Skip to main content
Log in

A comparative study: prediction of parkinson’s disease using machine learning, deep learning and nature inspired algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Parkinson’s Disease (PD) is a degenerative and progressive neurological disorder worsens over time. This disease initially affects people over 55 years old. Patients with PD often exhibit a variety of non-motor and motor symptoms and are diagnosed based on those motor and non-motor symptoms as well as numerous clinical indicators. Advancement in medical science has produced medicines for many diseases but till now no significant remedies are discovered for Parkinson disease. It is very necessary to detect PD at early phase to take precautions accordingly to reduce its harmful impact and improve the patient’s life style to a considerable level. In this direction Artificial Intelligence (AI) based approaches have recently attracted many researchers to work accordingly as AI can handle vast amounts of data and generate accurate statistical predictions. Addressing this imperative, researchers have turned their focus toward Artificial Intelligence (AI) as a promising avenue. AI’s capacity to manage vast datasets and generate precise statistical predictions makes it an invaluable tool for PD detection. This article aims to provide a comprehensive survey and in-depth analysis of various AI-based approaches. Leveraging machine learning (ML), deep learning (DL), and meta-heuristic algorithms, these approaches contribute to the prediction of PD. Additionally, the article delves into current research directions. As the pursuit of advancements continues, the integration of AI holds promise in revolutionizing early detection methods and subsequently improving the lives of individuals grappling with Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Pahuja G, Nagabhushan T (2021) A comparative study of existing machine learning approaches for parkinson’s disease detection. IETE J Res 67(1):4–14

    Article  Google Scholar 

  2. Chaudhuri KR, Odin P, Antonini A, Martinez-Martin P (2011) Parkinson’s disease: the non-motor issues. Parkinsonism Relat Disord 17(10):717–723

    Article  Google Scholar 

  3. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of parkinson’s disease: diagnosis and management. Lancet Neurol 5(3):235–245

    Article  Google Scholar 

  4. Suratos CTR, Saranza GRM, Sumalapao DEP, Jamora RDG (2018) Quality of life and parkinson’s disease: Philippine translation and validation of the parkinson’s disease questionnaire. J Clin Neurosci 54:156–160

    Article  Google Scholar 

  5. Umay E, Ozturk E, Gurcay E, Delibas O, Celikel F (2019) Swallowing in parkinson’s disease: how is it affected? Clin Neurol Neurosurg 177:37–41

    Article  Google Scholar 

  6. Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ (2019) Micro-and nanotechnology approaches to improve parkinson’s disease therapy. J Control Release 295:201–213

    Article  Google Scholar 

  7. DeMaagd G, Philip A (2015) Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm Ther 40(8):504

    Google Scholar 

  8. Nawar A, Rahman F, Krishnamurthi N, Som A, Turaga P (2020) Topological descriptors for parkinson’s disease classification and regression analysis, In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE 2020:793–797

  9. Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchison W, Dostrovsky J (1995) Effect of gpi pallidotomy on motor function in parkinson’s disease. The Lancet 346(8987):1383–1387

    Article  Google Scholar 

  10. Asadzadeh A, Samad-Soltani T, Rezaei-Hachesu P (2021) Informatics in medicine unlocked

  11. Wang W, Lee J, Harrou F, Sun Y (2020) Early detection of parkinson’s disease using deep learning and machine learning. IEEE Access 8:147635–147646

    Article  Google Scholar 

  12. Krüger R, Klucken J, Weiss D, Tönges L, Kolber P, Unterecker S, Lorrain M, Baas H, Müller T, Riederer P (2017) Classification of advanced stages of parkinson’s disease: translation into stratified treatments. J Neural Transm 124(8):1015–1027

    Article  Google Scholar 

  13. Mischley LK, Lau RC, Weiss NS (2017) Use of a self-rating scale of the nature and severity of symptoms in parkinson’s disease (pro-pd): Correlation with quality of life and existing scales of disease severity, npj Parkinson’s Disease 3(1):1–7

  14. Bougea A (2020) New markers in parkinson’s disease. Adv Clin Chem 96:137–178

    Article  Google Scholar 

  15. Tang Y, Meng L, Wan C-M, Liu Z-H, Liao W-H, Yan X-X, Wang X-Y, Tang B-S, Guo J-F (2017) Identifying the presence of parkinson’s disease using low-frequency fluctuations in bold signals. Neurosci Lett 645:1–6

    Article  Google Scholar 

  16. Zhang H, Song C, Rathore AS, Huang M-C, Zhang Y, Xu W (2020) mhealth technologies towards parkinson’s disease detection and monitoring in daily life: A comprehensive review. IEEE Rev Biomed Eng 14:71–81

    Article  Google Scholar 

  17. Richens JG, Lee CM, Johri S (2020) Improving the accuracy of medical diagnosis with causal machine learning. Nature Commun 11(1):1–9

    Google Scholar 

  18. Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, Ray Dorsey E, Dahodwala N, Cintina I, Hogan P, et al (2020) Current and projected future economic burden of parkinson’s disease in the us, npj Parkinson’s Disease 6(1): 1–9

  19. Surathi P, Jhunjhunwala K, Yadav R, Pal PK (2016) Research in parkinson’s disease in india: A review. Ann Indian Acad Neurol 19(1):9

    Article  Google Scholar 

  20. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis, Ieee. Access 6:9375–9389

    Article  Google Scholar 

  21. Singh P, Singh S, Singh D (2019) An introduction and review on machine learning applications in medicine and healthcare. In: IEEE conference on information and communication technology. IEEE 2019:1–6

