Skip to main content
Log in

Deep learning-based CAD system design for thyroid tumor characterization using ultrasound images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Computer-Aided Diagnosis (CAD) system is preferred for automatic thyroid tumor ultrasound image characterization instead of manual assessment by the experts. Segmentation and control despeckling are the important pre-processing stages required to develop an effective CAD system. This work primarily aims to design an efficient CAD system for thyroid tumor characterization using ultrasound (US) images. Here, Edge Preserving Smoothing despeckling filter and encoder decoder-based ResNet50 segmentation model are used as pre-processing stages of the proposed CAD system to enhance its performance for thyroid tumor characterization. Extracting the image features using pre-trained models effectively captures the underlying textural and morphological characteristics exhibited by thyroid tumors in ultrasound images. The pre-trained- models learn by automatic feature extraction representing the underlying characteristics using multiple stages by convolution with various filters. The pre-train-based neural network classifies tumors more accurately due to learning the extract multiple sets of features. Accordingly, fifteen (15) deep learning-based pre-trained models have been utilized in the present work to extract information from the thyroid tumor US images and train the PCA-SVM classifier. These pre-train models have been taken from different categories of deep learning algorithms, including Series / DAG / Lightweight architectures, namely AlexNet, VGG16, VGG19, Darknet19, Darknet53, GoogleNet, DenseNet201, ResNet18, ResNet50, ResNet101, EfficientNetb0, NasNetMobile, MobileNet, SqueezeNet, and ShuffleNet for characterization of thyroid tissues. An exhaustive set of experiments have been conducted, and the best-performing pre-trained models have been selected as optimal feature extractors based on classification accuracy. Thus, the features extracted from the best-performing pre-trained network, i.e., ResNet50, are fed to the PCA-SVM classifier to yield an efficient CAD system for classifying TTUS images. The optimal CAD design proposed in the present work yields 99.5% classification accuracy to distinguish between benign and malignant thyroid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nagataki S, Nyström E (2002) Epidemiology and Primary Prevention of Thyroid Cancer. Thyroid 12:889–896. https://doi.org/10.1089/105072502761016511

    Article  Google Scholar 

  2. Ahmed J, Soomrani MAR (2016) TDTD : Thyroid Disease Type Diagnostics. Int Conf Intell Syst Eng 2016:1–7. https://doi.org/10.1109/INTELSE.2016.7475160

    Article  Google Scholar 

  3. Gesing A (2015) The thyroid gland and the process of aging; ; what is new? Thyroid Res 8:A8. https://doi.org/10.1186/1756-6614-8-S1-A8

    Article  Google Scholar 

  4. Chaudhary V, Bano S (2013) Thyroid ultrasound. Indian J Endocrinol Metab 17:219–227. https://doi.org/10.4103/2230-8210.109667

    Article  Google Scholar 

  5. La Vecchia C, Malvezzi M, Bosetti C et al (2015) Thyroid cancer mortality and incidence: A global overview. Int J Cancer 136:2187–2195. https://doi.org/10.1002/ijc.29251

    Article  Google Scholar 

  6. Yadav N, Dass R, Virmani J (2022) Texture Analysis of Ultrasound Images. Emergent Converging Technol Biomed Syst Lect Notes Electr Eng 841:575–585. https://doi.org/10.1007/978-981-16-8774-7_48

    Article  Google Scholar 

  7. Keramidas EG, Maroulis D, Iakovidis DK (2012) TND: A thyroid nodule detection system for analysis of ultrasound images and videos. J Med Syst 36:1271–1281. https://doi.org/10.1007/s10916-010-9588-7

    Article  Google Scholar 

  8. Yadav N, Dass R, Virmani J (2022) Despeckling filters applied to thyroid ultrasound images : a comparative analysis. Multimed Tools Appl. https://doi.org/10.1007/s11042-022-11965-6

  9. Dass R, Yadav N (2020) Image Quality Assessment Parameters for Despeckling Filters. Procedia Comput Sci 167:2382–2392. https://doi.org/10.1016/j.procs.2020.03.291

    Article  Google Scholar 

  10. Yoo YJ, Ha EJ, Cho YJ et al (2018) Computer-Aided Diagnosis of Thyroid Nodules via Ultrasonography: Initial Clinical Experience. Korean J Radiol 19:665–672

