Skip to main content

Advertisement

Log in

ΤND: A Thyroid Nodule Detection System for Analysis of Ultrasound Images and Videos

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a computer-aided-diagnosis (CAD) system prototype, named TND (Thyroid Nodule Detector), for the detection of nodular tissue in ultrasound (US) thyroid images and videos acquired during thyroid US examinations. The proposed system incorporates an original methodology that involves a novel algorithm for automatic definition of the boundaries of the thyroid gland, and a novel approach for the extraction of noise resilient image features effectively representing the textural and the echogenic properties of the thyroid tissue. Through extensive experimental evaluation on real thyroid US data, its accuracy in thyroid nodule detection has been estimated to exceed 95%. These results attest to the feasibility of the clinical application of TND, for the provision of a second more objective opinion to the radiologists by exploiting image evidences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Welker, M., Orlov, D., Thyroid Nodules. American Family Physician, 67, 2003.

  2. Raeth, U., Schlaps, D., Limberg, B., Zuna, I., Lorenz, A., Kaick, G., Lorenz, W. J., and Kommerell, B., Diagnostic accuracy of computerized B-scan texture analysis and conventional ultrasonography in diffuse parenchymal and malignant liver disease. J Clin Ultrasound 13:87–99, 1985.

    Article  Google Scholar 

  3. Abe, C., Kahn, C. E., Doi, K., and Katsuragawa, S., Computer-aided detection of diffuse liver disease in ultrasound images. Investig Radiol 27:71–77, 1992.

    Article  Google Scholar 

  4. Kadah, Y. M., Farag, A. A., Zurada, J. M., Badawi, A. M., and Youssef, A. M., Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images. IEEE Trans Med Imaging 15:466–478, 1996.

    Article  Google Scholar 

  5. Horsch, K., Giger, M. L., Vyborny, C. J., and Venta, L. A., Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad Radiol 11:272–280, 2004.

    Article  Google Scholar 

  6. Joo, S., Yang, Y. S., Moon, W. K., and Kim, H. C., Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Trans Med Imaging 23:1292–1300, 2004.

    Article  Google Scholar 

  7. Kuo, W. J., Chang, R. F., Moon, W. K., Lee, C. C., and Chen, D. R., Computer-aided diagnosis of breast tumors with different US systems. Acad. Radiology 9:793–799, 2002.

    Article  Google Scholar 

  8. Huynen, A., Giesen, R., De La Rosette, J., Aarnink, R., Debruyne, F., and Wijkstra, H., Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. Ultrasound Med Biol 20:1–10, 1994.

    Article  Google Scholar 

  9. Rosette, J., Computerized analysis of transrectal ultrasonography images in the detection of prostate carcinoma. Br J Urol 75:485–491, 1995.

    Article  Google Scholar 

  10. Smutek, D., Šara, R., Sucharda, P., Tjahjadi, T., and Švec, M., Image texture analysis of sonograms in chronic inflammations of thyroid gland. Ultrasound Med Biol 29:1531–1543, 2003.

    Article  Google Scholar 

  11. Muzzolini, R., Yang, Y. H., and Pierson, R., Texture characterization using robust statistics. Pattern Recognit 27(1):119–134, 1994.

    Article  Google Scholar 

  12. Haralick, R. M., Dinstein, I., and Shanmugamm, K., Textural features for image classification. IEEE Trans. On Systems, Man and Cybernetics 3(6):610–621, 1973.

    Article  Google Scholar 

  13. Tsantis, S., Cavouras, D., Kalatzis, I., Piliouras, N., Dimitropoulos, N., and Nikiforidis, G., Development of a support vector machine-based image analysis system for assessing the thyroid nodule malignancy risk. Ultrasound Med Biology 31:1451–1459, 2005.

    Article  Google Scholar 

  14. Maroulis, D. E., Savelonas, M., Karkanis, S. A., Iakovidis, D. K., Dimitropoulos, N., Computer-Aided Thyroid Nodule Detection in Ultrasound Images, IEEE International Symposium on Computer-Based Medical Systems—CBMS: 271–276, 2005.

  15. Mailloux, G., Bertrand, M., Stampfler, R., and Ethier, S., Local histogram information content of ultrasound B-mode echographic texture. Ultrasound Med Biol 11:743–750, 1985.

    Article  Google Scholar 

  16. Mailloux, G., Bertrand, M., Stampfler, R., and Ethier, S., Computer analysis of echographic textures in hashimoto disease of the thyroid. J Clin Ultrasound 14:521–527, 1986.

    Article  Google Scholar 

  17. Morifuji, H., Analysis of ultrasound B-mode histogram in thyroid tumors. Nippon Geka Gakkai Zasshi 90(2):210–221, 1989.

    Google Scholar 

  18. Hirning, T., Zuna, I., and Schlaps, D., Quantification and classification of echographic findings the thyroid gland by computerized b-mode texture analysis. Eur J Radiol 9:244–247, 1989.

    Google Scholar 

  19. Julesz, B., Textons, the elements of texture perception, and their interactions. Nature 290:91, 1981.

    Article  Google Scholar 

  20. Skouroliakou, C., Lyra, M., Antoniou, A., and Vlahos, L., Quantitative image analysis in sonograms of the thyroid gland. Nucl Instrum Meth Phys 569:606–609, 2006.

    Article  Google Scholar 

  21. Savelonas, M. A., Iakovidis, D. K., Dimitropoulos, N., and Maroulis, D., Computational Characterization of Thyroid Tissue in the Radon Domain, IEEE Internationa Symposium on Computer-Based Medical Systems 189-192, 2007.