  22. De Gregorio G, Desiato D, Marcelli A, Polese G (2021) A multi classifier approach for supporting alzheimer’s diagnosis based on handwriting analysis. In: Recognition Pattern (ed) ICPR International Workshops and Challenges: Virtual Event, January 10–15, 2021. Heidelberg, Proceedings, Part I, Springer-Verlag, Berlin, pp 559–574

    Google Scholar 

  23. Schroeder MR (1999) The Speech Signal. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 105–108

    Google Scholar 

  24. Sanei S, Chambers JA (2013) EEG signal processing. John Wiley & Sons

    Google Scholar 

  25. Subha DP, Subha PK, Acharya U R, Lim CM et al (2010) Eeg signal analysis: a survey. J Med Syst 34(2):195–212

    Article  Google Scholar 

  26. Reaz MBI, Hussain MS, Mohd-Yasin F (2006) Techniques of emg signal analysis: detection, processing, classification and applications. Biol Proced Online 8(1):11–35

    Article  Google Scholar 

  27. Stashuk D (2001) Emg signal decomposition: how can it be accomplished and used? J Electromyogr Kinesiol 11(3):151–173

    Article  MathSciNet  Google Scholar 

  28. Fessler JA (2010) Model-based image reconstruction for mri. IEEE Signal Process Mag 27(4):81–89

    Article  MathSciNet  Google Scholar 

  29. Pekar JJ (2006) A brief introduction to functional mri. IEEE Eng Med Biol Mag 25(2):24–26

    Article  Google Scholar 

  30. Filippi M, Elisabetta S, Piramide N, Agosta F (2018) Functional mri in idiopathic parkinson’s disease. Int Rev Neurobiol 141:439–467

    Article  Google Scholar 

  31. Avidan G, Hasson U, Hendler T, Zohary E, Malach R (2002) Analysis of the neuronal selectivity underlying low fmri signals. Curr Biol 12(12):964–972. https://doi.org/10.1016/S0960-9822(02)00872-2https://www.sciencedirect.com/science/article/pii/S0960982202008722

  32. Wu P, Wang J, Peng S, Ma Y, Zhang H, Guan Y, Zuo C (2013) Metabolic brain network in the chinese patients with parkinson’s disease based on 18f-fdg pet imaging. Parkinsonism Relat Disord 19(6):622–627

    Article  Google Scholar 

  33. Booij J, Knol RJ (2007) Spect imaging of the dopaminergic system in (premotor) parkinson’s disease. Parkinsonism Relat Disord 13:S425–S428

    Article  Google Scholar 

  34. Berendse HW, Ponsen MM (2009) Diagnosing premotor parkinson’s disease using a two-step approach combining olfactory testing and dat spect imaging. Parkinsonism Relat Disord 15:S26–S30

    Article  Google Scholar 

  35. Jahn K, Zwergal A, Schniepp R (2010) Gait disturbances in old age: classification, diagnosis, and treatment from a neurological perspective. Deutsches Ärzteblatt Int 107(17):306

    Google Scholar 

  36. Abellan Van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M, Donini L, Gillette-Guyonnet S, Inzitari M et al (2009) Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an international academy on nutrition and aging (iana) task force. J Nutr Health Aging 13(10):881–889

    Article  Google Scholar 

  37. Kamran I, Naz S, Razzak I, Imran M (2021) Handwriting dynamics assessment using deep neural network for early identification of parkinson’s disease. Future Gener Comput Syst 117:234–244

    Article  Google Scholar 

  38. Tripathi S, Arroyo-Gallego T, Giancardo L (2022) Keystroke-dynamics for parkinson’s disease signs detection in an at-home uncontrolled population: A new benchmark and method. IEEE Trans Biomed Eng 1–11. https://doi.org/10.1109/TBME.2022.3187309

  39. Gunawardhane SDW, De Silva PM, Kulathunga DSB, Arunatileka SMKD (2013) Non invasive human stress detection using key stroke dynamics and pattern variations, in. Int Conf Adv ICT Emerg Reg (ICTer) 2013:240–247. https://doi.org/10.1109/ICTer.2013.6761185

    Article  Google Scholar 

  40. Tsanas A, Little MA, McSharry PE, Ramig LO (2010) Accurate telemonitoring of parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng 57(4):884–893. https://doi.org/10.1109/TBME.2009.2036000

    Article  Google Scholar 

  41. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N (2008) Movement disorder society-sponsored revision of the unified parkinson’s disease rating scale (mds-updrs): Scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340http://arxiv.org/abs/movementdisorders.onlinelibrary.wiley.com/doi/pdf/10.1002/mds.22340

  42. He X, Wang AQ, Sabuncu MR (2023) Neural pre-processing: A learning framework for end-to-end brain mri pre-processing. In: Greenspan H, Madabhushi A, Mousavi P, Salcudean S, Duncan J, Syeda-Mahmood T, Taylor R (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023. Springer Nature Switzerland, pp 258–267

    Chapter  Google Scholar 

  43. Robin J, Harrison J, Kaufman L, Rudzicz F, Simpson W, Yancheva M (2020) Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations. Digit Biomark 4(3):99–108. https://doi.org/10.1159/000510820http://arxiv.org/abs/karger.com/dib/article-pdf/4/3/99/2575454/000510820.pdf

  44. Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23(1):89–109

    Article  Google Scholar 

  45. Pereira CR, Pereira DR, Weber SA, Hook C, De Albuquerque VHC, Papa JP (2019) A survey on computer-assisted parkinson’s disease diagnosis. Artif intell Med 95:48–63

    Article  Google Scholar 

  46. Ali L, Zhu C, Zhou M, Liu Y (2019) Early diagnosis of parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection. Expert Syst Appl 137:22–28

