Skip to main content

Advertisement

Log in

The application of MARCO for immune regulation and treatment

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Macrophage receptor with collagen structure (MARCO) is a member of scavenger receptor class A (SR-A) and shares structural and functional similarities with SR-A1. In recent years, many studies have shown that MARCO can trigger an immune response and has therapeutic potential as a target for immunotherapy. Studies have shown that alterations in MARCO expression following pathogen infection cause changes in the functions of innate and adaptive immune cells, including macrophages, dendritic cells, B cells, and T cells, affecting the body’s immune response to invading pathogens; thus, MARCO plays a crucial role in triggering the immune response, bridging innate and adaptive immunity, and eliminating pathogens. This paper is a comprehensive summary of the recent research on MARCO. This review focuses on the multiple functions of MARCO, including adhesion, migration, phagocytosis, and cytokine secretion with special emphasis on the complex interactions between MARCO and various types of cells involved in the immune response, as well as possible immune-related mechanisms. In summary, in this review, we discuss the structure and function of MARCO and its role in the immune response and highlight the therapeutic potential of MARCO as a target for immunotherapy. We hope that this review provides a theoretical basis for future research on MARCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

MARCO:

Macrophage Receptor with Collagen Structure

SR-A:

scavenger receptor class A

PAMPs:

pathogen-associated molecular patterns

PRRs:

pattern recognition receptors

TLRs:

Toll-like receptors

SRs:

scavenger receptors

SRCR:

scavenger receptor cysteine rich

TNFα:

tumor necrosis factor alpha

IFN-γ:

interferon-gamma

References

  1. Hirayama D, Iida T, Nakase H (2017) The phagocytic function of macrophage-enforcing Innate immunity and tissue homeostasis. Int J Mol Sci 19:92. https://doi.org/10.3390/ijms19010092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fearon DT, Locksley RM (1996) The instructive role of Innate Immunity in the Acquired Immune Response. Science 272:50–54. https://doi.org/10.1126/science.272.5258.50

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gareev I, de Jesus Encarnacion Ramirez M, Goncharov E et al (2023) MiRNAs and lncRNAs in the regulation of innate immune signaling. Non-Coding RNA Res 8:534–541. https://doi.org/10.1016/j.ncrna.2023.07.002

    Article  CAS  Google Scholar 

  4. Ackermann M, Dragon AC, Lachmann N (2020) The Immune-Modulatory properties of iPSC-Derived Antigen-presenting cells. Transfus Med Hemotherapy 47:444–453. https://doi.org/10.1159/000512721

    Article  Google Scholar 

  5. Cheok YY, Tan GMY, Lee CYQ et al (2022) Innate immunity crosstalk with Helicobacter pylori: Pattern Recognition receptors and Cellular responses. Int J Mol Sci 23:7561. https://doi.org/10.3390/ijms23147561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Linares-Alcántara E, Mendlovic F (2022) Scavenger receptor A1 Signaling pathways affecting macrophage functions in Innate and adaptive immunity. Immunol Invest 51:1725–1755. https://doi.org/10.1080/08820139.2021.2020812

    Article  CAS  PubMed  Google Scholar 

  7. PrabhuDas MR, Baldwin CL, Bollyky PL et al (2017) A Consensus definitive classification of scavenger receptors and their roles in Health and Disease. J Immunol 198:3775–3789. https://doi.org/10.4049/jimmunol.1700373

    Article  CAS  PubMed  Google Scholar 

  8. Elomaa O, Kangas M, Sahlberg C et al (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603–609. https://doi.org/10.1016/0092-8674(95)90514-6

    Article  CAS  PubMed  Google Scholar 

  9. Elomaa O, Sankala M, Pikkarainen T et al (1998) Structure of the human macrophage MARCO receptor and characterization of its Bacteria-binding region. J Biol Chem 273:4530–4538. https://doi.org/10.1074/jbc.273.8.4530

