Skip to main content
Log in

Transcriptome analysis of reproductive tract tissues of male river prawn Macrobrachium americanum

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The river prawn, Macrobrachium americanum (M. americanum), is one of the largest prawns of the genus in Latin America and is an amphidromous species distributed along the Pacific coast of America. This prawn has commercial value due to its size and taste, making it a good option for aquaculture production. Its culture has been attempted in ponds and concrete tanks, but no successful technique can still support commercial production. Understanding the mechanisms that regulate reproduction at the molecular level is very important. This knowledge can provide tools for manipulating transcripts, which could increase the number or size of animals in the culture. Our understanding of the mechanism that regulates the reproduction of M. americanum at the molecular level is limited.

Aim

Perform and analyze the transcriptome assembly of the testes, vas deferens, and terminal ampulla of M. americanum. to provide new molecular information about its reproduction.

Methods and Results

The cDNA library was constructed and sequenced for each tissue to identify novel transcripts. A combined transcriptome with the three tissues was assembled using Trinity software. Unigenes were annotated using BLASTx and BLAST2GO. The transcriptome assembly generated 1,059,447 unigenes, of which 7222 genes had significant hits (e-value < 1 × 10–5) when compared against the Swiss-Prot database. Around 75 genes were related to sex determination, testis development, spermatogenesis, spermiogenesis, fertilization, maturation of testicular cells, neuropeptides, hormones, hormone receptors, and/or embryogenesis.

Conclusions

These results provide new molecular information about M. americanum reproduction, representing a reference point for further genetic studies of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. García-Guerrero M, de los Romero RS, Vega-Villasante FY, Cortes-Jacinto E (2015) Conservation and aquaculture of native freshwater prawns: the case of the cauque river prawn Macrobrachium americanum (Bate, 1868). Lat Am J Aquat Res 43(5):819–827

    Article  Google Scholar 

  2. Comisión Nacional de Acuacultura y Pesca (2021). Anuario estadístico de acuacultura y pesca. https://nube.conapesca.gob.mx/sites/cona/dgppe/2021/ANUARIO_ESTADISTICO_DE_ACUACULTURA_Y_PESCA_2021.pdf. Accesed 16 Oct 2023

  3. De los Santos RR, Vega Villasante F, Cortés-Jancinto E, García-Guerrero M (2021) The culture potential and management problems of freshwater prawns (Macrobrachium americanum and Macrobrachium tenellum) in their native areas: the case for Mexico. Lat Am J Aquat Res 49(3):376–390

    Article  Google Scholar 

  4. New MB, Nair CM (2012) Global scale of freshwater prawn farming. Aquac Res 43(7):960–969

    Article  Google Scholar 

  5. Krol RM, Hawkins WE and Overstreet RM (1992) Chapter 8 Reproductive components. In: Microscopic Anatomy of invertebrates Volume 10: Decapod Crustacea. Wiley-Liss, Inc

  6. Chandra-Nagaraju GP (2011) Reproductive regulators in decapod crustaceans: an overview. J Exp Biol 214(Pt 1):3–16

    Article  Google Scholar 

  7. Suwansa-ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna PJ, Sretarugsa P, Cummins SF, Sobjon P (2015) In silico Neuropeptidome of Female Macrobrachium rosenbergii based on transcriptome and peptide mining of Eyestalk, central nervous system and ovary. PloS one 10(5):e0123848

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ventura T, Sagi A (2012) The insulin-like androgenic gland hormone in crustaceans: from a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol Adv 30:1543–1550

    Article  CAS  PubMed  Google Scholar 

  9. Chandhini S, Rejish Kumar VJ (2019) Transcriptomics in aquaculture: current status and applications. Rev Aquacult 11:1379–1397

    Article  Google Scholar 

  10. Wu P, Qi D, Chen L, Zhang H, Zhang X, Qin JG, Hu S (2009) Gene discovery from an ovary cDNA library of oriental river prawn Macrobrachium nipponense by ESTs annotation. Comp Biochem Physiol D: Genomics Proteomics 4(2):111–120