    Article  Google Scholar 

  47. Sharma V, Kaur S, Kumar J, Singh AK (2019) A fast parkinson’s disease prediction technique using pca and artificial neural network, In: International conference on intelligent computing and control systems (ICCS). IEEE 2019:1491–1496

  48. Ali L, Zhu C, Zhang Z, Liu Y (2019) Automated detection of parkinson’s disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network. IEEE J Transl Eng Health Med 7:1–10

    Article  Google Scholar 

  49. Tuncer T, Dogan S (2019) A novel octopus based parkinson’s disease and gender recognition method using vowels. Appl Acoust 155:75–83

    Article  Google Scholar 

  50. Younis Thanoun M., YASEEN MT (2020) A comparative study of parkinson disease diagnosis in machine learning, In: 2020 The 4th international conference on advances in artificial intelligence, pp 23–28

  51. Senturk ZK (2020) Early diagnosis of parkinson’s disease using machine learning algorithms. Med. Hypotheses 138:109603

    Article  Google Scholar 

  52. Wang M, Ge W, Apthorp D, Suominen H et al (2020) Robust feature engineering for parkinson disease diagnosis: new machine learning techniques. JMIR Biomed Eng 5(1):e13611

    Article  Google Scholar 

  53. Cai Z, Gu J, Chen H-L (2017) A new hybrid intelligent framework for predicting parkinson’s disease. IEEE Access 5:17188–17200

    Article  Google Scholar 

  54. Soumaya Z, Taoufiq BD, Benayad N, Yunus K, Abdelkrim A (2021) The detection of parkinson disease using the genetic algorithm and svm classifier. Appl Acoust 171:107528

    Article  Google Scholar 

  55. Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, Tutuncu M, Aydin T, Isenkul ME, Apaydin H (2019) A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform. Appl Soft Comput 74:255–263

    Article  Google Scholar 

  56. Prashanth R, Roy SD (2018) Novel and improved stage estimation in parkinson’s disease using clinical scales and machine learning. Neurocomputing 305:78–103

    Article  Google Scholar 

  57. Benmalek E, Elmhamdi J, Jilbab A (2017) Multiclass classification of parkinson’s disease using different classifiers and llbfs feature selection algorithm. Int J Speech Technol 20(1):179–184

    Article  Google Scholar 

  58. Hariharan M, Polat K, Sindhu R (2014) A new hybrid intelligent system for accurate detection of parkinson’s disease. Comput Methods Programs Biomed 113(3):904–913

    Article  Google Scholar 

  59. Almeida JS, Rebouças Filho PP, Carneiro T, Wei W, Damaševičius R, Maskeliūnas R, de Albuquerque VHC (2019) Detecting parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognit Lett 125:55–62

    Article  Google Scholar 

  60. Karabayir I, Goldman SM, Pappu S, Akbilgic O (2020) Gradient boosting for parkinson’s disease diagnosis from voice recordings. BMC Med Inform Decis Mak 20(1):1–7

    Article  Google Scholar 

  61. Jebakumari VS, Shanthi D, Sridevi S, Meha P (2017) Performance evaluation of various classification algorithms for the diagnosis of parkinson’s disease, In: 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), IEEE, pp 1–7

  62. Bhosale MPG, Patil S (2012) Classification of emg signals using wavelet transform and hybrid classifier for parkinson’s disease detection. Int J Eng Res Technol 2:106–112

    Google Scholar 

  63. Bhurane AA, Dhok S, Sharma M, Yuvaraj R, Murugappan M, Acharya UR (2019) Diagnosis of parkinson’s disease from electroencephalography signals using linear and self-similarity features. Expert Syst e12472

  64. Yuvaraj R, Rajendra Acharya U, Hagiwara Y (2018) A novel parkinson’s disease diagnosis index using higher-order spectra features. In EEG signals, Neural Computing and Applications 30(4):1225–1235

  65. Mall PK, Yadav RK, Rai AK, Narayan V, Srivastava S (2022) Early warning signs of parkinson’s disease prediction using machine learning technique. J Pharm Negat 4784–4792

  66. Govindu A, Palwe S (2023) Early detection of parkinson’s disease using machine learning. Procedia Comput Sci 218:249–261

    Article  Google Scholar 

  67. Gupta R, Kumari S, Senapati A, Ambasta RK, Kumar P (2023) New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in parkinson’s disease. Ageing Res Rev 102013

  68. Zeng L-L, Xie L, Shen H, Luo Z, Fang P, Hou Y, Tang B, Wu T, Hu D (2017) Differentiating patients with parkinson’s disease from normal controls using gray matter in the cerebellum. Cerebellum 16(1):151–157

    Article  Google Scholar 

  69. Georgiopoulos C, Witt ST, Haller S, Dizdar N, Zachrisson H, Engström M, Larsson E-M (2019) A study of neural activity and functional connectivity within the olfactory brain network in parkinson’s disease. NeuroImage: Clin 23:101946

    Article  Google Scholar 

  70. Kazeminejad A, Golbabaei S, Soltanian-Zadeh H (2017) Graph theoretical metrics and machine learning for diagnosis of parkinson’s disease using rs-fmri. In: Artificial Intelligence and Signal Processing Conference (AISP). IEEE 2017:134–139

  71. Singh G, Vadera M, Samavedham L, Lim EC-H (2019) Multiclass diagnosis of neurodegenerative diseases: A neuroimaging machine-learning-based approach. Ind Eng Chem Res 58(26):11498–11505

    Article  Google Scholar 

  72. Rana B, Juneja A, Saxena M, Gudwani S, Kumaran SS, Agrawal R, Behari M (2015) Regions-of-interest based automated diagnosis of parkinson’s disease using t1-weighted mri. Expert Syst Appl 42(9):4506–4516

