h,\mathit{xz}}+m_{h}x_{h}z_{h})w \bigr)s_{\lambda }c_{\lambda } \bigr)+m_{f}R _{f}^{2}+m_{h}z_{h}^{2}+I_{f,\mathit{xx}}+I_{h,\mathit{zz}}, \\ C_{11}= &0,\\ C_{12}= &-\frac{R_{r}c_{\lambda }}{\mathit{wR}_{f}}\bigl(m_{f}R_{r}R_{f}^{2}+m_{r}R _{r}^{2}R_{f}+I_{r,\mathit{yy}}R_{f}+I_{f,\mathit{yy}}R_{r} \\ &+m_{b}z_{b}R_{r}R_{f}+m_{h}z_{h}R_{r}R_{f} \bigr), \\ C_{21}= &0, \\ C_{22}= &-\frac{R_{r}^{2}c_{\lambda }}{w^{2}R_{f}}\big(\bigl(m_{h}w^{2}+m _{h}(c-x_{h})w-m_{b}x_{b}c-m_{h}x_{h}c \bigr)R_{f}c_{\lambda } \\ &-\bigl(m_{h}R_{f}z_{h}+m_{f}R_{f}^{2}+I_{f,\mathit{yy}} \bigr)\mathit{ws}_{\lambda }\big), \\ D_{11}= &0, \\ D_{12}= &\frac{c_{\lambda }}{\mathit{wR}_{f}}\big((I_{h,\mathit{xx}}-I_{h,\mathit{zz}})R_{r}R _{f}s_{\lambda }c_{\lambda }+2I_{h,\mathit{xz}}R_{r}R_{f}c_{\lambda }^{2} \\ &-m_{r}\mathit{cR}_{r}^{2}R_{f}+I_{b,\mathit{xz}}R_{r}R_{f}-I_{f,\mathit{yy}} \mathit{wR}_{r}-m_{b}R_{r}R _{f}z_{b}(c+x_{b}) \\ &-m_{h}R_{r}R_{f}z_{h}(c+x_{h})-I_{h,\mathit{xz}}R_{r}R_{f}-I_{r,\mathit{yy}} \mathit{cR}_{f}-I _{f,\mathit{yy}}\mathit{cR}_{r} \\ &-m_{f}R_{r}R_{f}^{2}(c+w) \big), \\ D_{21}= &\frac{R_{r}}{R_{f}}I_{f,\mathit{yy}}c_{\lambda }+ \biggl(\frac{R_{r}}{R _{f}}I_{f,\mathit{yy}}+I_{r,\mathit{yy}} \biggr)c_{\lambda }\frac{c}{w}, \\ D_{22}= &\frac{R_{r}c_{\lambda }}{w^{2}}\big(I_{h,\mathit{xz}} \mathit{ws}_{\lambda }+2I _{h,\mathit{xz}}\mathit{cs}_{\lambda }c_{\lambda }^{2}+m_{f}R_{f}w^{2}s_{\lambda } \\ &+m_{h}\mathit{wcz}_{h}s_{\lambda }+m_{h} \mathit{wx}_{h}z_{h}s_{\lambda }+m_{f} \mathit{wR}_{f}\mathit{cs} _{\lambda } \\ &+\bigl(m_{b}x_{b}^{2}c-m_{h}x_{h}w^{2}+m_{h} \mathit{wx}_{h}^{2}+I_{h,\mathit{xx}}c+I_{f,\mathit{xx}}c+I _{f,\mathit{xx}}w \\ &+I_{h,\mathit{zz}}w-m_{h}w^{2}c-m_{h} \mathit{wc}^{2}+m_{h}c^{2}x_{h}+m_{h} \mathit{cx}_{h}^{2}+I _{b,\mathit{zz}}c \\ &+I_{r,\mathit{xx}}c+m_{b}x_{b}c^{2} \bigr)c_{\lambda }+(I_{h,\mathit{zz}}-I_{h,\mathit{xx}})\mathit{cc} _{\lambda }^{3}\big), \\ K_{011}= &-(m_{f}R_{f}+m_{r}R_{r}+m_{b}z_{b}+m_{h}z_{h}), \\ K_{012}= &-\frac{1}{w}\bigl(\bigl(m_{h}w^{2}+m_{h}(c-x_{h})w-m_{b}x_{b}c-m_{h}x _{h}c\bigr)c_{\lambda } \\ &-(m_{h}z_{h}+m_{f}R_{f}) \mathit{ws}_{\lambda }\bigr), \\ K_{021}= &K_{012}, \\ K_{022}= &-s_{\lambda }K_{012}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Wang, N. & Liu, C. Stability analysis for the Whipple bicycle dynamics. Multibody Syst Dyn 48, 311–335 (2020). https://doi.org/10.1007/s11044-019-09707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09707-y

Keywords

Navigation