Skip to main content

Advertisement

Log in

Alzheimer’s disease, aging, and cannabidiol treatment: a promising path to promote brain health and delay aging

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss, neurodegeneration, and cognitive decline. Aging is one of the risk factors for AD. Although the mechanisms underlying aging and the incidence rate of AD are unclear, aging and AD share some hallmarks, such as oxidative stress and chronic inflammation. Cannabidiol (CBD), the major non-psychoactive phytocannabinoid extracted from Cannabis sativa, has recently emerged as a potential candidate for delaying aging and a valuable therapeutic tool for the treatment of aging-related neurodegenerative diseases due to its antioxidant and anti-inflammation properties. This article reviews the relevant literature on AD, CBD treatment for AD, cellular senescence, aging, and CBD treatment for aging in recent years. By analyzing these published data, we attempt to explore the complex correlation between cellular senescence, aging, and Alzheimer’s disease, clarify the positive feedback effect between the senescence of neurocytes and Alzheimer’s disease, and summarize the role and possible molecular mechanisms of CBD in preventing aging and treating AD. These data may provide new ideas on how to effectively prevent and delay aging, and develop effective treatment strategies for age-related diseases such as Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van der Lee SJ, Wolters FJ, Ikram MK et al (2018) The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: a community-based cohort study. Lancet Neurology 2018; 17: 434–444

  3. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571(7764):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li H, Liu Y, Tian D, Tian L, Ju X, Qi L, Wang Y, Liang C (2020) Overview of cannabidiol (CBD) and its analogues: structures, biological activities, and neuroprotective mechanisms in Epilepsy and Alzheimer’s disease. Eur J Med Chem 192:112163

    Article  CAS  PubMed  Google Scholar 

  5. Huestis MA, Solimini R, Pichini S, Pacifici R, Carlier J, Busardò FP (2019) Cannabidiol adverse effects and toxicity. Curr Neuropharmacol 17:974–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer E, Rieder P, Gobbo D, Candido G, Scheller A, de Oliveira RMW, Kirchhoff F (2022) Cannabidiol exerts a neuroprotective and glia-balancing effect in the subacute phase of stroke. Int J Mol Sci 23(21):12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aychman MM, Goldman DL, Kaplan JS (2023) Cannabidiol’s neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 14:1087011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ben-Cnaan E, Permyakova A, Azar S, Hirsch S, Baraghithy S, Hinden L, Tam J (2022) The metabolic efficacy of a cannabidiolic acid (CBDA) derivative in treating diet- and genetic-induced obesity. Int J Mol Sci 23(10):5610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahmoud AM, Kostrzewa M, Marolda V, Cerasuolo M, Maccarinelli F, Coltrini D, Rezzola S, Giacomini A et al (2023) Cannabidiol alters mitochondrial bioenergetics via VDAC1 and triggers cell death in hormone-refractory prostate cancer. Pharmacol Res 189:106683

    Article  CAS  PubMed  Google Scholar 

  10. Stolar O, Hazan A, Vissoker RE, Kishk IA, Barchel D, Lezinger M, Dagan A, Treves N et al (2022) Medical cannabis for the treatment of comorbid symptoms in children with autism spectrum disorder: an interim analysis of biochemical safety. Front Pharmacol 13:977484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. (2023) 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 19(4):1598–1695

  12. Lanea CA, Hardyb J, Schotta JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70

    Article  Google Scholar 

  13. Scheltens P, De Bart BD, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet 24(10284):1577–1590

    Article  Google Scholar 

  14. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51

    Article  CAS  PubMed  Google Scholar 

  16. Sun Q, Zhang J, Li A, Yao M, Liu G, Chen S, Luo Y, Wang Z et al (2022) Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease. Nat Commun 13:998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu Y, Li K, Hu Y, Wang X (2021) Expression of immune related genes and possible regulatory mechanisms in Alzheimer’s disease. Front Immunol 12:768966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R AA (2019) Risk factors for Alzheimer’s disease. Folia Neuropathol 57:87–105