    PubMed  Google Scholar 

  11. Jin S, Bian C, Jiang S, Han K, Xiong Y, Zhang W, Shi C, Qiao H, Gao Z, Li R, Huang Y, Gong Y, You X, Fan G, Shi Q, Fu H (2021) A chromosome-level genome assembly of the oriental river prawn. Macrobrachium nipponense. Gigascience 10(1):giaa160

    Article  PubMed  Google Scholar 

  12. Qian YQ, Li Y, Yang F, Yu YQ, Yang JS, Yang WJ (2012) Two Kazal-type protease inhibitors from Macrobrachium nipponense and Eriocheir sinensis: comparative analysis of structure and activities. Fish Shellfish Immunol 32(3):446–458

    Article  CAS  PubMed  Google Scholar 

  13. Ma K, Qiu G, Feng J, Li J (2012) Transcriptome analysis of the oriental river prawn, Macrobrachium nipponense using 454 Pyrosequencing for discovery of genes and markers. PloS one 7(6):e39727

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Jin S, Fu H, Zhou Q, Sun S, Jiang S, Xiong Y, Gong Y, Qiao H, Zhang W (2013) Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000. PloS one 8(19):e76840

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Qiao H, Fu H, Xiong Y, Jiang S, Zhang W, Sun S, Jin S, Gong Y, Wang Y, Shan D, Li F, Wu Y (2017) Molecular insights into reproduction regulation of female Oriental River prawns Macrobrachium nipponense through comparative transcriptomic analysis. Sci Rep 7(12161):1–11

    ADS  Google Scholar 

  16. Jin S, Hu Y, Fu H, Sun S, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y (2020) Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. Comp Biochem Physiol Part D Genomics Proteomics 34:100662

    Article  CAS  PubMed  Google Scholar 

  17. Jin S, Fu Y, Hu Y, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y (2021) Identification of candidate genes from androgenic gland in Macrobrachium nipponense regulated by eyestalk ablation. Sci Rep 11(1):19855

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Jiang J, Yuan X, Qiu Q, Huang G, Jiang Q, Fu P, Zhanb Y, Jia Y, Yang X, Jiang H (2019) Comparative transcriptome analysis of gonads for the identification of sex-related genes in giant freshwater prawns (Macrobrachium rosenbergii) using RNA sequencing. Genes (Basel) 10(12):1035

    Article  CAS  PubMed  Google Scholar 

  19. Andrews S. FastQC: a quality control tool for high throughput sequence data (2018) Oct 1 [cited 2022 Sept 29]. In: Babraham Institute [Internet]. Available from: http://www.bioinformatics.babraham.ac.uk/ projects/fastqc

  20. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Poche N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Smith SA (2013) Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics 14:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ (2008) High-throughput functional annotation and data mining with the Blast2GO. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xie F, Peng X, Chen D, Lei X, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  28. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG, Bateman J, Bryant S, Guzikowski AR, Tsai SL, Coyne S, Ye WW, Freeman RM Jr, Peshkin L, Tabin CJ, Regev A, Haas BJ, Whited JL (2017) A Tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18(3):762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hölzer M, Marz M (2019) De novo transcriptome assembly: a comprehensive cross-species comparison of short-read RNA-Seq assemblers. Gigascience 8(5):039

    Article  Google Scholar 

  31. Pasookhush P, Hindmarch C, Sithigorngul P, Longyant S, Bendena WG, Chaivisuthangkura P (2019) Transcriptomic analysis of Macrobrachium rosenbergii (giant fresh water prawn) post-larvae in response to M. rosenbergii nodavirus (MrNV) infection: de novo assembly and functional annotation. BMC Genomics 20(762):1–20

