Skip to main content

Advertisement

Log in

ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are the leading cause of death worldwide. They are non-transmissible diseases that affect the cardiovascular system and have different etiologies such as smoking, lipid disorders, diabetes, stress, sedentary lifestyle and genetic factors. To date, lncRNAs have been associated with increased susceptibility to the development of cardiovascular diseases such as hypertension, acute myocardial infarction, stroke, angina and heart failure. In this way, lncRNAs are becoming a very promising point for the prevention and diagnosis of cardiovascular diseases. Therefore, this review highlights the most important and recent discoveries about the mechanisms of action of the lncRNAs ANRIL, H19 and TUG1 and their clinical relevance in these pathologies. This may contribute to early detection of cardiovascular diseases in order to prevent the pathological phenotype from becoming established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mahpour A, Mullen AC (2021) Our emerging understanding of the roles of long non-coding RNAs in normal liver function, disease, and malignancy. JHEP Rep 3:100177. https://doi.org/10.1016/j.jhepr.2020.100177

    Article  PubMed  Google Scholar 

  2. Kufel J, Grzechnik P (2019) Small nucleolar RNAs tell a different tale. Trends Genet 35:104–117. https://doi.org/10.1016/j.tig.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  3. Mattick JS, Amaral PP, Carninci P et al (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 24:430–447. https://doi.org/10.1038/s41580-022-00566-8

    Article  CAS  PubMed  Google Scholar 

  4. Frankish A, Diekhans M, Jungreis I et al (2021) GENCODE 2021. Nucleic Acids Res 49:D916–D923. https://doi.org/10.1093/nar/gkaa1087

    Article  CAS  PubMed  Google Scholar 

  5. Flippot R, Beinse G, Boilève A et al (2019) Long non-coding RNAs in genitourinary malignancies: a whole new world. Nat Rev Urol 16:484–504. https://doi.org/10.1038/s41585-019-0195-1

    Article  PubMed  Google Scholar 

  6. Nassiri SM, Rahbarghazi R (2014) Interactions of mesenchymal stem cells with endothelial cells. Stem Cells Dev 23:319–332. https://doi.org/10.1089/scd.2013.0419

    Article  PubMed  Google Scholar 

  7. Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118. https://doi.org/10.1038/s41580-020-00315-9

    Article  CAS  PubMed  Google Scholar 

  8. Atianand MK, Hu W, Satpathy AT et al (2016) A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165:1672–1685. https://doi.org/10.1016/j.cell.2016.05.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng X, Han H, Liu G et al (2017) LncRNA wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO J 36:3325–3335. https://doi.org/10.15252/embj.201797609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nitsche A, Rose D, Fasold M et al (2015) Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 21:801–812. https://doi.org/10.1261/rna.046342.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim LJ, Wong SYS, Huang F et al (2019) Roles and regulation of long noncoding RNAs in hepatocellular carcinoma. Cancer Res 79:5131–5139. https://doi.org/10.1158/0008-5472.CAN-19-0255

    Article  CAS  PubMed  Google Scholar 

  12. Liao Y, Zhang B, Zhang T et al (2019) LncRNA GATA6-AS promotes cancer cell proliferation and inhibits apoptosis in glioma by downregulating lncRNA TUG1. Cancer Biother Radiopharm 34:660–665. https://doi.org/10.1089/cbr.2019.2830

    Article  CAS  PubMed  Google Scholar 

  13. Ma L, Wang F, Du C et al (2018) Long non-coding RNA MEG3 functions as a tumour suppressor and has prognostic predictive value in human pancreatic cancer. Oncol Rep. https://doi.org/10.3892/or.2018.6178

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang J-R, Sun H-J (2020) LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 47:5535–5547. https://doi.org/10.1007/s11033-020-05601-5

    Article  CAS  PubMed  Google Scholar 

  15. Pant T, Dhanasekaran A, Fang J et al (2018) Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord 18:197. https://doi.org/10.1186/s12872-018-0939-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Olczak KJ, Taylor-Bateman V, Nicholls HL et al (2021) Hypertension genetics past, present and future applications. J Intern Med 290:1130–1152. https://doi.org/10.1111/joim.13352