    Article  Google Scholar 

  73. Chakraborty S, Aich S, Kim H-C (2020) 3d textural, morphological and statistical analysis of voxel of interests. In: 3t mri scans for the detection of parkinson’s disease using artificial neural networks, in: Healthcare, Vol 8, MDPI, p 34

  74. Feis D-L, Pelzer EA, Timmermann L, Tittgemeyer M (2015) Classification of symptom-side predominance in idiopathic parkinson’s disease. NPJ Parkinson’s Dis 1(1):1–3

    Google Scholar 

  75. Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T, Dai Y (2017) A multilevel-roi-features-based machine learning method for detection of morphometric biomarkers in parkinson’s disease. Neurosci Lett 651:88–94

    Article  Google Scholar 

  76. Schienle A, Ille R, Wabnegger A (2015) Experience of negative emotions in parkinson’s disease: An fmri investigation. Neurosci Lett 609:142–146

    Article  Google Scholar 

  77. Hsu S-Y, Lin H-C, Chen T-B, Du W-C, Hsu Y-H, Wu Y-C, Tu P-W, Huang Y-H, Chen H-Y (2019) Feasible classified models for parkinson disease from 99mtc-trodat-1 spect imaging. Sensors 19(7):1740

    Article  Google Scholar 

  78. Segovia F, Górriz J, Ramírez J, Levin J, Schuberth M, Brendel M, Rominger A, Garraux G, Phillips C (2015) Analysis of 18f-dmfp pet data using multikernel classification in order to assist the diagnosis of parkinsonism. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE 2015:1–4

  79. Segovia F, Górriz JM, Ramírez J, Martínez-Murcia FJ, Castillo-Barnes D (2019) Assisted diagnosis of parkinsonism based on the striatal morphology. Int J Neural Syst 29(09):1950011

    Article  Google Scholar 

  80. Huertas-Fernandez I, Garcia-Gomez F, Garcia-Solis D, Benitez-Rivero S, Marin-Oyaga V, Jesus S, Cáceres-Redondo M, Lojo J, Martín-Rodríguez J, Carrillo F et al (2015) Machine learning models for the differential diagnosis of vascular parkinsonism and parkinson’s disease using [123i] fp-cit spect. Eur J Nucl Med Mol Imaging 42(1):112–119

    Article  Google Scholar 

  81. Illán I, Górriz J, Ramírez J, Segovia F, Jiménez-Hoyuela J, Ortega Lozano S (2012) Automatic assistance to parkinsonś disease diagnosis in datscan spect imaging. Med Phys 39(10):5971–5980

  82. Nicastro N, Wegrzyk J, Preti MG, Fleury V, Van de Ville D, Garibotto V, Burkhard PR (2019) Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal 123i-fp-cit indices. J Neurol 266(7):1771–1781

    Article  Google Scholar 

  83. Oliveira FP, Castelo-Branco M (2015) Computer-aided diagnosis of parkinson’s disease based on [123i] fp-cit spect binding potential images, using the voxels-as-features approach and support vector machines. J Neural Eng 12(2):026008

    Article  Google Scholar 

  84. Tagare HD, DeLorenzo C, Chelikani S, Saperstein L, Fulbright RK (2017) Voxel-based logistic analysis of ppmi control and parkinson’s disease datscans. NeuroImage 152:299–311

    Article  Google Scholar 

  85. Wu Y, Jiang J-H, Chen L, Lu J-Y, Ge J-J, Liu F-T, Yu J-T, Lin W, Zuo C-T, Wang J (2019) Use of radiomic features and support vector machine to distinguish parkinson’s disease cases from normal controls. Annals Trans Med 7(23)

  86. Babu GS, Suresh S, Mahanand BS (2014) A novel pbl-mcrbfn-rfe approach for identification of critical brain regions responsible for parkinson’s disease. Expert Syst Appl 41(2):478–488

    Article  Google Scholar 

  87. Rojas A, Górriz J, Ramírez J, Illán I, Martínez-Murcia FJ, Ortiz A, Río MG, Moreno-Caballero M (2013) Application of empirical mode decomposition (emd) on datscan spect images to explore parkinson disease. Expert Syst Appl 40(7):2756–2766

    Article  Google Scholar 

  88. Mabrouk R, Chikhaoui B, Bentabet L (2018) Machine learning based classification using clinical and datscan spect imaging features: a study on parkinson’s disease and swedd. IEEE Trans Radiat Plasma Med Sci 3(2):170–177

    Article  Google Scholar 

  89. Mazilu S, Hardegger M, Zhu Z, Roggen D, Tröster G, Plotnik M, Hausdorff JM (2012) Online detection of freezing of gait with smartphones and machine learning technique. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, IEEE, pp 123–130

  90. Bachlin M, Plotnik M, Roggen D, Maidan I, Hausdorff JM, Giladi N, Troster G (2009) Wearable assistant for parkinson’s disease patients with the freezing of gait symptom. IEEE Trans Inf Technol Biomed 14(2):436–446

    Article  Google Scholar 

  91. Wahid F, Begg RK, Hass CJ, Halgamuge S, Ackland DC (2015) Classification of parkinson’s disease gait using spatial-temporal gait features. IEEE J Biomed Health Inf 19(6):1794–1802

    Article  Google Scholar 

  92. Kour N, Arora S et al (2019) Computer-vision based diagnosis of parkinson’s disease via gait: A survey. IEEE Access 7:156620–156645

    Article  Google Scholar 

  93. Ahmadi S-A, Vivar G, Frei J, Nowoshilow S, Bardins S, Brandt T, Krafczyk S (2019) Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway. J Neuro 266(1):108–117