    Article  CAS  PubMed  Google Scholar 

  10. Elshourbagy NA, Li X, Terrett J et al (2000) Molecular characterization of a human scavenger receptor, human MARCO. Eur J Biochem 267:919–926. https://doi.org/10.1046/j.1432-1327.2000.01077.x

    Article  CAS  PubMed  Google Scholar 

  11. Sankala M, Bra¨nnstro¨m A, Schulthess T et al (2002) Characterization of recombinant soluble macrophage scavenger receptor MARCO. J Biol Chem 277:33378–33385. https://doi.org/10.1074/jbc.M204494200

    Article  CAS  PubMed  Google Scholar 

  12. Bowdish DME, Gordon S (2009) Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev 227:19–31. https://doi.org/10.1111/j.1600-065X.2008.00728.x

    Article  CAS  PubMed  Google Scholar 

  13. Novakowski KE, Huynh A, Han S et al (2016) A naturally occurring transcript variant of MARCO reveals the SRCR domain is critical for function. Immunol Amp Cell Biol 94:646–655. https://doi.org/10.1038/icb.2016.20

    Article  CAS  Google Scholar 

  14. Brännström A, Sankala M, Tryggvason K, Pikkarainen T (2002) Arginine residues in Domain V have a central role for Bacteria-binding activity of macrophage scavenger receptor MARCO. Biochem Biophys Res Commun 290:1462–1469. https://doi.org/10.1006/bbrc.2002.6378

    Article  CAS  PubMed  Google Scholar 

  15. Palecanda A, Paulauskis J, Al-Mutairi E et al (1999) Role of the scavenger receptor MARCO in Alveolar Macrophage binding of Unopsonized Environmental particles. J Exp Med 189:1497–1506. https://doi.org/10.1084/jem.189.9.1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arredouani M, Yang Z, Ning Y et al (2004) The scavenger receptor MARCO is required for Lung Defense against Pneumococcal Pneumonia and Inhaled particles. J Exp Med 200:267–272. https://doi.org/10.1084/jem.20040731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arredouani MS, Palecanda A, Koziel H et al (2005) MARCO is the major binding receptor for unopsonized particles and Bacteria on human alveolar macrophages. J Immunol 175:6058–6064. https://doi.org/10.4049/jimmunol.175.9.6058

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton RF, Thakur SA, Mayfair JK, Holian A (2006) MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J Biol Chem 281:34218–34226. https://doi.org/10.1074/jbc.M605229200

    Article  CAS  PubMed  Google Scholar 

  19. Dahl M, Bauer AK, Arredouani M et al (2007) Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II. J Clin Invest 117:757–764. https://doi.org/10.1172/JCI29968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang M, Qian X, Wang N et al (2019) Inhibition of MARCO ameliorates silica-induced pulmonary fibrosis by regulating epithelial-mesenchymal transition. Toxicol Lett 301:64–72. https://doi.org/10.1016/j.toxlet.2018.10.031

    Article  CAS  PubMed  Google Scholar 

  21. Cai T, Xu L, Xia D et al (2022) Polyguanine alleviated autoimmune hepatitis through regulation of macrophage receptor with collagenous structure and TLR4-TRIF‐NF‐κB signalling. J Cell Mol Med 26:5690–5701. https://doi.org/10.1111/jcmm.17599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsay H-J, Huang Y-C, Chen Y-J et al (2016) Identifying N-linked glycan moiety and motifs in the cysteine-rich domain critical for N-glycosylation and intracellular trafficking of SR-AI and MARCO. J Biomed Sci 23:27. https://doi.org/10.1186/s12929-016-0244-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. La Fleur L, Boura VF, Alexeyenko A et al (2018) Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non‐small cell lung cancer. Int J Cancer 143:1741–1752. https://doi.org/10.1002/ijc.31545