  19. Bilousova T, Miller CA, Poon WW, Vinters HV, Corrada M, Kawas C, Hayden EY, Teplow DB, Glabe C, Albay R 3rd, Cole GM, Teng E, Gylys KH (2016) Synaptic amyloid-beta oligomers precede p-Tau and differentiate high pathology control cases. Am J Pathol 186:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Firulyova M, Manis M, Herz J, Smirnov I, Aladyeva E, Wang C, Bao X (2023) Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615(7953):668–677

    Article  CAS  PubMed  Google Scholar 

  21. Merighi S, Nigro M, Travagli A, Gessi S (2022) Microglia and Alzheimer’s disease. Int J Mol Sci 23:12990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang WY, Tan MS, Yu JT, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3:136

    PubMed  PubMed Central  Google Scholar 

  23. Wang Q, Huang X, Su Y, Yin G, Wang S, Yu B, Li H, Qi J et al (2022) Activation of Wnt/beta-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer’s disease. Brain 145:4474–4488

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu T, Zhang T, Nicolas M, Boussicault L, Rice H, Soldano A, Claeys A, Petrova I et al (2021) The amyloid precursor protein is a conserved wnt receptor. Elife 10:e69199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watt G, Karl T (2017) In vivo evidence for therapeutic properties of cannabidiol (CBD) for Alzheimer’s disease. Front Pharmacol 8:20

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coles M, Steiner-Lim GZ, Karl T (2022) Therapeutic properties of multi-cannabinoid treatment strategies for Alzheimer’s disease. Front Neurosci 16:962922

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alali S, Riazi G, Ashrafi-Kooshk MR, Meknatkhah S, Ahmadian S, Hooshyari Ardakani M, Hosseinkhani B (2021) Cannabidiol inhibits tau aggregation in vitro. Cells 10(12):3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin-Moreno AM, Reigada D, Ramirez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 79:964–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beale C, Broyd SJ, Chye Y, Suo C, Schira M, Galettis P, Martin JH, Yucel M et al (2018) Prolonged cannabidiol treatment effects on hippocampal subfield volumes in current cannabis users. Cannabis Cannabinoid Res 3:94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khodadadi H, Salles EL, Jarrahi A, Costigliola V, Khan MB, Yu JC, Morgan JC, Hess DC et al (2021) Cannabidiol ameliorates cognitive function via regulation of IL-33 and TREM2 upregulation in a murine model of Alzheimer’s disease. J Alzheimers Dis 80:973–977

    Article  CAS  PubMed  Google Scholar 

  31. de Paula Faria D, Estessi de Souza L, Duran FLS, Buchpiguel CA, Britto LR, Crippa JAS, Filho GB, Real CC (2022) Cannabidiol treatment improves glucose metabolism and memory in streptozotocin-induced Alzheimer’s disease rat model: a proof-of-concept study. Int J Mol Sci 23(3):1076

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chesworth R, Cheng D, Staub C, Karl T (2022) Effect of long-term cannabidiol on learning and anxiety in a female Alzheimer’s disease mouse model. Front Pharmacol 13:931384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frandsen J, Narayanasamy P (2022) Effect of cannabidiol on the neural glyoxalase pathway function and longevity of several C. elegans strains including a C. elegans Alzheimer’s disease model. ACS Chem Neurosci 13:1165–1177

    Article  CAS  PubMed  Google Scholar 

  34. Libro R, Diomede F, Scionti D, Piattelli A, Grassi G, Pollastro F, Bramanti P, Mazzon E et al (2016) Cannabidiol modulates the expression of Alzheimer’s disease-related genes in mesenchymal stem cells. Int J Mol Sci 18(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vallee A, Lecarpentier Y, Guillevin R, Vallee JN (2017) Effects of cannabidiol interactions with Wnt/beta-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin (Shanghai) 49:853–866