    Article  Google Scholar 

  11. Kesarkar XA, Kulhalli KV (2021) Thyroid Nodule Detection using Artificial Neural Network. Proc - Int Conf Artif Intell Smart Syst ICAIS 2021:11–15. https://doi.org/10.1109/ICAIS50930.2021.9396035

    Article  Google Scholar 

  12. Virmani J, Kumar V, Kalra N, Khandelwal N (2013) PCA-SVM based CAD System for Focal Liver Lesions using B-Mode Ultrasound Images. Def Sci J 63:478–486

    Article  Google Scholar 

  13. Fernández Sánchez J (2014) Clasificación TI-RADS de los nódulos tiroideos en base a una escala de puntuación modificada con respecto a los criterios ecográficos de malignidad. Rev Argentina Radiol 78:138–148. https://doi.org/10.1016/j.rard.2014.07.015

    Article  Google Scholar 

  14. Zahir ST, Vakili M, Ghaneei A et al (2016) Ultrasound Assistance In Differentiating Malignant Thyroid Nodules From Benign Ones. J Ayub Med Coll Abbottabad 28:644–649

    Google Scholar 

  15. Virmani J, Kumar V, Kalra N, Khandelwal N (2013) SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J Digit Imaging 26:530–543. https://doi.org/10.1007/s10278-012-9537-8

    Article  Google Scholar 

  16. Kriti, Virmani J, Agarwal R (2018) Assessment of despeckle filtering algorithms for segmentation of breast tumours from ultrasound images. Bioinform Biomed Eng 39:100–121. https://doi.org/10.1016/j.bbe.2018.10.002

    Article  Google Scholar 

  17. Dass R (2018) Speckle Noise Reduction of Ultrasound Images Using BFO Cascaded with Wiener Filter and Discrete Wavelet Transform in Homomorphic Region. Procedia Comput Sci 132:1543–1551. https://doi.org/10.1016/j.procs.2018.05.118

    Article  Google Scholar 

  18. Jaglan P, Dass R, Duhan M (2021) An automatic and efficient technique for tumor location identification and classification through breast MR images. Expert Syst Appl 185:115580. https://doi.org/10.1016/j.eswa.2021.115580

    Article  Google Scholar 

  19. Bianco S, Celona L, Napoletano P, Schettini R (2018) On the use of deep learning for blind image quality assessment. Signal, Image Video Process 12:355–362. https://doi.org/10.1007/s11760-017-1166-8

    Article  Google Scholar 

  20. Elder EM, Wagner GA (2018) A Gentle Introduction to Deep Learning in Medical Image Processing. J Med Phys. 10.17310/ntj.2013.4.08

  21. Fu Y, Aldrich C (2018) Froth image analysis by use of transfer learning and convolutional neural networks. Miner Eng 115:68–78. https://doi.org/10.1016/j.mineng.2017.10.005

    Article  Google Scholar 

  22. Anwar SM, Majid M, Qayyum A, et al (2018) Medical Image Analysis using Convolutional Neural Networks: A Review. J Med Syst 42:. https://doi.org/10.1007/s10916-018-1088-1

  23. Geng M, Wang Y, Xiang T, Tian Y (2016) Deep Transfer Learning for Person Re-identification. Comput Vis Pattern Recognition(Cornell Univ. 10.14393/BJ-v32n2a2016-30491

  24. Zhang Q, Zhu S-C (2018) Visual Interpretability for Deep Learning: a Survey. Front Inf Technol Electron Eng 19:27–39. https://doi.org/10.1631/FITEE.1700808

    Article  Google Scholar 

  25. Chi J, Walia E, Babyn P et al (2017) Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J Digit Imaging 30:477–486. https://doi.org/10.1007/s10278-017-9997-y

    Article  Google Scholar 

  26. Gireesha H, S N (2014) Thyroid Nodule Segmentation And Classification In Ultrasound Images. Int J Eng Res Technol 3:2252–2256

  27. Liu T, Guo Q, Lian C et al (2019) Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med Image Anal 58:101555. https://doi.org/10.1016/j.media.2019.101555

    Article  Google Scholar 

  28. Chaabouni S, Benois-Pineau J, Ben Amar C (2016) Transfer learning with deep networks for saliency prediction in natural video. Proc - Int Conf Image Process ICIP 2016-Augus:1604–1608. https://doi.org/10.1109/ICIP.2016.7532629

  29. Pavya K (2017) Feature Selection Algorithms To Improve Thyroid Disease Diagnosis. IEEE Int Conf Innov Green Energy Healthc Technol 1–5