    Article  CAS  PubMed  Google Scholar 

  24. Grolleau A, Misek DE, Kuick R et al (2003) Inducible expression of macrophage receptor Marco by dendritic cells following phagocytic uptake of dead cells uncovered by Oligonucleotide Arrays. J Immunol 171:2879–2888. https://doi.org/10.4049/jimmunol.171.6.2879

    Article  CAS  PubMed  Google Scholar 

  25. Thier K, Möckel M, Palitzsch K et al (2018) Entry of Herpes Simplex Virus 1 into Epidermis and dermal fibroblasts is Independent of the scavenger receptor MARCO. J Virol 92:e00490–e00418. https://doi.org/10.1128/JVI.00490-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song Q, Wang X-Q, Holmes TR et al (2021) Epidermal SR-A complexes are lipid raft based and promote nucleic acid nanoparticle uptake. J Invest Dermatol 141:1428–1437e8. https://doi.org/10.1016/j.jid.2020.10.027

    Article  CAS  PubMed  Google Scholar 

  27. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634. https://doi.org/10.1038/nri3515

    Article  CAS  PubMed  Google Scholar 

  28. Kanno S, Furuyama A, Hirano S (2007) A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci 97:398–406. https://doi.org/10.1093/toxsci/kfm050

    Article  CAS  PubMed  Google Scholar 

  29. Lara S, Perez-Potti A, Herda LM et al (2018) Differential Recognition of Nanoparticle Protein Corona and modified low-density lipoprotein by macrophage receptor with Collagenous Structure. ACS Nano 12:4930–4937. https://doi.org/10.1021/acsnano.8b02014

    Article  CAS  PubMed  Google Scholar 

  30. Alberts A, Klingberg A, Hoffmeister L et al (2020) Binding of macrophage receptor MARCO, LDL, and LDLR to Disease-Associated Crystalline structures. Front Immunol 11:596103. https://doi.org/10.3389/fimmu.2020.596103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krieger M (1992) Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor. Trends Biochem Sci 17:141–146. https://doi.org/10.1016/0968-0004(92)90322-z

    Article  CAS  PubMed  Google Scholar 

  32. Son K, Miyasaki K, Salter B et al (2023) Autoantibody-mediated macrophage dysfunction in patients with severe asthma with Airway infections. Am J Respir Crit Care Med 207:427–437. https://doi.org/10.1164/rccm.202206-1183OC

    Article  CAS  PubMed  Google Scholar 

  33. Józefowski S, Sulahian TH, Arredouani M, Kobzik L (2006) Role of scavenger receptor MARCO in macrophage responses to CpG oligodeoxynucleotides. J Leukoc Biol 80:870–879. https://doi.org/10.1189/jlb.0705357

    Article  CAS  PubMed  Google Scholar 

  34. Kodama T, Doi T, Suzuki H et al (1996) Collagenous macrophage scavenger receptors. Curr Opin Lipidol 7:287–291. https://doi.org/10.1097/00041433-199610000-00005

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki H, Kurihara Y, Takeya M et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296. https://doi.org/10.1038/386292a0

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Alarcón R, Fuenzalida C, Santibáñez M, von Bernhardi R (2005) Expression of scavenger receptors in glial cells. J Biol Chem 280:30406–30415. https://doi.org/10.1074/jbc.M414686200

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Pikkarainen T, Elomaa O et al (2005) Defective microarchitecture of the Spleen Marginal Zone and impaired response to a Thymus-independent type 2 Antigen in mice lacking scavenger receptors MARCO and SR-A. J Immunol 175:8173–8180. https://doi.org/10.4049/jimmunol.175.12.8173

    Article  CAS  PubMed  Google Scholar 

  38. Matsushita N, Komine H, Grolleau-Julius A et al (2010) Targeting MARCO can lead to enhanced dendritic cell motility and anti-melanoma activity. Cancer Immunol Immunother 59:875–884. https://doi.org/10.1007/s00262-009-0813-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komine H, Kuhn L, Matsushita N et al (2013) Examination of MARCO Activity on dendritic cell phenotype and function using a gene knockout mouse. PLoS ONE 8:e67795. https://doi.org/10.1371/journal.pone.0067795