    Article  CAS  PubMed  Google Scholar 

  36. Yang S, Du Y, Zhao X, Tang Q, Su W, Hu Y, Yu P (2022) Cannabidiol enhances microglial beta-amyloid peptide phagocytosis and clearance via vanilloid family type 2 channel activation. Int J Mol Sci 23(10):5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Zheng P, Xie Y, Chen X, Solowij N, Green K, Chew YL, Huang XF (2021) Cannabidiol regulates CB1-pSTAT3 signaling for neurite outgrowth, prolongs lifespan, and improves health span in Caenorhabditis elegans of Aβ pathology models. FASEB J 35:e21537

    CAS  PubMed  Google Scholar 

  38. Rodriguez-Munoz M, Onetti Y, Cortes-Montero E, Garzon J, Sanchez-Blazquez P (2018) Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Mol Brain 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  39. Charytoniuk T, Sztolsztener K, Harasim-Symbor E, Berk K, Chabowski A, Konstantynowicz-Nowicka K (2021) Cannabidiol - A phytocannabinoid that widely affects sphingolipid metabolism under conditions of brain insulin resistance. Biomed Pharmacother 142:112057

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Zheng P, Nagaratnam N, Solowij N, Huang XF (2023) Parkin mediates cannabidiol prevention of amyloid-beta-induced senescence in human astrocytes. Cannabis Cannabinoid Res 8:309–320

    CAS  PubMed  Google Scholar 

  41. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2023) Hallmarks of aging: an expanding universe. Cell 186(2):243–278

    Article  PubMed  Google Scholar 

  42. Kreiling JA, Tamamori-Adachi M, Sexton AN, Jeyapalan JC, Munoz-Najar U, Peterson AL, Manivannan J, Rogers ES et al (2011) Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10:292–304

    Article  CAS  PubMed  Google Scholar 

  43. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24:1246–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ogrodnik M, Evans SA, Fielder E, Victorelli S, Kruger P, Salmonowicz H, Weigand BM, Patel AD et al (2021) Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20:e13296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cassano T, Villani R, Pace L, Carbone A, Bukke VN, Orkisz S, Avolio C, Serviddio G (2020) From cannabis sativa to cannabidiol: promising therapeutic candidate for the treatment of neurodegenerative diseases. Front Pharmacol 11:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pandelides Z, Thornton C, Faruque AS, Whitehead AP, Willett KL, Ashpole NM (2020) Developmental exposure to cannabidiol (CBD) alters longevity and health span of zebrafish (Danio rerio). Geroscience 42:785–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Land MH, Toth ML, MacNair L, Vanapalli SA, Lefever TW, Peters EN, Bonn-Miller MO (2021) Effect of cannabidiol on the long-term toxicity and lifespan in the preclinical model caenorhabditis elegans. Cannabis Cannabinoid Res 6:522–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Zheng P, Chen X, Xie Y, Weston-Green K, Solowij N, Chew YL, Huang XF (2022) Cannabidiol induces autophagy and improves neuronal health associated with SIRT1 mediated longevity. Geroscience 44:1505–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laun AS, Shrader SH, Brown KJ, Song ZH (2019) GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacol Sin 40:300–308

    Article  CAS  PubMed  Google Scholar 

  51. Murillo-Rodriguez E, Budde H, Veras AB, Rocha NB, Telles-Correia D, Monteiro D, Cid L, Yamamoto T et al (2020) The endocannabinoid system may modulate sleep disorders in aging. Curr Neuropharmacol 18:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. di Giacomo V, Chiavaroli A, Orlando G, Cataldi A, Rapino M, Di Valerio V, Leone S, Brunetti L et al (2020) Neuroprotective and neuromodulatory effects induced by cannabidiol and cannabigerol in rat hypo-E22 cells and isolated hypothalamus. Antioxid (Basel) 9(1):71

    Article  Google Scholar 

  53. Trivedi MK, Mondal S, Gangwar M, Jana S (2023) Effects of cannabidiol interactions with CYP2R1, CYP27B1, CYP24A1, and Vitamin D(3) receptors on spatial memory, pain, inflammation, and aging in vitamin D(3) deficiency diet-induced rats. Cannabis Cannabinoid Res 8(6):1019–1029