  30. Bibicu D, Moraru L, Biswas A (2013) Thyroid Nodule Recognition Based on Feature Selection and Pixel Classification Methods. J Digit Imaging 119–128. https://doi.org/10.1007/s10278-012-9475-5

  31. Biomedical F, Koitka S, Friedrich CM (2016) Traditional Feature Engineering and Deep Learning Approaches at Medical Classification Task of ImageCLEF 2016. CLEF

  32. Elangovan A, Jeyaseelan T (2016) Medical imaging modalities: A survey. Int Conf Emerg Trends Eng Technol Sci:1–4. https://doi.org/10.1109/ICETETS.2016.7603066

  33. Mcloughlin I, Box PO (2017) Deep Bottleneck Feature for Image Classification. ACM 491–494

  34. Xie G, Zhang X, Shu X, et al (2016) Task-Driven Feature Pooling for Image Classification. ICCV 1179–1187

  35. Sornam M, Muthusubash K, Vanitha V (2018) A Survey on Image Classification and Activity Recognition using Deep Convolutional Neural Network Architecture. 2017 9th Int Conf Adv Comput ICoAC 2017 121–126. https://doi.org/10.1109/ICoAC.2017.8441512

  36. Mahmood F, Durr NJ (2018) Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 48:230–243. https://doi.org/10.1016/j.media.2018.06.005

    Article  Google Scholar 

  37. Sensing R, Scene I (2017) Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial Resolution Remote Sensing Image Scene Classification. Remote Sens. https://doi.org/10.3390/rs9080848

  38. George D, Shen H, Huerta EA (2017) Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO. Gen Relativ Quantum Cosmol Univ, https://doi.org/10.1103/PhysRevD.97.101501

  39. Sundar KVS, Sai SSS (2018) Exploring Transfer Learning , Fine-tuning of Thyroid Ultrasound Images. 1st Conf Med Imaging with Deep Learn (MIDL 2018) 1–3

  40. Liu T, Xie S, Zhang Y, et al (2017) Feature selection and thyroid nodule classification using transfer learning. Biomed Imaging (ISBI 2017), 2017 IEEE 14th Int Symp 1096–1099. https://doi.org/10.1109/ISBI.2017.7950707

  41. Liu T, Xie S, Yu J, et al (2017) Classification of thyroid nodules in ultrasound images using deep model based transfer learning and hybrid features. ICASSP (International Conf Acoust Speech Signal Process - Proceedings) 919–923. https://doi.org/10.1109/ICASSP.2017.7952290

  42. Bakkouri I, Afdel K (2020) Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images. Multimed Tools Appl 79:20483–20518. https://doi.org/10.1007/s11042-019-07988-

    Article  Google Scholar 

  43. Chai YJ (2018) Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. 7th Int Conf Exhib Surg 3rd Int Conf Anesth 08:46. https://doi.org/10.4172/2161-1076-C2-038

  44. Carina Pereira, Manjiri Dighe AMA (2018) Comparison of machine learned approaches for thyroid nodule characterization from shear wave elastography images. SPIE Med Imaging, 2018

  45. Moussa O, Khachnaoui H, Guetari R, Khlifa N (2019) Thyroid nodules classification and diagnosis in ultrasound images using fine-tuning deep convolutional neural network. Int J Imaging Syst Technol 1–11. https://doi.org/10.1002/ima.22363

  46. Akkus Z, Clinic M, Boonrod A (2019) Reduction of unnecessary thyroid biopsies using deep learning. SPIE Med Imaging 10949:109490W(1–6). https://doi.org/10.1117/12.2512574

  47. Rani J, Singh J, Virmani J(2023) Hybrid computer aided diagnostic system designs for screen film mammograms using DL-based feature extraction and ML-based classifiers. Expert System. https://doi.org/10.1111/exsy.13309

  48. Li X, Zhang S, Zhang Q et al (2018) Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images : a retrospective , multicohort , diagnostic study. Lancet Oncol 2045:1–9. https://doi.org/10.1016/S1470-2045(18)30762-9

    Article  Google Scholar 

  49. Korfiati A, Livanos G, Konstandinou C, Georgiou S, Sakellaropoulos G (2021) Skin Lesion Classification From Dermoscopy And Clinical Images With A Deep Learning Approach. Intl J Adv Res (IJAR). 10.21474/IJAR01/13681