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Jiao Y, Fan EK et al (2017) Aging-impaired filamentous actin polymerization signaling reduces alveolar macrophage phagocytosis of Bacteria. J Immunol 199:3176–3186. https://doi.org/10.4049/jimmunol.1700140

    Article  CAS  PubMed  Google Scholar 

  41. Kanno S, Hirano S, Sakamoto T et al (2020) Scavenger receptor MARCO contributes to cellular internalization of exosomes by dynamin-dependent endocytosis and macropinocytosis. Sci Rep 10:21795. https://doi.org/10.1038/s41598-020-78464-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qianqian Xing Y, Feng H Sun, et al (2021) Scavenger receptor MARCO contributes to macrophage phagocytosis and clearance of tumor cells. Exp Cell Res 408:112862. https://doi.org/10.1016/j.yexcr.2021.112862

    Article  CAS  PubMed  Google Scholar 

  43. Rogers NJ, Lees MJ, Gabriel L et al (2009) A defect in Marco expression contributes to systemic Lupus Erythematosus Development via failure to clear apoptotic cells. J Immunol 182:1982–1990. https://doi.org/10.4049/jimmunol.0801320

    Article  CAS  PubMed  Google Scholar 

  44. Wright AKA, Rao S, Range S et al (2009) Pivotal advance: expansion of small sputum macrophages in CF: failure to express MARCO and mannose receptors. J Leukoc Biol 86:479–489. https://doi.org/10.1189/jlb.1108699

    Article  CAS  PubMed  Google Scholar 

  45. Sheng X, Zhao J, Li M et al (2021) Bone marrow mesenchymal stem cell-derived exosomes accelerate functional recovery after spinal cord Injury by promoting the phagocytosis of macrophages to clean myelin debris. Front Cell Dev Biol 9:772205. https://doi.org/10.3389/fcell.2021.772205

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sun Y, Xiao W, Yu Y et al (2023) Colorectal cancer-derived extracellular vesicles containing HSP70 enhance macrophage phagocytosis by up-regulating MARCO expression. Exp Cell Res 426:113565. https://doi.org/10.1016/j.yexcr.2023.113565

    Article  CAS  PubMed  Google Scholar 

  47. Carpentier KS, Sheridan RM, Lucas CJ et al (2021) MARCO + lymphatic endothelial cells sequester arthritogenic alphaviruses to limit viremia and viral dissemination. EMBO J 40:e108966. https://doi.org/10.15252/embj.2021108966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blanchet C, Jouvion G, Fitting C et al (2014) Protective or deleterious role of Scavenger receptors SR-A and CD36 on Host Resistance to Staphylococcus aureus depends on the site of infection. PLoS ONE 9:e87927. https://doi.org/10.1371/journal.pone.0087927

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maler MD, Nielsen PJ, Stichling N et al (2017) Key role of the scavenger receptor MARCO in Mediating Adenovirus infection and subsequent innate responses of macrophages. mBio 8:e00670–e00617. https://doi.org/10.1128/mBio.00670-17

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thakur SA, Beamer CA, Migliaccio CT, Holian A (2009) Critical role of MARCO in Crystalline silica–Induced Pulmonary inflammation. Toxicol Sci 108:462–471. https://doi.org/10.1093/toxsci/kfp011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biswas R, Hamilton RF, Holian A (2014) Role of lysosomes in silica-Induced Inflammasome activation and inflammation in absence of MARCO. J Immunol Res 2014:1–10. https://doi.org/10.1155/2014/304180

    Article  CAS  Google Scholar 

  52. Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC et al (2017) Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during Diet-Induced obesity. Cell Rep 20:3149–3161. https://doi.org/10.1016/j.celrep.2017.08.096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wölle S, Via DP, Chan L et al (1995) Hepatic overexpression of bovine scavenger receptor type I in transgenic mice prevents diet-induced hyperbetalipoproteinemia. J Clin Invest 96:260–272. https://doi.org/10.1172/JCI118030