    Article  Google Scholar 

  94. Buongiorno D, Bortone I, Cascarano GD, Trotta GF, Brunetti A, Bevilacqua V (2019) A low-cost vision system based on the analysis of motor features for recognition and severity rating of parkinson’s disease. BMC Med Inform Decis Mak 19(9):1–13

    Google Scholar 

  95. Caramia C, Torricelli D, Schmid M, Munoz-Gonzalez A, Gonzalez-Vargas J, Grandas F, Pons JL (2018) Imu-based classification of parkinson’s disease from gait: A sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Inf 22(6):1765–1774

    Article  Google Scholar 

  96. Butt AH, Rovini E, Dolciotti C, Bongioanni P, De Petris G, Cavallo F, (2017) Leap motion evaluation for assessment of upper limb motor skills in parkinson’s disease. In: International conference on rehabilitation robotics (ICORR). IEEE 2017:116–121

  97. Adams WR (2017) High-accuracy detection of early parkinson’s disease using multiple characteristics of finger movement while typing. PloS one 12(11):e0188226

    Article  Google Scholar 

  98. Cavallo F, Moschetti A, Esposito D, Maremmani C, Rovini E (2019) Upper limb motor pre-clinical assessment in parkinson’s disease using machine learning. Parkinsonism Relat Disord 63:111–116

    Article  Google Scholar 

  99. Farashi S (2021) Analysis of vertical eye movements in parkinson’s disease and its potential for diagnosis. Appl Intell 51(11):8260–8270

    Article  Google Scholar 

  100. Aghanavesi S, Nyholm D, Senek M, Bergquist F, Memedi M (2017) A smartphone-based system to quantify dexterity in parkinson’s disease patients. Inform Med Unlocked 9:11–17

    Article  Google Scholar 

  101. Klein Y, Djaldetti R, Keller Y, Bachelet I (2017) Motor dysfunction and touch-slang in user interface data. Sci Rep 7(1):1–6

    Article  Google Scholar 

  102. Rovini E, Moschetti A, Fiorini L, Esposito D, Maremmani C, Cavallo F (2019) Wearable sensors for prodromal motor assessment of parkinson’s disease using supervised learning. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE 2019:4318–4321

  103. Ricci M, Di Lazzaro G, Pisani A, Mercuri NB, Giannini F, Saggio G (2019) Assessment of motor impairments in early untreated parkinson’s disease patients: the wearable electronics impact. IEEE J Biomed Health Inf 24(1):120–130

    Article  Google Scholar 

  104. Felix JP, Vieira FH, Cardoso ÁA, Ferreira MV, Franco RA, Ribeiro MA, Araújo SG, Corrêa HP, Carneiro ML (2019) A parkinson’s disease classification method: An approach using gait dynamics and detrended fluctuation analysis. In: IEEE canadian conference of electrical and computer engineering (CCECE). IEEE 2019:1–4

  105. Rosenblum S, Samuel M, Zlotnik S, Erikh I, Schlesinger I (2013) Handwriting as an objective tool for parkinson’s disease diagnosis. J Neurol 260(9):2357–2361

    Article  Google Scholar 

  106. Drotár P, Mekyska J, Rektorová I, Masarová L, Smékal Z, Faundez-Zanuy M (2014) Decision support framework for parkinson’s disease based on novel handwriting markers. IEEE Trans Neural Syst Rehab Eng 23(3):508–516

    Article  Google Scholar 

  107. Pereira CR, Pereira DR, Rosa GH, Albuquerque VH, Weber SA, Hook C, Papa JP (2018) Handwritten dynamics assessment through convolutional neural networks: An application to parkinson’s disease identification. Artif Intell Med 87:67–77

    Article  Google Scholar 

  108. Akyol K (2017) A study on the diagnosis of parkinson’s disease using digitized wacom graphics tablet dataset. Int J Inf Technol Comput Sci 9:45–51

    Google Scholar 

  109. Sandhiya S, Rao GVV, Prabhu V, Mohanraj K, Azhagumurugan R, et al (2022) Parkinson’s disease prediction using machine learning algorithm, in: 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). IEEE pp. 1–5

  110. Trabassi D, Serrao M, Varrecchia T, Ranavolo A, Coppola G, De Icco R, Tassorelli C, Castiglia SF (2022) Machine learning approach to support the detection of parkinson’s disease in imu-based gait analysis. Sensors 22(10):3700

    Article  Google Scholar 

  111. Urcuqui C, Castaño Y, Delgado J, Navarro A, Diaz J, Muñoz B, Orozco J (2018) Exploring machine learning to analyze parkinson’s disease patients, in: 2018 14th International Conference on Semantics, Knowledge and Grids (SKG). IEEE pp 160–166

  112. Andrei A-G, Tăuan A-M, Ionescu B (2019) Parkinson’s disease detection from gait patterns. In: E-Health and Bioengineering Conference (EHB). IEEE 2019:1–4

  113. Ye Q, Xia Y, Yao Z, (2018) Classification of gait patterns in patients with neurodegenerative disease using adaptive neuro-fuzzy inference system. Computational and mathematical methods in medicine 2018

  114. Pham TD, Yan H (2017) Tensor decomposition of gait dynamics in parkinson’s disease. IEEE Trans Biomed Eng 65(8):1820–1827

    Google Scholar 

  115. Khoury N, Attal F, Amirat Y, Oukhellou L, Mohammed S (2019) Data-driven based approach to aid parkinson’s disease diagnosis. Sensors 19(2):242

    Article  Google Scholar 

  116. Begum A, Fatima F, Sabahath A, (2019) Implementation of deep learning algorithm with perceptron using tenzorflow library, In: 2019 International conference on communication and signal processing (ICCSP). IEEE pp 0172–0175