  50. chi Jianning YX and ZY (2018) Thyriod Nodule Malignantrisk Detection in Ultrasound Image by fusing deep and texture feature. J Image Graph 23:1582–1592

  51. Gore DV, Sinha AK, Deshpande V (2023) Automatic CAD System for Brain Diseases Classification Using CNN-LSTM Model. In: Dutta, P., Bhattacharya, A., Dutta, S., Lai, WC. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 1348. Springer, Singapore. https://doi.org/10.1007/978-981-19-4676-9_54

  52. Zhu Y, Fu Z, Fei J (2017) An Image Augmentation Method using Convolutional Network for Thyroid Nodule Classification by Transfer Learning. 2017 3rd IEEE Int Conf Comput Commun ICCC 2017 2018-Janua:1819–1823. https://doi.org/10.1109/CompComm.2017.8322853

  53. Guan Q, Wang Y, Du J et al (2019) Deep learning based classification of ultrasound images for thyroid nodules : a large scale of pilot study. Ann Transl Med 7:1–9. https://doi.org/10.21037/atm.2019.04.34

    Article  Google Scholar 

  54. Song J, Cha YJ (2018) Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. Medicine (Baltimore) 08:1–7. https://doi.org/10.4172/2161-1076-C2-038

    Article  Google Scholar 

  55. Song W, Li S, Liu J et al (2015) Multi-task Cascade Convolution Neural Networks for Automatic Thyroid Nodule Detection and Recognition. IEEE J Biomed Heal Inform 14:1–11. https://doi.org/10.1109/JBHI.2018.2852718

    Article  Google Scholar 

  56. Wang J, Li S, Song W, et al (2018) Learning From Weakly-Labeled Clinical Data for Automatic Thyroid Nodule Classification in Ultrasound Images. 2018 25th IEEE Int Conf Image Process 3114–3118

  57. Liang X, Yu J, Liao J, Chen Z (2020) Convolutional Neural Network for Breast and Thyroid Nodules Diagnosis in Ultrasound Imaging. Biomed Res Int 2020:. https://doi.org/10.1155/2020/1763803

  58. Shankarlal B, Sathya PD, Sakthivel VP (2020) Computer-Aided Detection and Diagnosis of Thyroid Nodules Using Machine and Deep Learning Classification Algorithms. IETE J Res. https://doi.org/10.1080/03772063.2020.1844083

  59. Ma X, Zhang L (2022) Diagnosis of Thyroid Nodules Based on Image Enhancement and Deep Neural Networks. Comput Intell Neurosci 2022:. https://doi.org/10.1155/2022/5582029

  60. Pedraza L, Vargas C, Narváez F, et al (2015) An open access thyroid ultrasound image database. 10th Int Symp Med Inf Process Anal 9287:92870W1-6. https://doi.org/10.1117/12.2073532

  61. Acharya UR, Swapna G, Sree SV et al (2014) A Review on Ultrasound-Based Thyroid Cancer Tissue Characterization and Automated Classification. Technol Cancer Res Treat 13:289–301. https://doi.org/10.7785/tcrt.2012.500381

    Article  Google Scholar 

  62. Koundal D, Gupta S, Singh S (2018) Computer aided thyroid nodule detection system using medical ultrasound images. Biomed Signal Process Control 40:117–130. https://doi.org/10.1016/j.bspc.2017.08.025

    Article  Google Scholar 

  63. Scheipers U, Ermert H, Sommerfeld HJ et al (2003) Ultrasonic multifeature tissue characterization for prostate diagnostics. Ultrasound Med Biol 29:1137–1149. https://doi.org/10.1016/S0301-5629(03)00062-0

    Article  Google Scholar 

  64. Russ G (2016) Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography 35:25–38. https://doi.org/10.14366/usg.15027

    Article  Google Scholar 

  65. (2018) https://www.ultrasoundcases.info/cases/head-and-neck/thyroid-gland/. In: September

  66. Qi X, Zhang L, Chen Y et al (2019) Automated diagnosis of breast ultrasonography images using deep neural networks. Med Image Anal 52:185–198. https://doi.org/10.1016/j.media.2018.12.006

    Article  Google Scholar 

  67. Kriti, Virmani J, Agarwal R (2019) Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybern Biomed Eng 1–21. 10.1016/j.bbe.2019.02.004