    CAS  Google Scholar 

  32. Zhang Y, Waiho K, Ikhwanuddin M, Ma H (2021) Identification of Sex-related genes from the three-spot swimming crab Portunus sanguinolentus and comparative analysis with the crucifix crab Charybdis feriatus. Animals (Basel) 11(7):1946

    Article  PubMed  Google Scholar 

  33. Abayed FAA, Manor R, Aflalo ED, Sagi A (2019) Screening for Dmrt genes from embryo to mature Macrobrachium rosenbergii prawns. Gen Comp Endocrinol 282:113205

    Article  Google Scholar 

  34. Li F, Bai H, Xiong Y, Fu H, Jiang S, Jiang F, Jin S, Sun S, Qiao H, Zhang W (2015) Molecular characterization of insulin-like androgenic gland hormone-binding protein gene from the oriental river prawn Macrobrachium nipponense and investigation of its transcriptional relationship with the insulin-like androgenic gland hormone gene. Gen Comp Endocrinol 216:152–160

    Article  CAS  PubMed  Google Scholar 

  35. Huang H, Ye H, Li S, Wang G (2008) Immunocytological evidence for the presence of vertebrate FSH- and LH-like substances in the brain and thoracic ganglion of the swimming crab Portunus trituberculatus. Prog Nat Sci 18(11):1453–1457

    Article  CAS  Google Scholar 

  36. Ye H, Ma J, Lin Q, Wang G (2011) Occurrence of follicle-stimulating hormone-like substance in the Kuruma prawn, Marsupenaeus japonicus, during ovarian maturation. Mar Biol Res 7(3):304–309

    Article  Google Scholar 

  37. Farhadi A, Cui W, Zheng H, Li S, Zhang Y, Ikhwanuddin M, Ma H (2021) The regulatory mechanisms of sexual development in decapod crustaceans. Front Mar Sci 8(679687):1–19

    Google Scholar 

  38. Zhang YP, Qiao H, Zhang WY, Sun SM, Jiang SF, Gong YS, Xiong YW, Jin SB, Fu HT (2013) Molecular cloning and expression analysis of two sex-lethal homolog genes during development in the oriental river prawn. Macrobrachium nipponense Genet Mol Res 12(4):4698–4711

    Article  CAS  PubMed  Google Scholar 

  39. Xu S, Xia W, Zohar Y, Gui JF (2013) Zebrafish dmrta2 regulates the expression of cdkn2c in spermatogenesis in the adult testis. Biol Reprod 88(1):14

    Article  PubMed  Google Scholar 

  40. Liu Y, Hui M, Cui Z, Luo D, Song C, Li Y, Liu L (2015) Comparative transcriptome analysis reveals sex-biased gene expression in juvenile chinese mitten crab Eriocheir sinensis. PloS one 10(7):e0133068

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hu Y, Jin S, Fu H, Qiao H, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y (2020) Functional analysis of a SoxE gene in the oriental freshwater prawn, Macrobrachium nipponense by molecular cloning, expression pattern analysis, and in situ hybridization (de Haan, 1849). 3 Biotech 10(1):10

    Article  PubMed  Google Scholar 

  42. Nakkrasae LI, Damrongphol P (2007) A vasa-like gene in the giant freshwater prawn. Macrobrachium rosenbergii Mol Reprod Dev 74(7):835–842

    Article  CAS  PubMed  Google Scholar 

  43. Jin S, Hu Y, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y (2019) Identification of potentially novel functions of DNA polymerase zeta catalytic subunit in oriental river prawn, Macrobrachium nipoponense: cloning, qPCR, in situ hybridization and RNAi analysis. 3 Biotech 9(9):330

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qiao H, Xiong YW, Jiang SF, Fu HT, Sun SM, Jin SB, Gong YS, Zhang WY (2015) Gene expression profile analysis of testis and ovary of oriental river prawn, Macrobrachium nipponense, reveals candidate reproduction-related genes. Genet Mol Res 14(1):2041–2054