    Article  PubMed  PubMed Central  Google Scholar 

  54. Perez A, Wright MB, Maugeais C et al (2010) MARCO, a macrophage scavenger receptor highly expressed in rodents, mediates dalcetrapib-induced uptake of lipids by rat and mouse macrophages. Toxicol in Vitro 24:745–750. https://doi.org/10.1016/j.tiv.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  55. Brunner JS, Vogel A, Lercher A et al (2020) The PI3K pathway preserves metabolic health through MARCO-dependent lipid uptake by adipose tissue macrophages. Nat Metab 2:1427–1442. https://doi.org/10.1038/s42255-020-00311-5

    Article  CAS  PubMed  Google Scholar 

  56. Jawad S, Liu B, Li Z et al (2013) The role of Macrophage Class A Scavenger receptors in a Laser-Induced Murine Choroidal Neovascularization Model. Investig Opthalmology Amp Vis Sci 54:5959. https://doi.org/10.1167/iovs.12-11380

    Article  CAS  Google Scholar 

  57. Xu J, Flaczyk A, Neal LM et al (2017) Scavenger receptor MARCO orchestrates early defenses and contributes to Fungal Containment during cryptococcal infection. J Immunol 198:3548–3557. https://doi.org/10.4049/jimmunol.1700057

    Article  CAS  PubMed  Google Scholar 

  58. Brown JM, Swindle EJ, Kushnir-Sukhov NM et al (2007) Silica-Directed mast cell activation is enhanced by scavenger receptors. Am J Respir Cell Mol Biol 36:43–52. https://doi.org/10.1165/rcmb.2006-0197OC

    Article  CAS  PubMed  Google Scholar 

  59. Granucci F, Petralia F, Urbano M et al (2003) The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia. Blood 102:2940–2947. https://doi.org/10.1182/blood-2002-12-3651

    Article  CAS  PubMed  Google Scholar 

  60. Kissick HT, Dunn LK, Ghosh S et al (2014) The scavenger receptor MARCO modulates TLR-Induced responses in dendritic cells. PLoS ONE 9:e104148. https://doi.org/10.1371/journal.pone.0104148

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eisinger S, Sarhan D, Boura VF et al (2020) Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc Natl Acad Sci 117:32005–32016. https://doi.org/10.1073/pnas.2015343117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. La Fleur L, Botling J, He F et al (2021) Targeting MARCO and IL37R on Immunosuppressive macrophages in Lung Cancer Blocks Regulatory T Cells and supports cytotoxic lymphocyte function. Cancer Res 81:956–967. https://doi.org/10.1158/0008-5472.CAN-20-1885

    Article  CAS  PubMed  Google Scholar 

  63. Sarhan D, Eisinger S, He F et al (2022) Targeting myeloid suppressive cells revives cytotoxic anti-tumor responses in pancreatic cancer. iScience 25:105317. https://doi.org/10.1016/j.isci.2022.105317

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen Y, Wermeling F, Sundqvist J et al (2010) A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses. Eur J Immunol 40:1451–1460. https://doi.org/10.1002/eji.200939891

    Article  CAS  PubMed  Google Scholar 

  65. Jordö ED, Wermeling F, Chen Y, Karlsson MCI (2011) Scavenger receptors as regulators of natural antibody responses and B cell activation in autoimmunity. Mol Immunol 48:1307–1318. https://doi.org/10.1016/j.molimm.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  66. Karlsson MCI, Guinamard R, Bolland S et al (2003) Macrophages Control the Retention and trafficking of B lymphocytes in the Splenic Marginal Zone. J Exp Med 198:333–340. https://doi.org/10.1084/jem.20030684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kraal G, Mebius R (2006) New insights into the Cell Biology of the marginal zone of the spleen. Int Rev Cytol 250:175–215. https://doi.org/10.1016/S0074-7696(06)50005-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prokopec KE, Georgoudaki A-M, Sohn S et al (2016) Cutting edge: marginal zone macrophages regulate Antigen Transport by B cells to the follicle in the spleen via CD21. J Immunol 197:2063–2068. https://doi.org/10.4049/jimmunol.1502282