  68. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell 39:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  69. Berkeley UC, Davis UC (2017) 100-epoch ImageNet Training with AlexNet in 24 Minutes. ” CoRR abs/170905011

  70. Shi Z, Hao H, Zhao M, et al (2018) A deep CNN based transfer learning method for false positive reduction. Multimed Tools Appl 1–17. https://doi.org/10.1007/s11042-018-6082-6

  71. Yuan Z, Zhang J (2016) Feature Extraction and Image Retrieval Based on AlexNet. Eighth Int Conf Digit Image Process (ICDIP 2016) 10033:1–5. https://doi.org/10.1117/12.2243849

  72. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: Visualizing classifier performance in R. Bioinformatics 21:3940–3941. https://doi.org/10.1093/bioinformatics/bti623

    Article  Google Scholar 

  73. Buda M, Tessler FN (2019) Management of Thyroid Nodules Seen on US Images : Deep Learning May Match Performance of Radiologists. Head Neck Imaging 292:695–701. https://doi.org/10.1148/radiol.2019181343

    Article  Google Scholar 

  74. Yadav N, Dass R, Virmani J (2022) Machine learning-based CAD system for thyroid tumour characterisation using ultrasound images. Int J Med Eng Inform 1:1–13. https://doi.org/10.1504/IJMEI.2022.10049164

    Article  Google Scholar 

  75. Aman Verma, V. P. (2022). Design, analysis and implementation of efficient deep learning frameworks for brain tumor classification. Multimedia Tools and Applications, 81, 37541–37567. doi:10.1007/s11042-022-13545-0

  76. Corina Maria Vasile, A. L. (2021). Assessment of Deep Learning Methods for Differentiating Autoimmune. Disorders in Ultrasound Images Curr Health Sci J., 47(2), 221–227. doi: 10.12865/CHSJ.47.02.12

  77. Göreke V (2023) A Novel Deep-Learning-Based CADx Architecture for Classification of Thyroid Nodules Using Ultrasound Images. Interdisciplinary Sciences: Computational Life Sciences, 1-14. doi:https://doi.org/10.1007/s12539-023-00560-4

  78. Wanjun Zhao QK (2022) Convolutional Neural Network-Based Computer-Assisted Diagnosis of Hashimoto’s Thyroiditis on Ultrasound. J Clin Endocrinol Metab 104(4):953–963. https://doi.org/10.1210/clinem/dgab870

    Article  Google Scholar 

  79. Veda Reddy T, R. G. (2023) Thyroid Lesion Detection Using Deep Learning Techniques. Intl Res J Modern Eng Technol Sci 5(3):2949–2953

    Google Scholar 

  80. Xiaochun Cheng SK (2022) CNN supported framework for automatic extraction and evaluation of dermoscopy images. J Supercomput 78:17114–17131. https://doi.org/10.1007/s11227-022-04561-w

    Article  Google Scholar 

  81. Vivian Y. Park, K. H.-K. (2019). Diagnosis of Thyroid Nodules:Performance of a Deep Learning Convolutional Neural NetworkModel vs. Radiologists Scientific Reports, 9, 17843. doi:https://doi.org/10.1038/s41598-019-54434-1

  82. Eunjung Lee, H. H. (2019). Differentiation of thyroid nodules on US using features learned and extracted from various convolutional neural networks. Scientific Reports |, 19854. doi:https://doi.org/10.1038/s41598-019-56395-x

  83. Jiahao Xie LG (2020) A Hybrid Deep Learning and Handcrafted Features based Approach for Thyroid Nodule Classification in Ultrasound Images. J Phys Conference Series, 1693, 012160. doi:https://doi.org/10.1088/1742-6596/1693/1/012160

  84. Noura Aboudi HK (2023) Bilinear Pooling for Thyroid Nodule Classification in Ultrasound Images. Arab J Sci Eng, 1-11. doi:https://doi.org/10.1007/s13369-023-07674-3

  85. Oluwadare Adepeju Adebisi A (2020) Computer Aided Diagnosis System for Classification of Abnormalities in Thyroid Nodules Ultrasound Images using Deep Learning. IOSR J Comput Eng (IOSR-JCE) 22(3):60–66. https://doi.org/10.9790/0661-2203016066

    Article  Google Scholar 

  86. Huan Zheng, Z. X. (2022). Improve follicular thyroid carcinoma diagnosis using computer aided diagnosis system on ultrasound images. Frontiers in Oncology, 1-10. doi:https://doi.org/10.3389/fonc.2022.939418