  54. Li Y, Li X, Cournoyer P, Choudhuri S, Yu X, Guo L, Chen S (2023) Cannabidiol-induced transcriptomic changes and cellular senescence in human sertoli cells. Toxicol Sci 191:227–238

    Article  CAS  PubMed  Google Scholar 

  55. Libro R, Scionti D, Diomede F, Marchisio M, Grassi G, Pollastro F, Piattelli A, Bramanti P et al (2016) Cannabidiol modulates the immunophenotype and inhibits the activation of the inflammasome in human gingival mesenchymal stem cells. Front Physiol 7:559

    Article  PubMed  PubMed Central  Google Scholar 

  56. Baeeri M, Rahimifard M, Daghighi SM, Khan F, Salami SA, Moini-Nodeh S, Haghi-Aminjan H, Bayrami Z et al (2020) Cannabinoids as anti-ROS in aged pancreatic islet cells. Life Sci 256:117969

    Article  CAS  PubMed  Google Scholar 

  57. Hernandez-Hernandez E, Garcia-Fuster MJ (2022) Dose-dependent antidepressant-like effects of cannabidiol in aged rats. Front Pharmacol 13:891842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerasymchuk M, Robinson GI, Groves A, Haselhorst L, Nandakumar S, Stahl C, Kovalchuk O, Kovalchuk I (2022) Phytocannabinoids stimulate rejuvenation and prevent cellular senescence in human dermal fibroblasts. Cells 11(23):3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pautex S, Bianchi F, Daali Y, Augsburger M, de Saussure C, Wampfler J, Curtin F, Desmeules J et al (2022) Cannabinoids for behavioral symptoms in severe dementia: safety and feasibility in a long-term pilot observational study in nineteen patients. Front Aging Neurosci 14:957665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fellous T, De Maio F, Kalkan H, Carannante B, Boccella S, Petrosino S, Maione S, Di Marzo V et al (2020) Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets. Biochem Pharmacol 175:113859

    Article  CAS  PubMed  Google Scholar 

  61. da Silva VK, de Freitas BS, Garcia RCL, Monteiro RT, Hallak JE, Zuardi AW, Crippa JAS, Schroder N (2018) Antiapoptotic effects of cannabidiol in an experimental model of cognitive decline induced by brain iron overload. Transl Psychiatry 8:176

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nidadavolu P, Bilkei-Gorzo A, Kramer M, Schurmann B, Palmisano M, Beins EC, Madea B, Zimmer A (2021) Efficacy of delta(9) -tetrahydrocannabinol (THC) alone or in combination with a 1:1 ratio of cannabidiol (CBD) in reversing the spatial learning deficits in old mice. Front Aging Neurosci 13:718850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cosacak MI, Bhattarai P, Reinhardt S, Petzold A, Dahl A, Zhang Y, Kizil C (2019) Single-cell transcriptomics analyses of neural stem cell heterogeneity and contextual plasticity in a zebrafish brain model of amyloid toxicity. Cell Rep 27:1307–1318.e3

    Article  CAS  PubMed  Google Scholar 

  64. Miller MB, Huang AY, Kim J, Zhou Z, Kirkham SL, Maury EA, Ziegenfuss JS, Reed HC et al (2022) Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604:714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horgusluoglu E, Neff R, Song WM, Wang M, Wang Q, Arnold M, Krumsiek J, Galindo-Prieto B et al (2022) Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement 18:1260–1278

    Article  CAS  PubMed  Google Scholar 

  66. Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R (2019) Metal toxicity links to Alzheimer’s disease and neuroinflammation. J Mol Biol 431:1843–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bonfili L, Cuccioloni M, Gong C, Cecarini V, Spina M, Zheng Y, Angeletti M, Eleuteri AM (2022) Gut microbiota modulation in Alzheimer’s disease: focus on lipid metabolism. Clin Nutr 41:698–708