    Article  PubMed  Google Scholar 

  17. Gyselaers W (2022) Hemodynamic pathways of gestational hypertension and preeclampsia. Am J Obstet Gynecol 226:S988–S1005. https://doi.org/10.1016/j.ajog.2021.11.022

    Article  PubMed  Google Scholar 

  18. Al Ghorani H, Götzinger F, Böhm M, Mahfoud F (2022) Arterial hypertension—clinical trials update 2021. Nutr Metab Cardiovasc Dis 32:21–31. https://doi.org/10.1016/j.numecd.2021.09.007

    Article  PubMed  Google Scholar 

  19. Gioia S, Nardelli S, Ridola L, Riggio O (2020) Causes and management of non-cirrhotic portal hypertension. Curr Gastroenterol Rep 22:56. https://doi.org/10.1007/s11894-020-00792-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klinkhammer BM, Goldschmeding R, Floege J, Boor P (2017) Treatment of renal fibrosis—turning challenges into opportunities. Adv Chronic Kidney Dis 24:117–129. https://doi.org/10.1053/j.ackd.2016.11.002

    Article  PubMed  Google Scholar 

  21. Liang Z, Wang L (2022) Expression and clinical significance of lncRNA NORAD in patients with gestational hypertension. Ginekol Pol. https://doi.org/10.5603/GP.a2022.0016

    Article  PubMed  Google Scholar 

  22. Wang H, Qin R, Cheng Y (2020) LncRNA-Ang362 promotes pulmonary arterial hypertension by regulating miR-221 and miR-222. Shock 53:723–729. https://doi.org/10.1097/SHK.0000000000001410

    Article  CAS  PubMed  Google Scholar 

  23. Zhuo X, Wu Y, Yang Y et al (2019) LncRNA AK094457 promotes AngII-mediated hypertension and endothelial dysfunction through suppressing of activation of PPARγ. Life Sci 233:116745. https://doi.org/10.1016/j.lfs.2019.116745

    Article  CAS  PubMed  Google Scholar 

  24. Zhao X, Wang C, Liu M et al (2022) LncRNA FENDRR servers as a possible marker of essential hypertension and regulates human umbilical vein endothelial cells dysfunction via miR-423-5p/Nox4 axis. Int J Gen Med 15:2529–2540. https://doi.org/10.2147/IJGM.S338147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun Y, Wang T, Lv Y et al (2023) MALAT1 promotes platelet activity and thrombus formation through PI3k/Akt/GSK-3β signalling pathway. Stroke Vasc Neurol 8:181–192. https://doi.org/10.1136/svn-2022-001498

    Article  PubMed  Google Scholar 

  26. Zhang C, Zhang Y, Wang Q et al (2023) Long non-coding RNAs in intracerebral hemorrhage. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2023.1119275

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Wu X, Wang L, Zhao C (2023) Low LncRNA LUCAT1 expression assists in the diagnosis of chronic heart failure and predicts poor prognosis. Int Heart J 64:22–174. https://doi.org/10.1536/ihj.22-174

    Article  CAS  Google Scholar 

  28. Liu D, Li L, Xu J et al (2023) Upregulated lncRNA NORAD can diagnose acute cerebral ischemic stroke patients and predict poor prognosis. Folia Neuropathol 61:105–110. https://doi.org/10.5114/fn.2022.121478

    Article  PubMed  Google Scholar 

  29. Tayae E, Amr E, Zaki A, Elkaffash D (2023) LncRNA HIF1A-AS2: a potential biomarker for early diagnosis of acute myocardial infarction and predictor of left ventricular dysfunction. BMC Cardiovasc Disord 23:135. https://doi.org/10.1186/s12872-023-03164-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma T, Li H, Liu H et al (2022) Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p. Mol Ther 30:3313–3332. https://doi.org/10.1016/j.ymthe.2022.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115:668–677. https://doi.org/10.1161/CIRCRESAHA.115.303836