  87. Rajshree Srivastava PK (2023) A CNN-SVM hybrid model for the classification of thyroid nodules in medical ultrasound images. Intl J Grid Utility Comput 13(6):624–639. https://doi.org/10.1504/IJGUC.2022.128316

    Article  Google Scholar 

  88. Beyyala A, Priya R, Choudary SR, Bhavani R (2023) Thyroid Nodule Classification of Ultrasound Image by Convolutional Neural Network. Innovations in Bio-Inspired Computing and Applications. IBICA 2022. Lecture Notes in Networks and Systems, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-031-27499-2_85

  89. Chuang Xi RD (2023) AI-BRAFV600E: A deep convolutional neural network for BRAFV600E mutation status prediction of thyroid nodules using ultrasound image. Early View, 1-13. doi:https://doi.org/10.1002/VIW.20220057

  90. Xia Xie YT (2023) Reinforced Computer-aided Framework for Diagnosing Thyroid Cancer. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1-11. doi: https://doi.org/10.1109/TCBB.2023.3251323

  91. Zhang X, Lee VCS, Rong J, Liu F, Kong H (2022) Multi-channel convolutional neural network architectures for thyroid cancer detection. PLoS One 17(1):e0262128. https://doi.org/10.1371/journal.pone.0262128

    Article  Google Scholar 

  92. Tahin Tasnimi HR (2022) Diagnosis of anomalies based on hybrid features extraction in thyroid images. Multimed Tools Appl 82:3859–3877. https://doi.org/10.1007/s11042-022-13433-7

    Article  Google Scholar 

  93. Peddakama R (2023) Developing a Deep Learning Ultrasonography Model to Classify Thyroid Nodules as Benign. medRxiv, 1-14. doi:https://doi.org/10.1101/2022.12.31.22284087

  94. Pavithra S, Vanithamani R, Justin J (2022) Classification of Stages of Thyroid Nodules in Ultrasound Images Using Transfer Learning Methods. In: Chen, J.IZ., Tavares, J.M.R.S., Iliyasu, A.M., Du, KL. (eds) Second International Conference on Image Processing and Capsule Networks. ICIPCN 2021. Lecture Notes in Networks and Systems, vol 300. Springer, Cham. https://doi.org/10.1007/978-3-030-84760-9_22

  95. Avola D, Cinque L, Fagioli A, Filetti S, Grani G, Rodola E (2021) Multimodal Feature Fusion and Knowledge-Driven Learning via Experts Consult for Thyroid Nodule Classification. IEEE 9Transactions on Circuits and Systems for Video Technology, 1–1. doi:https://doi.org/10.1109/tcsvt.2021.3074414

  96. Verma A, Singh VP (2022) HSADML: Hyper-Sphere Angular Deep Metric Based Learning for Brain Tumor Classification. In: Mudenagudi, U., Nigam, A., Sarvadevabhatla, R.K., Choudhary, A. (eds) Proceedings of the Satellite Workshops of ICVGIP 2021. Lecture Notes in Electrical Engineering, vol 924. Springer, Singapore. https://doi.org/10.1007/978-981-19-4136-8_8

  97. Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G (2009) Computerized Medical Imaging and Graphics Morphological and wavelet features towards sonographic thyroid nodules evaluation. Comput Med Imaging Graph 33:91–99. https://doi.org/10.1016/j.compmedimag.2008.10.010

    Article  Google Scholar 

  98. Acharya UR, Sree SV, Rama MM et al (2012) Non-invasive automated 3D thyroid lesion classification in ultrasound : A class of ThyroScan TM systems. Ultrasonics 52:508–520. https://doi.org/10.1016/j.ultras.2011.11.003

    Article  Google Scholar 

  99. Song G, Xue F, Zhang C (2015) A Model Using Texture Features to Differentiate the Nature of Thyroid Nodules on Sonography. J Ultrasound Med 34:1753–1760. https://doi.org/10.7863/ultra.15.14.10045

    Article  Google Scholar 

  100. Katsigiannis SEGK (2010) A Contourlet Transform Feature Extraction Scheme for Ultrasound Thyroid Texture Classification. Eng Intell Syst 18

  101. Acharya UR, Sree SV, Swapna G et al (2013) Effect of complex wavelet transform filter on thyroid tumor classification in three-dimensional ultrasound. Proc Inst Mech Eng Part H J Eng Med 227:284–292. https://doi.org/10.1177/0954411912472422