  117. Bhatele KR, Bhadauria SS (2020) Brain structural disorders detection and classification approaches: a review. Artif Intell Rev 53(5):3349–3401

    Article  Google Scholar 

  118. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  119. Abós A, Baggio HC, Segura B, García-Díaz AI, Compta Y, Martí MJ, Valldeoriola F, Junqué C (2017) Discriminating cognitive status in parkinson’s disease through functional connectomics and machine learning. Sci Rep 7(1):1–13

    Article  Google Scholar 

  120. Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learn Syst 25(7):1229–1262

    Article  Google Scholar 

  121. Smagulova K, James AP (2019) A survey on lstm memristive neural network architectures and applications. Eur Phys J Spec Top 228(10):2313–2324

    Article  Google Scholar 

  122. Hua Y, Guo J, Zhao H (2015) Deep belief networks and deep learning. In: Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things, IEEE, pp. 1–4

  123. Gautam R, Sharma M (2020) Prevalence and diagnosis of neurological disorders using different deep learning techniques: a meta-analysis. J Med Syst 44(2):1–24

    Article  Google Scholar 

  124. Frid A, Kantor A, Svechin D, Manevitz LM, (2016) Diagnosis of parkinson’s disease from continuous speech using deep convolutional networks without manual selection of features. In: 2016 IEEE international conference on the science of electrical engineering (ICSEE). IEEE pp 1–4

  125. Naranjo L, Perez CJ, Martin J, Campos-Roca Y (2017) A two-stage variable selection and classification approach for parkinson’s disease detection by using voice recording replications. Comput Methods Programs Biomed 142:147–156

    Article  Google Scholar 

  126. Caliskan A, Badem H, Basturk A, Yuksel M (2017) Diagnosis of the parkinson disease by using deep neural network classifier. UI-J Electr Electron Eng 17(2):3311–3318

    Google Scholar 

  127. Gunduz H (2019) Deep learning-based parkinson’s disease classification using vocal feature sets. IEEE Access 7:115540–115551

    Article  Google Scholar 

  128. Wodzinski M, Skalski A, Hemmerling D, Orozco-Arroyave JR, Nöth E, (2019) Deep learning approach to parkinson’s disease detection using voice recordings and convolutional neural network dedicated to image classification. In: 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE 2019:717–720

  129. Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2020) A deep learning approach for parkinson’s disease diagnosis from eeg signals. Neural Comput Appl 32(15):10927–10933

    Article  Google Scholar 

  130. Zahid L, Maqsood M, Durrani MY, Bakhtyar M, Baber J, Jamal H, Mehmood I, Song O-Y (2020) A spectrogram-based deep feature assisted computer-aided diagnostic system for parkinson’s disease. IEEE Access 8:35482–35495

    Article  Google Scholar 

  131. Xiong Y, Lu Y (2020) Deep feature extraction from the vocal vectors using sparse autoencoders for parkinson’s classification. IEEE Access 8:27821–27830

    Article  Google Scholar 

  132. Khojasteh P, Viswanathan R, Aliahmad B, Ragnav S, Zham P, Kumar D (2018) Parkinson’s disease diagnosis based on multivariate deep features of speech signal. In: IEEE Life Sciences Conference (LSC). IEEE 2018:187–190

  133. Al-Fatlawi AH, Jabardi MH, Ling SH (2016) Efficient diagnosis system for parkinson’s disease using deep belief network. In: IEEE Congress on evolutionary computation (CEC). IEEE 2016:1324–1330

  134. Sadek RM, Mohammed SA, Abunbehan ARK, Ghattas AKHA, Badawi MR, Mortaja MN, Abu-Nasser BS, Abu-Naser SS (2019) Parkinson’s disease prediction using artificial neural network

  135. Quan C, Ren K, Luo Z, Chen Z, Ling Y (2022) End-to-end deep learning approach for parkinson’s disease detection from speech signals. Biocybern Biomed Eng 42(2):556–574

    Article  Google Scholar 

  136. Hireš M, Gazda M, Drotár P, Pah ND, Motin MA, Kumar DK (2022) Convolutional neural network ensemble for parkinson’s disease detection from voice recordings. Comput Biol Med 141:105021

    Article  Google Scholar 

  137. Wroge TJ, Özkanca Y, Demiroglu C, Si D, Atkins DC, Ghomi RH (2018) Parkinson’s disease diagnosis using machine learning and voice, In IEEE signal processing in medicine and biology symposium (SPMB). IEEE 2018:1–7

  138. Nilashi M, Abumalloh RA, Yusuf SYM, Thi HH, Alsulami M, Abosaq H, Alyami S, Alghamdi A (2023) Early diagnosis of parkinson’s disease: A combined method using deep learning and neuro-fuzzy techniques. Comput Biol Chem 102:107788

    Article  Google Scholar 

  139. Xu S, Wang Z, Sun J, Zhang Z, Wu Z, Yang T, Xue G, Cheng C, (2020) Using a deep recurrent neural network with eeg signal to detect parkinson’s disease. Annals Trans Medi 8(14)

  140. Shah SAA, Zhang L, Bais A (2020) Dynamical system based compact deep hybrid network for classification of parkinson disease related eeg signals. Neural Netw 130:75–84

  141. Khare SK, Bajaj V, Acharya UR (2021) Pdcnnet: An automatic framework for the detection of parkinson’s disease using eeg signals. IEEE Sens J 21(15):17017–17024

    Article  Google Scholar 

  142. Zhang R, Jia J, Zhang R (2022) Eeg analysis of parkinson’s disease using time-frequency analysis and deep learning. Biomed Signal Process Control 78:103883

    Article  Google Scholar 

  143. Khoshnevis SA, Sankar R (2022) Diagnosis of parkinson’s disease using higher order statistical analysis of alpha and beta rhythms. Biomed Signal Process Control 77:103743