  22. Keramidas, E. G., Iakovidis, D., Maroulis, D., and Karkanis, S. A., Efficient and effective ultrasound image analysis scheme for thyroid nodule detection. Lect Notes Comput Sci 4633:1052–1060, 2007.

    Article  Google Scholar 

  23. Iakovidis, D. K., Keramidas, E., and Maroulis, D., Fuzzy local binary patterns for ultrasound texture characterization, image analysis and recognition. International Conference (ICIAR 2008) Springer LNCS 5112:750–759, 2008.

    Google Scholar 

  24. Wilhjelm, J., Gronholdt, M. L., Wiebe, B., Jespersen, S. K., Hansen, L. K., and Sillesen, H., Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: correlation with visual classifcation and histological examination. IEEE Trans Med Imaging 17:910–922, 1998.

    Article  Google Scholar 

  25. Rumack, C. M., Wilson, S. R., Charboneau, J. W., Johnson, J. A., Diagnostic Ultrasound, Mosby, ISBN 0323020232, 2004.

  26. Maroulis, D. E., Savelonas, M. A., Iakovidis, D. K., Karkanis, S. A., and Dimitropoulos, N., Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images. IEEE Trans Inf Technol Biomed 11(5):537–543, 2007.

    Article  Google Scholar 

  27. Chen, D.-R., Chang, R.-F., Wu, W.-J., Moon, W. K., and Wu, W.-L., 3-D breast ultrasound segmentation using active contour model. Ultrasound Med Biol 29(7):1017–1026, 2003.

    Article  Google Scholar 

  28. Hu, N., Downey, D. B., Fenster, A., and Ladak, H. M., Prostate boundary segmentation from 3d ultrasound images. Med Phys 30(7):1648–1659, 2003.

    Article  Google Scholar 

  29. Chiu, B., Freeman, G. H., Salama, M. M. A., and Fenster, A., Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour. Phys Med Biol 49(21):4943–4960, 2004.

    Article  Google Scholar 

  30. Ojala, T., Pietikainen, M., Harwood, D., A comparative study of texture measures with classification based on featured distribution. Pattern Recognition 29, 1996.

  31. Petrou, M., and Sevilla, P. G., Image Processing: Dealing With Texture, John Wiley and Sons Ltd, 2006.

  32. Jasjit, S., Wilson, D., and Laxminarayan, S., (Eds.) Handbook of Biomedical Image Analysis, 2005, ISBN: 978-0-306-48550-3.

  33. Simeone, F. J., Daniel, G. H., and MuLler, P. R., High-resolution real-time sonography. Radiology 155:431–439, 1985.

    Google Scholar 

  34. Jawahar, C. V., and Ray, A. K., Fuzzy statistics of digital images. IEEE Signal Process Lett 3:225–227, 1996.

    Article  Google Scholar 

  35. Chapelle, O., Haffner, P., and Vapnik, V. N., Support vector machines for histogram-based image classification. IEEE Trans Neural Netw. IEEE Trans 10:1055–1064, 1999.

    Article  Google Scholar 

  36. Vapnik, V. N., The nature of statistical learning theory. Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  37. Burges, C., A tutorial on support vector machines for pattern recognition, Kluwer Academic Publishers, 1998.

  38. Theodoridis, S., and Koutroumbas, K., Pattern Recognition, Academic Press, 2008.

  39. Maroulis, D., Iakovidis, D., Karkanis, S., and Karras, D., COLD: a versatile system for detection of colorectal lesions in endoscopic images. Comput Meth Programs Biomed 70:151–166, 2003.

    Article  Google Scholar 

  40. General Electric Healthcare. Ultrasound Imaging System, Voluson 730 Pro. Retrieved August 6 2010, http://www.gehealthcare.com/usen/ultrasound/genimg/products/voluson730/index.html.

  41. Tomimori, E. K., Camaro, C. Y., Bisi, H., and Medeiros-Neto, G., Combined ultrasongraphic and cytological studies in the diagnosis of thyroid nodules. Biochimie 81:447–452, 1999.

    Article  Google Scholar 

  42. Kaus, M. R., Warfield, S. K., Jolesz, F. A., and Kikinis, R., Segmentation of Meningiomas and Low Grade Gliomas in MRI, International Conference on Medical Image Computing and Computer-Assisted Intervention, 1-10, 1999.

  43. Samarasinghe, S., Neural Networks for Applied Sciences and Engineering, Auerbach Publications Boston, USA ISBN:084933375, 2006.

  44. Leary, R. H., Rosen, J. B., and Jambeckz, P., An optimal structure-discriminative amino acid index for protein fold recognition. Biophys J 86:411–419, 2004.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank EUROMEDICA S.A., Greece for the provision of the medical images. We would also like to thank N. Dimitropoulos, M.D. and G. Legakis, M.D. for their continuous support and advice. This work was supported by the Greek General Secretariat of Research and Technology (25%), the European Social Fund (75%), and the private sector, under the framework of Measure 8.3 of E.P. Antagonistikotita—3rd European Support Framework—PENED 2003 (grant no. 03-ED-662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eystratios G. Keramidas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keramidas, E.G., Maroulis, D. & Iakovidis, D.K. ΤND: A Thyroid Nodule Detection System for Analysis of Ultrasound Images and Videos. J Med Syst 36, 1271–1281 (2012). https://doi.org/10.1007/s10916-010-9588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9588-7

Keywords

Navigation