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Xu R, Zhu P, Hu J, Ying B, Zhao S, Li C (2001) Preliminarily functional analysis of a cloned novel human gene ADAM29. Sci China C Life Sci 44(4):392–399

    Article  CAS  PubMed  Google Scholar 

  46. Richburg JH, Myers JL, Bratton SB (2014) The role of E3 ligases in the ubiquitin-dependent regulation of spermatogenesis. Semin Cell Dev Biol 30:27–35

    Article  CAS  PubMed  Google Scholar 

  47. Qiao H, Fu H, Jin S, Wu Y, Jiang S, Gong Y, Xiong Y (2012) Constructing and random sequencing analysis of normalized cDNA library of testis tissue from oriental river prawn (Macrobrachium nipponense). Comp Biochem Physiol Part D 7(3):268–276

    CAS  Google Scholar 

  48. Chen J, Liu P, Li Z, Chen Y, Qiu GF (2013) The cloning of the cdk2 transcript and the localization of its expression during gametogenesis in the freshwater giant prawn. Macrobrachium rosenbergii Mol Biol Rep 40(8):4781–4790

    Article  CAS  PubMed  Google Scholar 

  49. Oceguera-Yanez F, Kimura K, Yasuda S, Higashida C, Kitamura T, Hiraoka Y, Haraguchi T, Narumiya S (2005) Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. J Cell Biol 168(2):221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koji T, Jinno A, Matsushime H, Shibuya M, Nakane PK (1992) In situ localization of male germ cell-associated kinase (mak) mRNA in adult mouse testis: specific expression in germ cells at stages around meiotic cell division. Cell Biochem Funct 10(4):273–279

    Article  CAS  PubMed  Google Scholar 

  51. Kotov AA, Akulenko NV, Kibanov MV, Olenina LV (2014) DEAD-Box RNA helicases in animal gametogenesis. Mol Biol 48:16–28

    Article  CAS  Google Scholar 

  52. Li MW, Mruk DD, Cheng CY (2009) Mitogen-activated protein kinases in male reproductive function. Trends Mol Med 15(4):159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li GL, Qian H (2017) Transcriptome using Illumina sequencing reveals the traits of spermatogenesis and developing testes in Eriocheir sinensis. PloS one 12(2):e0172478

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  54. Wang YT, Mao H, Hou CC, Sun X, Wang D, Zhou H, Yang WX (2012) Characterization and expression pattern of KIFC1-like kinesin gene in the testis of the Macrobrachium nipponense with discussion of its relationship with structure lamellar complex (LCx) and acroframosome (AFS). Mol Biol Rep 39:7591–7598

    Article  CAS  PubMed  Google Scholar 

  55. Piyaviriyakul P, Darawiroj D (2014) Timing for male reproductive tract gene expression and gonopore complex development of giant freshwater prawn (Macrobrachium rosenbergii). Thai J Vet Med 44(4):523–531

    Article  Google Scholar 

  56. Jiang Q, Zheng H, Zheng L, Wang Y, Wang M, Xie X, Zhu D (2020) Molecular characterization of the insulin-like androgenic gland hormone in the swimming crab, Portunus trituberculatus, and its involvement in the insulin signaling system. Front Endocrinol (Lausanne) 11:585

    Article  PubMed  Google Scholar 

  57. Yang G, Lu Z, Qin Z, Zhao L, Pan G, Shen H, Zhang M, Liang R, Lin L, Zhang K (2020) Insight into the regulatory relationships between the insulin-like androgenic gland hormone gene and the insulin-like androgenic gland hormone-binding protein gene in giant freshwater prawns (Macrobrachium rosenbergii). Int J Mol Sci 21(12):4207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Loir M, Le Gac F (1994) Insulin-like growth factor-I and -II binding and action on DNA synthesis in rainbow trout spermatogonia and spermatocytes. Biol Reprod 51(6):1154–1163