    Article  CAS  PubMed  Google Scholar 

  68. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM et al (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Velilla L, Acosta-Baena N, Allen I, Lopera F, Kramer J (2022) Analysis of family stigma and socioeconomic factors impact among caregivers of patients with early- and late-onset Alzheimer’s disease and frontotemporal dementia. Sci Rep 12:12663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang H, Lautrup S, Caponio D, Zhang J, Fang EF (2021) DNA damage-induced neurodegeneration in accelerated ageing and Alzheimer’s disease. Int J Mol Sci 22(13):6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Supiyev A, Karlsson R, Wang Y, Koch E, Hagg S, Kauppi K (2023) Independent role of Alzheimer’s disease genetics and C-reactive protein on cognitive ability in aging. Neurobiol Aging 126:103–112

    Article  CAS  PubMed  Google Scholar 

  72. Balmorez T, Sakazaki A, Murakami S (2023) Genetic networks of Alzheimer’s disease, aging, and longevity in humans. Int J Mol Sci 24(6):5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meng G, Xu H, Lu D, Li S, Zhao Z, Li H, Zhang W (2023) Three-dimensional chromatin architecture datasets for aging and Alzheimer’s disease. Sci Data 10:51

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boche D, Gordon MN (2022) Diversity of transcriptomic microglial phenotypes in aging and Alzheimer’s disease. Alzheimers Dement 18:360–376

    Article  PubMed  Google Scholar 

  75. Pichet Binette A, Gonneaud J, Vogel JW, La Joie R, Rosa-Neto P, Collins DL, Poirier J, Breitner JCS et al (2020) Morphometric network differences in ageing versus Alzheimer’s disease dementia. Brain 143:635–649

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhu Z, Ma X, Wu J, Xiao Z, Wu W, Ding S, Zheng L, Liang X et al (2022) Altered gut microbiota and its clinical relevance in mild cognitive impairment and Alzheimer’s Disease: Shanghai aging study and Shanghai memory study. Nutrients 14(19):3959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Piehl N, van Olst L, Ramakrishnan A, Teregulova V, Simonton B, Zhang Z, Tapp E, Channappa D et al (2022) Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185:5028–5039 e5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saunders T, Gunn C, Blennow K, Kvartsberg H, Zetterberg H, Shenkin SD, Cox SR, Deary IJ et al (2023) Neurogranin in Alzheimer’s disease and ageing: a human post-mortem study. Neurobiol Dis 177:105991

    Article  CAS  PubMed  Google Scholar 

  79. MacLachlan R, Kehoe PG, Miners JS (2022) Dysregulation of ACE-1 in normal aging and the early stages of Alzheimer’s disease. J Gerontol A Biol Sci Med Sci 77:1775–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fan DY, Jian JM, Huang S, Li WW, Shen YY, Wang Z, Zeng GH, Yi X et al (2022) Establishment of combined diagnostic models of Alzheimer’s disease in a Chinese cohort: the Chongqing Ageing & Dementia Study (CADS). Transl Psychiatry 12:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Krishnadas N, Dore V, Robertson JS, Ward L, Fowler C, Masters CL, Bourgeat P, Fripp J et al (2023) Rates of regional tau accumulation in ageing and across the Alzheimer’s disease continuum: an AIBL 18F-MK6240 PET study. EBioMedicine 88:104450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luckett ES, Abakkouy Y, Reinartz M, Adamczuk K, Schaeverbeke J, Verstockt S, De Meyer S, Van Laere K et al (2022) Association of Alzheimer’s disease polygenic risk scores with amyloid accumulation in cognitively intact older adults. Alzheimers Res Ther 14:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seto M, Dumitrescu L, Mahoney ER, Sclafani AM, De Jager PL, Menon V, Koran MEI, Robinson RA et al (2023) Multi-omic characterization of brain changes in the vascular endothelial growth factor family during aging and Alzheimer’s Disease. Neurobiol Aging 126:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang M, Gong W, Zhang D, Ji M, Chen B, Chen B, Li X, Zhou Y et al (2022) Ageing related thyroid deficiency increases brain-targeted transport of liver-derived ApoE4-laden exosomes leading to cognitive impairment. Cell Death Dis 13:406