    Article  Google Scholar 

  144. Choi H, Ha S, Im HJ, Paek SH, Lee DS, (2017) Refining diagnosis of parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging, NeuroImage Clin 16:586–594

  145. Zhang X, He L, Chen K, Luo Y, Zhou J, Wang F (2018) Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s disease. In: AMIA Annual Symposium Proceedings, Vol. 2018, American Medical Informatics Association, p 1147

  146. Wenzel M, Milletari F, Krüger J, Lange C, Schenk M, Apostolova I, Klutmann S, Ehrenburg M, Buchert R (2019) Automatic classification of dopamine transporter spect: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics. Eur J Nucl Med Mol Imaging 46(13):2800–2811

    Article  Google Scholar 

  147. Mohammed F, He X, Lin Y (2021) Retracted: An easy-to-use deep-learning model for highly accurate diagnosis of parkinson’s disease using spect images. Comput Med Imaging Graph 87:101810. https://doi.org/10.1016/j.compmedimag.2020.101810https://www.sciencedirect.com/science/article/pii/S0895611120301051

  148. Mohammed F, He X, Lin Y, (2021) Retracted: An easy-to-use deep-learning model for highly accurate diagnosis of parkinson’s disease using spect images

  149. Pahuja G, Nagabhushan T, Prasad B (2020) Early detection of parkinson’s disease by using spect imaging and biomarkers. J Intell Syst 29(1):1329–1344

    Google Scholar 

  150. Sivaranjini S, Sujatha C (2020) Deep learning based diagnosis of parkinson’s disease using convolutional neural network. Multimed Tools Appl 79(21):15467–15479

    Article  Google Scholar 

  151. Esmaeilzadeh S, Yang Y, Adeli E, (2018) End-to-end parkinson disease diagnosis using brain mr-images by 3d-cnn, arXiv:1806.05233

  152. Kaur S, Aggarwal H, Rani R (2021) Diagnosis of parkinson’s disease using deep cnn with transfer learning and data augmentation. Multimed Tools Appl 80(7):10113–10139

    Article  Google Scholar 

  153. Shinde S, Prasad S, Saboo Y, Kaushick R, Saini J, Pal PK, Ingalhalikar M (2019) Predictive markers for parkinson’s disease using deep neural nets on neuromelanin sensitive mri. NeuroImage Clin 22:101748

    Article  Google Scholar 

  154. Banerjee M, Chakraborty R, Archer D, Vaillancourt D, Vemuri BC (2019) Dmr-cnn: a cnn tailored for dmr scans with applications to pd classification, In: IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE 2019:388–391

  155. Kiryu S, Yasaka K, Akai H, Nakata Y, Sugomori Y, Hara S, Seo M, Abe O, Ohtomo K (2019) Deep learning to differentiate parkinsonian disorders separately using single midsagittal mr imaging: a proof of concept study. European radiology 29(12):6891–6899

    Article  Google Scholar 

  156. Yagis E, De Herrera AGS, Citi L (2019) Generalization performance of deep learning models in neurodegenerative disease classification. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE pp 1692–1698

  157. Zhao Y, Wu P, Wang J, Li H, Navab N, Yakushev I, Weber W, Schwaiger M, Huang S-C, Cumming P et al (2019) A 3d deep residual convolutional neural network for differential diagnosis of parkinsonian syndromes on 18 f-fdg pet images, In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE 2019:3531–3534

  158. Shen T, Jiang J, Lin W, Ge J, Wu P, Zhou Y, Zuo C, Wang J, Yan Z, Shi K (2019) Use of overlapping group lasso sparse deep belief network to discriminate parkinson’s disease and normal control. Front Neurosci 13:396

    Article  Google Scholar 

  159. Zhao A, Qi L, Li J, Dong J, Yu H (2018) A hybrid spatio-temporal model for detection and severity rating of parkinson’s disease from gait data. Neurocomputing 315:1–8

    Article  Google Scholar 

  160. Gil-Martín M, Montero JM, San-Segundo R (2019) Parkinson’s disease detection from drawing movements using convolutional neural networks. Electronics 8(8):907

    Article  Google Scholar 

  161. Alharthi AS, Ozanyan KB (2019) Deep learning for ground reaction force data analysis: Application to wide-area floor sensing, In: IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE 2019:1401–1406

  162. Papadopoulos A, Kyritsis K, Klingelhoefer L, Bostanjopoulou S, Chaudhuri KR, Delopoulos A (2019) Detecting parkinsonian tremor from imu data collected in-the-wild using deep multiple-instance learning. IEEE J Biomed Health Inform 24(9):2559–2569

    Article  Google Scholar 

  163. Vidya B, Sasikumar P (2022) Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using emd and cnn-lstm network. Eng Appl Artif Intell 114:105099

    Article  Google Scholar 

  164. Papavasileiou I, Zhang W, Wang X, Bi J, Zhang L, Han S, (2017) Classification of neurological gait disorders using multi-task feature learning, in: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), IEEE pp 195–204

  165. Xia Y, Yao Z, Ye Q, Cheng N (2019) A dual-modal attention-enhanced deep learning network for quantification of parkinson’s disease characteristics. IEEE Trans Neural Syst Rehabilitation Eng 28(1):42–51

    Article  Google Scholar 

  166. Balaji E, Brindha D, Elumalai VK, Vikrama R (2021) Automatic and non-invasive parkinson’s disease diagnosis and severity rating using lstm network. Appl Soft Comput 108:107463

    Article  Google Scholar 

  167. Reyes JF, Montealegre JS, Castano YJ, Urcuqui C, Navarro A, (2019) Lstm and convolution networks exploration for parkinson’s diagnosis, In: 2019 IEEE colombian conference on communications and computing (COLCOM), IEEE pp 1–4