    Article  CAS  PubMed  Google Scholar 

  59. Tan K, Li Y, Zhou M, Wang W (2020) siRNA knockdown of MrIR induces sex reversal in Macrobrachium rosenbergii. Aquaculture 523(2020):1–10

    Google Scholar 

  60. Qian Z, Liu X (2019) Elucidation of the role of farnesoic acid O-methyltransferase (FAMeT) in the giant freshwater prawn, Macrobrachium rosenbergii: Possible functional correlation with ecdysteroid signaling. Comp Biochem Physiol A Mol Integr Physiol 232:1–12

    Article  CAS  PubMed  Google Scholar 

  61. Reyes-Colón D, Vázquez-Acevedo N, Rivera NM, Jezzini SH, Rosenthal J, Ruiz-Rodríguez EA, Baro DJ, Kohn AB, Moroz LL, Sosa MA (2010) Cloning and distribution of a putative octopamine/tyramine receptor in the central nervous system of the freshwater prawn Macrobrachium rosenbergii. Brain Res 1348:42–54

    Article  PubMed  PubMed Central  Google Scholar 

  62. Siangcham T, Tinikul Y, Poljaroen J, Sroyraya M, Changklungmoa N, Phoungpetchara I, Kankuan W, Sumpownon C, Wanichanon C, Hanna PJ, Sobhon P (2013) The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 193:10–18

    Article  CAS  PubMed  Google Scholar 

  63. Di Cristo C, Paolucci M, Iglesias J, Sánchez J, Di Cosmo A (2002) Presence of two neuropeptides in the fusiform ganglion and reproductive ducts of octopus vulgaris: fmrfamide and gonadotropin releasing hormone (GnRH). J Exp Zool 292(3):267–276

    Article  PubMed  Google Scholar 

  64. Shen H, Zhou X, Bai A, Ren X, Zhang Y (2013) Ecdysone receptor gene from the freshwater prawn Macrobrachium nipponense: identification of different splice variants and sexually dimorphic expression, fluctuation of expression in the molt cycle and effect of eyestalk ablation. Gen Comp Endocrinol 193:86–94

    Article  CAS  PubMed  Google Scholar 

  65. Chotwiwatthanakun C, Santimanawong W, Sobhon P, Wongtripop S, Vanichviriyakit R (2018) Inhibitory effect of a reproductive-related serpin on sperm trypsin-like activity implicates its role in sperm maturation of Penaeus monodon. Mol Reprod Dev 85(3):205–214

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Ma WM, Dai JQ, Feng CZ, Yang F, Ohira T, Nagasawa H, Yang WJ (2008) Inhibition of a novel sperm gelatinase in prawn sperm by the male reproduction-related Kazal-type peptidase inhibitor. Mol Reprod Dev 75(8):1327–1337

    Article  CAS  PubMed  Google Scholar 

  67. Chang WC, Chou CK, Tsou CC, Li SH, Chen CH, Zhuo YX, Hsu WL, Chen CH (2010) Comparative proteomic analysis of proteins involved in the tumorigenic process of seminal vesicle carcinoma in transgenic mice. Int J Proteomics 726968:1–14

    Article  Google Scholar 

  68. Simunic J, Soyez D, Kamech N (2009) Characterization of a membrane-bound angiotensin-converting enzyme isoform in crayfish testis and evidence for its release into the seminal fluid. FEBS J 276(17):4727–4738

    Article  CAS  PubMed  Google Scholar 

  69. Zhang WY, Jiang SF, Xiong YW, Fu HT, Qiao H, Sun SM, Gong YS, Jin SB (2015) Molecular cloning and expression analysis of female sterile homeotic gene (fsh) in the oriental river prawn Macrobrachium nipponense. Genet Mol Res 14(2):4318–4330

    Article  CAS  PubMed  Google Scholar 

  70. Xia X, He B, Zhang X, Cheng Z, Liu M, Wei X, Jiang J, HuLytic J (2021) Lytic regulated cell death in aquaculture fish. Aquaculture 13(3):1549–1564