    Article  CAS  PubMed  Google Scholar 

  69. Xu J, Flaczyk A, Neal LM et al (2017) Exploitation of Scavenger receptor, macrophage receptor with Collagenous structure, by Cryptococcus neoformans promotes alternative activation of Pulmonary Lymph Node CD11b + conventional dendritic cells and non-protective Th2 Bias. Front Immunol 8:1231. https://doi.org/10.3389/fimmu.2017.01231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dong Q, Zhang S, Zhang H et al (2023) MARCO is a potential prognostic and immunotherapy biomarker. Int Immunopharmacol 116:109783. https://doi.org/10.1016/j.intimp.2023.109783

    Article  CAS  PubMed  Google Scholar 

  71. Wu M, Gibbons JG, DeLoid GM et al (2017) Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia. Am J Physiol-Lung Cell Mol Physiol 313:L138–L153. https://doi.org/10.1152/ajplung.00075.2017

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kang M-J, Jang A-R, Park J-Y et al (2020) IL-10 protects mice from the lung infection of Acinetobacter baumannii and contributes to bacterial clearance by regulating STAT3-Mediated MARCO expression in macrophages. Front Immunol 11:270. https://doi.org/10.3389/fimmu.2020.00270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gu C, Wiest M, Zhang W et al (2023) Cancer Cells Promote Immune Regulatory Function of Macrophages by upregulating scavenger receptor MARCO Expression. J Immunol 211:57–70. https://doi.org/10.4049/jimmunol.2300029

    Article  CAS  PubMed  Google Scholar 

  74. Bowdish DME, Sakamoto K, Kim M-J et al (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5:e1000474. https://doi.org/10.1371/journal.ppat.1000474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doyle SE, O’Connell RM, Miranda GA et al (2004) Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 199:81–90. https://doi.org/10.1084/jem.20031237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang L, Yang H-Y, Zang C-X et al (2021) TLR2 potentiates SR-Marco-mediated neuroinflammation by interacting with the SRCR Domain. Mol Neurobiol 58:5743–5755. https://doi.org/10.1007/s12035-021-02463-1

    Article  CAS  PubMed  Google Scholar 

  77. Killpack TL, Ballesteros M, Bunnell SC et al (2017) Phagocytic receptors activate syk and src signaling during Borrelia burgdorferi phagocytosis. Infect Immun 85:e00004–17. https://doi.org/10.1128/IAI.00004-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thakur SA, Hamilton R, Pikkarainen T, Holian A (2009) Differential binding of inorganic particles to MARCO. Toxicol Sci 107:238–246. https://doi.org/10.1093/toxsci/kfn210

    Article  CAS  PubMed  Google Scholar 

  79. Toma VAl, Tigu AB, Farcaș AD et al (2019) New aspects towards a molecular understanding of the Allicin Immunostimulatory mechanism via Colec12, MARCO, and SCARB1 receptors. Int J Mol Sci 20:3627. https://doi.org/10.3390/ijms20153627

    Article  CAS  Google Scholar 

  80. Huang H, Zhang J, Harvey SE et al (2017) RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Amp Dev 31:2296–2309. https://doi.org/10.1101/gad.305862.117

    Article  CAS  Google Scholar 

  81. Petrovic AG, Polavarapu PL (2008) The quadruplex – duplex structural transition of Polyriboguanylic Acid. J Phys Chem B 112:2245–2254. https://doi.org/10.1021/jp0758723