    Article  Google Scholar 

  102. Acharya UR, Chowriappa P, Fujita H, Bhat S (2016) Thyroid lesion classification in 242 patient population using G abor transform features from high resolution ultrasound images. Knowle dge-Base d Syst 0:1–11. https://doi.org/10.1016/j.knosys.2016.06.010

  103. Acharya UR, S VS, Molinari F, et al (2012) Automated Benign & Malignant Thyroid Lesion Characterization and Classification in 3D Contrast-Enhanced Ultrasound. 34th Annu Int Conf IEEE EMBS 452–455

  104. A SA, Babu SS (2013) Thyroid Classification as Normal and Abnormal using SCG based Feed Forward Back Propagation Neural Network Algorithm. Int J Comput Sci Mob Comput 134–141

  105. Acharya UR, Sree SV, Mookiah MRK et al (2013) Diagnosis of Hashimoto ’ s thyroiditis in ultrasound using tissue characterization and pixel classification. J Eng Med 227:788–798. https://doi.org/10.1177/0954411913483637

    Article  Google Scholar 

  106. Nugroho A, Nugroho HA, Setiawan NA, Choridah L (2016) Internal content classification of ultrasound thyroid nodules based on textural features. Commun Sci Technol 1:61–69. https://doi.org/10.21924/cst.1.2.2016.25

    Article  Google Scholar 

  107. Koprowski R, Korzy A, Wróbel Z et al (2012) Influence of the measurement method of features in ultrasound images of the thyroid in the diagnosis of Hashimoto ’ s disease. Biomed Eng (NY) 11:1–21. https://doi.org/10.1186/1475-925X-11-91

    Article  Google Scholar 

  108. Algorithmus E, Klassifikator-parametereinstellung D (2012) Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification. Ultraschall Med 35:237–245

    Article  Google Scholar 

  109. Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G (2006) A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Comput Methods Prog Biomed 4:86–98. https://doi.org/10.1016/j.cmpb.2006.09.006

    Article  Google Scholar 

  110. ImageNet. http://www.image-net.org

  111. Yadav N, Dass R, Virmani J (2022) Objective assessment of segmentation models for thyroid ultrasound images. J Ultrasound. https://doi.org/10.1007/s40477-022-00726-8

  112. Frank E, Hall MA, Witten IH (2016) The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition, 2016

  113. Wang S-H, Zhang Y, Cheng X, Zhang X, Zhang Y-D (2021) PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an explainable diagnosis of COVID-19 with multiple-way data augmentation. Comput Math Meth Med, 2021 , 6633755. pp. 1-18. doi:https://doi.org/10.1155/2021/6633755

  114. Hassan TM, Elmogy M, Sallam ES (2017) Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images. Arab J Sci Eng 42:3127–3140. https://doi.org/10.1007/s13369-016-2387-9

    Article  Google Scholar 

  115. Ghoniem RM (2020) A Novel Bio-Inspired Deep Learning Approach for Liver Cancer Diagnosis. Information 11, no. 2: 80. 10.3390/info11020080

  116. Kriti, Virmani J, Agarwal R (2018) Deep feature extraction and classification of breast ultrasound images. Multimed Tools Appl 79(37-38):27257–27292. https://doi.org/10.1007/s11042-020-09337-z

    Article  Google Scholar 

  117. Virmani J, Kumar V, Kalra N, Khandelwal N (2013) PCA-SVM based CAD System for Focal Liver Lesions using B-Mode Ultrasound Images. Defence Science Journal 63(5), 478-486. 10.14429/dsj.63.3951

  118. Virmani J, Kumar V, Kalra N, Khandelwal N (2011) A rapid approach for prediction of liver cirrhosis based on first order statistics. Intl Conf Multimed Signal Process Commun Technol https://doi.org/10.1109/MSPCT.2011.6150477

Download references

Acknowledgments

The first author acknowledges “National Project Implementation Unit (NPIU), a unit of the Ministry of Human Resource Development, Government of India” for the financial assistantship through the TEQIP-III project at Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Yadav.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Dass, R. & Virmani, J. Deep learning-based CAD system design for thyroid tumor characterization using ultrasound images. Multimed Tools Appl 83, 43071–43113 (2024). https://doi.org/10.1007/s11042-023-17137-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17137-4

Keywords

Navigation