    Article  Google Scholar 

  71. Xie Y, Chen H, Luo D, Yang X, Yao J, Zhang C, Lv L, Guo Z, Deng C, Li Y, Liang X, Deng C, Sun X, Liu G (2020) Inhibiting Necroptosis of Spermatogonial Stem Cell as a Novel Strategy for Male Fertility Preservation. RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. Mary Ann Liebert, Inc, 29(8):475–487

  72. Yin Y, Cao S, Fu H, Fan X, Xiong J, Huang Q, Liu Y, Xie K, Meng TG, Liu Y, Tang D, Yang T, Dong B, Qi S, Nie L, Zhang H, Hu H, Xu W, Li F, Dai L, Sun QY, Li Z (2020) A noncanonical role of NOD-like receptor NLRP14 in PGCLC differentiation and spermatogenesis. Proc Natl Acad Sci USA 117(36):22237–22248

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Shukla KK, Mahdi AA, Rajender S (2012) Apoptosis, spermatogenesis and male infertility. Front Biosci 4(2):746–754

    Article  Google Scholar 

  74. Kwon J, Wang YL, Setsuie R, Sekiguchi S, Sakurai M, Sato Y, Lee WW, Ishii Y, Kyuwa S, Noda M, Wada K, Yoshikawa Y (2004) Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice. Biol Reprod 71(2):515–521

    Article  CAS  PubMed  Google Scholar 

  75. Qiu GF, Chen Y, Cui Z, Zhu XL (2013) Localization of germline marker vasa homolog RNA to a single blastomere at early cleavage stages in the oriental river prawn Macrobrachium nipponense: Evidence for germ cell specification by preformation. Gene 513(1):53–62

    Article  CAS  PubMed  Google Scholar 

  76. Pauletto M, Milan M, Teixeira de Sousa J, Huvet A, Joaquim S, Matias D, Leitao A, Patarnello T, Bargelloni L (2014) Insights into molecular features of Venerupis decussata oocytes: a microarray-based study. PloS one 9(12):e113925

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  77. Kishi K, Uchida A, Takase HM, Suzuki H, Kurohmaru M, Tsunekawa N, Kanai-Azuma M, Wood SA, Kanai Y (2017) Spermatogonial deubiquitinase USP9X is essential for proper spermatogenesis in mice. Reproduction 154(2):135–143

    Article  CAS  PubMed  Google Scholar 

  78. Li Q, Xie J, He L, Wang Y, Duan Z, Yang H, Wang Q (2015) Identification of ADAM10 and ADAM17 with potential roles in the spermatogenesis of the Chinese mitten crab. Eriocheir sinensis Gene 562(1):117–127

    CAS  PubMed  Google Scholar 

  79. Dickins RA, Frew IJ, House CM, O’Bryan MK, Holloway AJ, Haviv I, Traficante N, de Kretser DM, Bowtell DD (2002) The ubiquitin ligase component Siah1a is required for completion of meiosis I in male mice. Mol Cell Biol 22(7):2294–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin YH, Kuo YC, Chiang HS, Kuo PL (2011) The role of the septin family in spermiogenesis. Spermatogenesis 1(4):298–302

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li W, Wu J, Kim SY, Zao M, Hearn SA, Zhang MO, Meistrih ML, Mills AA (2014) Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun 5(3812):1–15

    ADS  Google Scholar 

  82. Kurihara Y, Tokuriki M, Myojin R, Hori T, Kuroiwa A, Matsuda Y, Sakurai T, Kimura M, Hecht NB, Uesugi S (2003) CPEB2, a novel putative translational regulator in mouse haploid germ cells. Biol Reprod 69(1):261–268