    Article  CAS  PubMed  Google Scholar 

  82. Yang M, Wang N, Li W et al (2019) Therapeutic effects of scavenger receptor MARCO ligand on silica-induced pulmonary fibrosis in rats. Toxicol Lett 311:1–10. https://doi.org/10.1016/j.toxlet.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  83. Pikkarainen T, Brännström A, Tryggvason K (1999) Expression of macrophage MARCO receptor induces formation of dendritic plasma membrane processes. J Biol Chem 274:10975–10982. https://doi.org/10.1074/jbc.274.16.10975

    Article  CAS  PubMed  Google Scholar 

  84. Murthy S, Larson-Casey JL, Ryan AJ et al (2015) Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure. FASEB J 29:3527–3536. https://doi.org/10.1096/fj.15-271304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang Y-S, Jin X, Li Q et al (2022) Superenhancer drives a tumor-specific splicing variant of MARCO to promote triple-negative breast cancer progression. Proc Natl Acad Sci 119:e2207201119. https://doi.org/10.1073/pnas.2207201119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiao Y, Chen B, Yang K et al (2019) Down-regulation of MARCO associates with tumor progression in hepatocellular carcinoma. Exp Cell Res 383:111542. https://doi.org/10.1016/j.yexcr.2019.111542

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Q, Wei Y, Li Y, Jiao X (2022) Low MARCO expression is Associated with poor survival in patients with Hepatocellular Carcinoma following liver transplantation. Cancer Manag Res Volume 14:1935–1944. https://doi.org/10.2147/CMAR.S363219

    Article  Google Scholar 

  88. Lin W-C, Lin F-T (2022) Super-enhanced MARCO variant drives triple-negative breast cancer progression. Proc Natl Acad Sci 119:e2217953119. https://doi.org/10.1073/pnas.2217953119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen X, Shen Y, Sun C et al (2011) Anti-class a scavenger receptor autoantibodies from systemic lupus erythematosus patients impair phagocytic clearance of apoptotic cells by macrophages in vitro. Arthritis Res Ther 13:R9. https://doi.org/10.1186/ar3230

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shi B, Chu J, Huang T et al (2021) The scavenger receptor MARCO expressed by Tumor-Associated macrophages are highly Associated with Poor Pancreatic Cancer Prognosis. Front Oncol 11:771488. https://doi.org/10.3389/fonc.2021.771488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lundgren S, Karnevi E, Elebro J et al (2017) The clinical importance of tumour-infiltrating macrophages and dendritic cells in periampullary adenocarcinoma differs by morphological subtype. J Transl Med 15:152. https://doi.org/10.1186/s12967-017-1256-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Svensson MC, Svensson M, Nodin B et al (2022) High infiltration of CD68+/CD163 – macrophages is an adverse prognostic factor after Neoadjuvant Chemotherapy in Esophageal and gastric adenocarcinoma. J Innate Immun 14:615–628. https://doi.org/10.1159/000524434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Georgoudaki A-M, Prokopec KE, Boura VF et al (2016) Reprogramming Tumor-Associated macrophages by antibody targeting inhibits Cancer Progression and Metastasis. Cell Rep 15:2000–2011. https://doi.org/10.1016/j.celrep.2016.04.084

    Article  CAS  PubMed  Google Scholar 

  94. Sun H, Song J, Weng C et al (2017) Association of decreased expression of the macrophage scavenger receptor MARCO with tumor progression and poor prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 32:1107–1114. https://doi.org/10.1111/jgh.13633

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (grant numbers [2022YFC2704400]).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: G.Z. and S.S.; Investigation: G.Z.; Writing - Original Draft: G.Z.; Visualization: G.Z.; Resources: L.Z.; Project administration: L.Z.; Funding acquisition: L.Z.; Writing - Review & Editing: S.S.; Supervision: S.S. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lei Zhang or Suxia Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Zhang, L. & Shao, S. The application of MARCO for immune regulation and treatment. Mol Biol Rep 51, 246 (2024). https://doi.org/10.1007/s11033-023-09201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09201-x

Keywords

Navigation