    Article  CAS  PubMed  Google Scholar 

  32. Congrains A, Kamide K, Oguro R et al (2012) Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220:449–455. https://doi.org/10.1016/j.atherosclerosis.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  33. Bayoglu B, Yuksel H, Cakmak HA et al (2016) Polymorphisms in the long non-coding RNA CDKN2B-AS1 may contribute to higher systolic blood pressure levels in hypertensive patients. Clin Biochem 49:821–827. https://doi.org/10.1016/j.clinbiochem.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  34. Huang J, Li M, Li J et al (2021) LncRNA H19 rs4929984 variant is associated with coronary artery disease susceptibility in Han Chinese female population. Biochem Genet 59:1359–1380. https://doi.org/10.1007/s10528-021-10055-w

    Article  CAS  PubMed  Google Scholar 

  35. Cheng X, Chen Z, Wan Y et al (2019) Long non-coding RNA H19 suppression protects the endothelium against hyperglycemic-induced inflammation via inhibiting expression of miR-29b target gene vascular endothelial growth factor a through activation of the protein kinase B/endothelial nitric oxide synthase pathway. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2019.00263

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma Y, Ma W, Huang L et al (2015) Long non-coding RNAs, a new important regulator of cardiovascular physiology and pathology. Int J Cardiol 188:105–110. https://doi.org/10.1016/j.ijcard.2015.04.021

    Article  PubMed  Google Scholar 

  37. Zhao W, He A, Zou P (2022) Genetic association between the lncRNA ANRIL rs10757272 polymorphism and intracranial aneurysm susceptibility in Asians. Neurosurg Rev 46:15. https://doi.org/10.1007/s10143-022-01927-9

    Article  PubMed  Google Scholar 

  38. MacMillan HJ, Kong Y, Calvo-Roitberg E et al (2022) High-throughput analysis of ANRIL circRNA isoforms in human pancreatic islets. Sci Rep 12:7745. https://doi.org/10.1038/s41598-022-11668-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu S, Wang H, Pan H et al (2016) ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett 381:41–48. https://doi.org/10.1016/j.canlet.2016.07.024

    Article  CAS  PubMed  Google Scholar 

  40. Wang C-H, Li Q-Y, Nie L et al (2020) LncRNA ANRIL promotes cell proliferation, migration and invasion during acute myeloid leukemia pathogenesis via negatively regulating miR-34a. Int J Biochem Cell Biol 119:105666. https://doi.org/10.1016/j.biocel.2019.105666

    Article  CAS  PubMed  Google Scholar 

  41. Ghafouri-Fard S, Safari M, Taheri M, Samadian M (2022) Expression of linear and circular lncRNAs in Alzheimer’s disease. J Mol Neurosci 72:187–200. https://doi.org/10.1007/s12031-021-01900-z

    Article  CAS  PubMed  Google Scholar 

  42. Zheng M, Zheng Y, Gao M et al (2019) Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients. Exp Ther Med. https://doi.org/10.3892/etm.2019.8345

    Article  PubMed  PubMed Central  Google Scholar 

  43. Broadbent HM, Peden JF, Lorkowski S et al (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17:806–814. https://doi.org/10.1093/hmg/ddm352

    Article  CAS  PubMed  Google Scholar 

  44. Abd-Elmawla MA, Fawzy MW, Rizk SM, Shaheen AA (2018) Role of long non-coding RNAs expression (ANRIL, NOS3-AS, and APOA1-AS) in development of atherosclerosis in Egyptian systemic lupus erythematosus patients. Clin Rheumatol 37:3319–3328. https://doi.org/10.1007/s10067-018-4269-x

    Article  PubMed  Google Scholar 

  45. Li Y, Zhang D, Zhang Y et al (2020) Association of lncRNA polymorphisms with triglyceride and total cholesterol levels among myocardial infarction patients in Chinese population. Gene 724:143684. https://doi.org/10.1016/j.gene.2019.02.085