    Article  CAS  PubMed  Google Scholar 

  83. Wei CG, Mu DL, Tang DJ, Zhu JQ, Hou CC (2021) Expression and functional analysis of cytoplasmic dynein during spermatogenesis in Portunus trituberculatus. Cell Tissue Res 386(1):191–203

    Article  CAS  PubMed  Google Scholar 

  84. Luo J, Gupta V, Kern B, Tash JS, Sanchez G, Blanco G, Kinsey WH (2012) Role of FYN kinase in spermatogenesis: defects characteristic of Fyn-null sperm in mice. Biol Reprod 86(1):1–8

    Article  PubMed  Google Scholar 

  85. Meng L, Xu W, Zhu Y, Zhang N, Shao C, Liu Y, Chen S (2018) Molecular characterization and expression analysis of strbp in Chinese tongue sole (Cynoglossus semilaevis). Theriogenology 118:225–232

    Article  CAS  PubMed  Google Scholar 

  86. Yang Y, Ye H, Huang H, Jin Z, Li S (2012) Cloning, expression and functional analysis of farnesoic acid O-methyltransferase (FAMeT) in the mud crab, Scylla paramamosain. Mar Freshw Behav Physiol 45(3):209–222

    Article  CAS  Google Scholar 

  87. Mizoguchi A (2021) Chapter 58. Allostatin-A. In: Comparative Endocrinology for Basic and Clinical Research. Academic Press, New York

  88. Yao Y, Wan H, Zhang Z, Lin J, Wang Y (2020) Genome-wide identification and expression profile of the sox gene family in different tissues and during embryogenesis in the Pacific white shrimp (Litopenaeus vannamei). Gene 763(144956):0378–1119

    Google Scholar 

  89. Cao JX, Dai JQ, Dai ZM, Yin GL, Yang WJ (2007) A male reproduction-related Kazal-type peptidase inhibitor gene in the prawn, Macrobrachium rosenbergii: molecular characterization and expression patterns. Mar Biotechnol (NY) 9(1):45–55

    Article  CAS  PubMed  Google Scholar 

  90. Dai ZM, Zhu XJ, Yang WJ (2009) Full-length normalization subtractive hybridization: a novel method for generating differentially expressed cDNAs. Mol Biotechnol 43(3):257–263

    Article  CAS  PubMed  Google Scholar 

  91. Abayed FAA, Manor R, Aflalo ED, Sagi A (2019) Screening for dmrt genes from embryo to mature Macrobrachium rosenbergii prawns. Gen Comp Endocrinol 282:11320

    Google Scholar 

  92. Rodriguez CI, Stewart CL (2007) Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev Biol 312:501–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Consejo Nacional de Ciencia y Tecnología (CONACYT) for financially supporting Miriam Victoria Martín-Manzo, and Maritza Lourdes Soberanes-Yepiz postdoctoral position at the Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Manuel Vargas and Omar Almaraz (U de Guadalajara) provided technical support in river prawn recollection.

Funding

This study was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT) (Grant FC2016/2930).

Author information

Authors and Affiliations

Authors

Contributions

Edilmar Cortés-Jacinto contributed to the study conception and funding acquisition. Rosa María Morelos-Castro and Adrian Munguia-Vega designed, supervised, and advised the methodology. Material preparation and data collection were performed by Miriam Victoria Martín-Manzo and Maritza Lourdes Soberanes-Yepiz. Formal Analysis and investigation were performed, the main manuscript was written by Miriam Victoria Martín-Manzo. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Edilmar Cortés-Jacinto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was carried out strictly following the Standard Operating Procedures (SOP) for the Use of Experimental Animals of the Centro de Investigaciones del Noroeste, S.C. (CIBNOR).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 535 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Manzo, M.V., Morelos-Castro, R.M., Munguia-Vega, A. et al. Transcriptome analysis of reproductive tract tissues of male river prawn Macrobrachium americanum. Mol Biol Rep 51, 259 (2024). https://doi.org/10.1007/s11033-023-09125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09125-6

Keywords

Navigation