    Article  PubMed  PubMed Central  Google Scholar 

  85. Stefanova NA, Kolosova NG (2023) The rat brain transcriptome: from infancy to aging and sporadic Alzheimer’s disease-like pathology. Int J Mol Sci 24(2):1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bac B, Hicheri C, Weiss C, Buell A, Vilcek N, Spaeni C, Geula C, Savas JN et al (2023) The TgF344-AD rat: behavioral and proteomic changes associated with aging and protein expression in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 123:98–110

    Article  CAS  PubMed  Google Scholar 

  87. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S et al (2018) Publisher correction: functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 564:E7

    Article  PubMed  Google Scholar 

  88. Mestre H, Verma N, Greene TD, Lin LA, Ladron-de-Guevara A, Sweeney AM, Liu G, Thomas VK et al (2022) Periarteriolar spaces modulate cerebrospinal fluid transport into brain and demonstrate altered morphology in aging and Alzheimer’s disease. Nat Commun 13:3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jiang YL, Wang ZX, Liu XX, Wan MD, Liu YW, Jiao B, Liao XX, Luo ZW et al (2022) The protective effects of osteocyte-derived extracellular vesicles against Alzheimer’s disease diminished with aging. Adv Sci (Weinh) 9:e2105316

    Article  PubMed  Google Scholar 

  90. Jones ME, Buchler J, Dufor T, Palomer E, Teo S, Martin-Flores N, Boroviak K, Metzakopian E et al (2023) A genetic variant of the wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer’s disease. Sci Adv 9:eabo7421

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li ML, Wu SH, Song B, Yang J, Fan LY, Yang Y, Wang YC, Yang JH et al (2022) Single-cell analysis reveals transcriptomic reprogramming in aging primate entorhinal cortex and the relevance with Alzheimer’s disease. Aging Cell 21:e13723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. An Y, Li Y, Hou Y, Huang S, Pei G (2022) Alzheimer’s amyloid-beta accelerates cell senescence and suppresses the SIRT1/NRF2 pathway in human microglial cells. Oxid Med Cell Longev 2022:3086010

  93. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

  94. Khosla S, Farr JN, Tchkonia T, Kirkland JL (2020) The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 16:263–275

    Article  CAS  PubMed  Google Scholar 

  95. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M et al (2019) Cellular senescence: defining a path forward. Cell 179:813–827

    Article  CAS  PubMed  Google Scholar 

  96. Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28:436–453

    Article  CAS  PubMed  Google Scholar 

  97. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME (2018) Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17:e12840

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, Abdelmohsen K, Bohr VA et al (2019) Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 22:719–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baker DJ, Petersen RC (2018) Cellular senescence in brain aging and neurodegenerative Diseases: evidence and perspectives. J Clin Invest 128:1208–1216

    Article  PubMed  PubMed Central  Google Scholar 

  100. Holtzman D, Ulrich J (2019) Senescent glia spell trouble in Alzheimer’s disease. Nat Neurosci 22:683–684

    Article  CAS  PubMed  Google Scholar 

  101. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lau V, Ramer L, Tremblay ME (2023) An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nat Commun 14:1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89:134–141

    Article  CAS  PubMed  Google Scholar 

  104. Esposito G, Scuderi C, Savani C, Steardo L Jr., De Filippis D, Cottone P, Iuvone T, Cuomo V et al (2007) Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 151:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang Y, Li H, Jin S, Lu Y, Peng Y, Zhao L, Wang X (2022) Cannabidiol protects against Alzheimer’s disease in C. elegans via ROS scavenging activity of its phenolic hydroxyl groups. Eur J Pharmacol 919:174829

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Doctoral Research Startup Funding from Qingdao Huanghai University (2021boshi01) and the Shandong Provincial Natural Science Foundation (ZR2022MC192).

Author information

Authors and Affiliations

Authors

Contributions

YL conceptualized, wrote, and edited the manuscript.

Corresponding author

Correspondence to Yanying Liu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Alzheimer’s disease, aging, and cannabidiol treatment: a promising path to promote brain health and delay aging. Mol Biol Rep 51, 121 (2024). https://doi.org/10.1007/s11033-023-09162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09162-1

Keywords

Navigation