    Article  CAS  PubMed  Google Scholar 

  46. Tsai P-C, Liao Y-C, Lin T-H et al (2012) Additive effect of ANRIL and BRAP polymorphisms on ankle-brachial index in a Taiwanese population. Circ J 76:446–452. https://doi.org/10.1253/circj.CJ-11-0925

    Article  CAS  PubMed  Google Scholar 

  47. Guo F, Tang C, Li Y et al (2018) The interplay of Lnc RNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-κB signalling pathway. J Cell Mol Med 22:5062–5075. https://doi.org/10.1111/jcmm.13790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang F, Su X, Liu C et al (2017) Prognostic value of plasma long noncoding RNA ANRIL for in-stent restenosis. Med Sci Monit 23:4733–4739. https://doi.org/10.12659/MSM.904352

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang S, Zhang C, Zhang X (2019) Downregulation of long non-coding RNA ANRIL promotes proliferation and migration in hypoxic human pulmonary artery smooth muscle cells. Mol Med Rep. https://doi.org/10.3892/mmr.2019.10887

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao W, Smith JA, Mao G et al (2015) The cis and trans effects of the risk variants of coronary artery disease in the Chr9p21 region. BMC Med Genomics 8:21. https://doi.org/10.1186/s12920-015-0094-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Razeghian-Jahromi I, Zibaeenezhad MJ, Karimi Akhormeh A, Dara M (2022) Expression ratio of circular to linear ANRIL in hypertensive patients with coronary artery disease. Sci Rep 12:1802. https://doi.org/10.1038/s41598-022-05731-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song C-L, Wang J-P, Xue X et al (2017) Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis. Cell Physiol Biochem 42:1202–1212. https://doi.org/10.1159/000478918

    Article  CAS  PubMed  Google Scholar 

  53. Wilusz JE (2017) Circular RNAs: unexpected outputs of many protein-coding genes. RNA Biol 14:1007–1017. https://doi.org/10.1080/15476286.2016.1227905

    Article  PubMed  Google Scholar 

  54. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38. https://doi.org/10.1186/1476-4598-10-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang J, Qi M, Fei X et al (2021) LncRNA H19: a novel oncogene in multiple cancers. Int J Biol Sci 17:3188–3208. https://doi.org/10.7150/ijbs.62573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gielchinsky I, Gilon M, Abu-lail R et al (2017) H19 non-coding RNA in urine cells detects urothelial carcinoma: a pilot study. Biomarkers. https://doi.org/10.1080/1354750X.2016.1276625

    Article  PubMed  Google Scholar 

  57. Zhang J, Liu M, Liang Y et al (2021) Correlation between lncRNA H19 rs2839698 polymorphism and susceptibility to NK/T cell lymphoma in Chinese population. J BUON 26:587–591

    PubMed  Google Scholar 

  58. Natarelli L, Parca L, Mazza T et al (2021) MicroRNAs and long non-coding RNAs as potential candidates to target specific motifs of SARS-CoV-2. Noncoding RNA 7:14. https://doi.org/10.3390/ncrna7010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li X, Zhang Y, Su L et al (2022) FGF21 alleviates pulmonary hypertension by inhibiting mTORC1/EIF4EBP1 pathway via H19. J Cell Mol Med 26:3005–3021. https://doi.org/10.1111/jcmm.17318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Su H, Xu X, Yan C et al (2018) LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension. Respir Res 19:254. https://doi.org/10.1186/s12931-018-0956-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Omura J, Habbout K, Shimauchi T et al (2020) Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation 142:1464–1484. https://doi.org/10.1161/CIRCULATIONAHA.120.047626

    Article  CAS  PubMed  Google Scholar 

  62. Gao W, Li D, Xiao Z et al (2011) Detection of global DNA methylation and paternally imprinted H19 gene methylation in preeclamptic placentas. Hypertens Res 34:655–661. https://doi.org/10.1038/hr.2011.9