  168. Liu X, Li W, Liu Z, Du F, Zou Q (2021) A dual-branch model for diagnosis of parkinson’s disease based on the independent and joint features of the left and right gait. Appl Intell 51(10):7221–7232

    Article  Google Scholar 

  169. Yang X, Ye Q, Cai G, Wang Y, Cai G (2022) Pd-resnet for classification of parkinson’s disease from gait. IEEE IEEE J Transl Eng Health Med

  170. Oğul BB, Özdemir S (2021) A pairwise deep ranking model for relative assessment of parkinson’s disease patients from gait signals. IEEE Access 10:6676–6683

    Article  Google Scholar 

  171. Prince J, Andreotti F, De Vos M (2018) Multi-source ensemble learning for the remote prediction of parkinson’s disease in the presence of source-wise missing data. IEEE Trans Biomed Eng 66(5):1402–1411

    Article  Google Scholar 

  172. Baby MS, Saji A, Kumar CS (2017) Parkinsons disease classification using wavelet transform based feature extraction of gait data. In: 2017 International conference on circuit, power and computing technologies (ICCPCT), IEEE pp 1–6

  173. Wan S, Liang Y, Zhang Y, Guizani M (2018) Deep multi-layer perceptron classifier for behavior analysis to estimate parkinson’s disease severity using smartphones. IEEE Access 6:36825–36833

    Article  Google Scholar 

  174. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18

    Article  Google Scholar 

  175. Shrivastava P, Shukla A, Vepakomma P, Bhansali N, Verma K (2017) A survey of nature-inspired algorithms for feature selection to identify parkinson’s disease. Comput Methods Programs Biomed 139:171–179

    Article  Google Scholar 

  176. Gupta D, Sundaram S, Khanna A, Hassanien AE, De Albuquerque VHC (2018) Improved diagnosis of parkinson’s disease using optimized crow search algorithm. Comput Electr Eng 68:412–424

    Article  Google Scholar 

  177. Sahu B, Mohanty SN (2021) Cmba-svm: a clinical approach for parkinson disease diagnosis. Int J Inf Technol 13(2):647–655

    Google Scholar 

  178. Masud M, Singh P, Gaba GS, Kaur A, Alroobaea R, Alrashoud M, Alqahtani SA (2021) Crowd: crow search and deep learning based feature extractor for classification of parkinson’s disease. ACM Trans Internet Technol (TOIT) 21(3):1–18

    Article  Google Scholar 

  179. Raihan S, Zisad SN, Islam RU, Hossain MS, Andersson K (2021) A belief rule base approach to support comparison of digital speech signal features for parkinson’s disease diagnosis. In: International Conference on Brain Informatics, Springer, pp 388–400

  180. Rajammal RR, Mirjalili S, Ekambaram G, Palanisamy N (2022) Binary grey wolf optimizer with mutation and adaptive k-nearest neighbour for feature selection in parkinson’s disease diagnosis. Knowl-Based Syst 246:108701

    Article  Google Scholar 

  181. Olivares R, Munoz R, Soto R, Crawford B, Cárdenas D, Ponce A, Taramasco C (2020) An optimized brain-based algorithm for classifying parkinson’s disease. Appl Sci 10(5):1827

    Article  Google Scholar 

  182. Sehgal S, Agarwal M, Gupta D, Sundaram S, Bashambu A (2020) Optimized grass hopper algorithm for diagnosis of parkinson’s disease. SN Appl Sci 2(6):1–18

    Article  Google Scholar 

  183. Dash S, Abraham A, Luhach AK, Mizera-Pietraszko J, Rodrigues JJ (2020) Hybrid chaotic firefly decision making model for parkinson’s disease diagnosis. Int J Distrib Sens Netw 16(1):1550147719895210

    Article  Google Scholar 

  184. Pasha A, Latha PH (2020) Bio-inspired dimensionality reduction for parkinson’s disease (pd) classification. Health Inf Sci Syst 8(1):1–22

    Article  Google Scholar 

  185. Chen F, Yang C, Khishe M (2022) Diagnose parkinson’s disease and cleft lip and palate using deep convolutional neural networks evolved by ip-based chimp optimization algorithm. Biomed Signal Process Control 77:103688

    Article  Google Scholar 

  186. Sharma SR, Singh B, Kaur M (2021) Classification of parkinson disease using binary rao optimization algorithms. Expert Syst 38(4):e12674

    Article  Google Scholar 

  187. Cai Z, Gu J, Wen C, Zhao D, Huang C, Huang H, Tong C, Li J, Chen H, (2018) An intelligent parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy knn approach, Computational and mathematical methods in medicine 2018

  188. Gupta D, Julka A, Jain S, Aggarwal T, Khanna A, Arunkumar N, de Albuquerque VHC (2018) Optimized cuttlefish algorithm for diagnosis of parkinson’s disease. Cogn Syst Res 52:36–48

    Article  Google Scholar 

  189. Sharma P, Sundaram S, Sharma M, Sharma A, Gupta D (2019) Diagnosis of parkinson’s disease using modified grey wolf optimization. Cogn Syst Res 54:100–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Keserwani.

Ethics declarations

Conflicts of interest

There is no ’conflict of interest’ in the publication of this manuscript “A Comparative Study: Prediction of Parkinson’s Disease using Machine Learning, Deep Learning and Nature Inspired Algorithm”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keserwani, P.K., Das, S. & Sarkar, N. A comparative study: prediction of parkinson’s disease using machine learning, deep learning and nature inspired algorithm. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18186-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18186-z

Keywords

Navigation