    Article  CAS  PubMed  Google Scholar 

  63. Yu L, Chen M, Zhao D et al (2009) The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta 30:443–447. https://doi.org/10.1016/j.placenta.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  64. Xu J, Xia Y, Zhang H et al (2018) Overexpression of long non-coding RNA H19 promotes invasion and autophagy via the PI3K/AKT/mTOR pathways in trophoblast cells. Biomed Pharmacother 101:691–697. https://doi.org/10.1016/j.biopha.2018.02.134

    Article  CAS  PubMed  Google Scholar 

  65. Gao W, Liu M, Yang Y et al (2012) The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol 9:1002–1010. https://doi.org/10.4161/rna.20807

    Article  CAS  PubMed  Google Scholar 

  66. Shu C, Yan D, Chen C et al (2019) Metformin exhibits its therapeutic effect in the treatment of pre-eclampsia via modulating the Met/H19/miR-148a-5p/P28 and Met/H19/miR-216-3p/EBI3 signaling pathways. Int Immunopharmacol 74:105693. https://doi.org/10.1016/j.intimp.2019.105693

    Article  CAS  PubMed  Google Scholar 

  67. Zhao M, Wang H, Chen J et al (2021) Expression of long non-coding RNA H19 in colorectal cancer patients with type 2 diabetes. Arch Physiol Biochem 127:228–234. https://doi.org/10.1080/13813455.2019.1628068

    Article  CAS  PubMed  Google Scholar 

  68. Alfaifi M, Verma AK, Alshahrani MY et al (2020) Assessment of cell-free long non-coding RNA-H19 and miRNA-29a, miRNA-29b expression and severity of diabetes. Diabetes Metab Syndr Obes 13:3727–3737. https://doi.org/10.2147/DMSO.S273586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bitarafan S, Yari M, Broumand MA et al (2019) Association of increased levels of lncRNA H19 in PBMCs with risk of coronary artery disease. Cell J 20:564–568. https://doi.org/10.22074/cellj.2019.5544

    Article  PubMed  Google Scholar 

  70. Zhang Z, Gao W, Long Q-Q et al (2017) Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci Rep 7:7491. https://doi.org/10.1038/s41598-017-07611-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun H, Jiang Q, Sheng L, Cui K (2020) Downregulation of lncRNA H19 alleviates atherosclerosis through inducing the apoptosis of vascular smooth muscle cells. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11394

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li G, Ma X, Zhao H et al (2022) Long non-coding RNA H19 promotes leukocyte inflammation in ischemic stroke by targeting the miR-29b/C1QTNF6 axis. CNS Neurosci Ther 28:953–963. https://doi.org/10.1111/cns.13829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu W, Ding H, Xu Q et al (2020) Relationship between long noncoding RNA H19 polymorphisms and risk of coronary artery disease in a Chinese population: a case–control study. Dis Markers 2020:1–11. https://doi.org/10.1155/2020/9839612

    Article  CAS  Google Scholar 

  74. Gao W, Zhu M, Wang H et al (2015) Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat Res/Fundam Mol Mech Mutagen 772:15–22. https://doi.org/10.1016/j.mrfmmm.2014.12.009

    Article  CAS  Google Scholar 

  75. Zhang B, Jiang H, Chen J et al (2020) LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med 24:1099–1115. https://doi.org/10.1111/jcmm.14846

    Article  CAS  PubMed  Google Scholar 

  76. Safaei S, Tahmasebi-Birgani M, Bijanzadeh M, Seyedian SM (2020) Increased expression level of long noncoding RNA H19 in plasma of patients with myocardial infarction. Int J Mol Cell Med 9:122–129. https://doi.org/10.22088/IJMCM.BUMS.9.2.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fan Z, Liu S, Zhou H (2022) LncRNA H19 regulates proliferation, apoptosis and ECM degradation of aortic smooth muscle cells via miR-1-3p/ADAM10 axis in thoracic aortic aneurysm. Biochem Genet 60:790–806. https://doi.org/10.1007/s10528-021-10118-y

    Article  CAS  PubMed  Google Scholar 

  78. Wang H, Lian X, Gao W et al (2022) Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered 13:3826–3839. https://doi.org/10.1080/21655979.2021.2017564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han Y, Dong B, Chen M, Yao C (2021) LncRNA H19 suppresses pyroptosis of cardiomyocytes to attenuate myocardial infarction in a PBX3/CYP1B1-dependent manner. Mol Cell Biochem 476:1387–1400. https://doi.org/10.1007/s11010-020-03998-y

    Article  CAS  PubMed  Google Scholar 

  80. Zhuang Y, Li T, Xiao H et al (2021) LncRNA-H19 drives cardiomyocyte senescence by targeting miR-19a/socs1/p53 axis. Front Pharmacol. https://doi.org/10.3389/fphar.2021.631835

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rezaei M, Mokhtari MJ, Bayat M et al (2021) Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol 21:54. https://doi.org/10.1186/s12883-021-02081-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Viereck J, Bührke A, Foinquinos A et al (2020) Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41:3462–3474. https://doi.org/10.1093/eurheartj/ehaa519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen C, Liu M, Tang Y et al (2020) LncRNA H19 is involved in myocardial ischemic preconditioning via increasing the stability of nucleolin protein. J Cell Physiol 235:5985–5994. https://doi.org/10.1002/jcp.29524

    Article  CAS  PubMed  Google Scholar 

  84. Liu L, An X, Li Z et al (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65. https://doi.org/10.1093/cvr/cvw078

    Article  CAS  PubMed  Google Scholar 

  85. Li Z, Shu X, Chang Y et al (2019) Effect of lncRNA H19 on the apoptosis of vascular endothelial cells in arteriosclerosis obliterans via the NF-κB pathway. Eur Rev Med Pharmacol Sci 23:4491–4497

    PubMed  Google Scholar 

  86. Tang F, Zhang S, Wang H et al (2022) lncRNA H19 promotes Ox-LDL-induced dysfunction of human aortic endothelial cells through the miR-152/VEGFA axis. J Healthc Eng 2022:1–11. https://doi.org/10.1155/2022/3795060

    Article  Google Scholar 

  87. Young TL, Matsuda T, Cepko CL (2005) The noncoding RNA Taurine Upregulated Gene 1 is required for differentiation of the murine retina. Curr Biol 15:501–512. https://doi.org/10.1016/j.cub.2005.02.027

    Article  CAS  PubMed  Google Scholar 

  88. Zhou H, Sun L, Wan F (2019) Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells (Review). Oncol Lett. https://doi.org/10.3892/ol.2019.10848

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tang T, Cheng Y, She Q et al (2018) Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother 107:338–346. https://doi.org/10.1016/j.biopha.2018.07.076

    Article  CAS  PubMed  Google Scholar 

  90. Lin P-C, Huang H-D, Chang C-C et al (2016) Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer 16:583. https://doi.org/10.1186/s12885-016-2569-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xue M, Xia F, Wang Y et al (2022) The role of LncRNA TUG1 in obesity-related diseases. Mini-Rev Med Chem 22:1305–1313. https://doi.org/10.2174/1389557522666220117120228

    Article  CAS  PubMed  Google Scholar 

  92. Joshi M, Rajender S (2020) Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol 18:103. https://doi.org/10.1186/s12958-020-00660-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu H, Chen S, Li A et al (2021) LncRNA expression profiles in systemic lupus erythematosus and rheumatoid arthritis: emerging biomarkers and therapeutic targets. Front Immunol. https://doi.org/10.3389/fimmu.2021.792884

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhang S, Jin R, Li B (2021) Serum NT-proBNP and TUG1 as novel biomarkers for elderly hypertensive patients with heart failure with preserved ejection fraction. Exp Ther Med 21:446. https://doi.org/10.3892/etm.2021.9874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shi L, Tian C, Sun L et al (2018) The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun 501:688–695. https://doi.org/10.1016/j.bbrc.2018.05.049

    Article  CAS  PubMed  Google Scholar 

  96. Yang L, Liang H, Shen L et al (2019) LncRNA TUG1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci 237:116769. https://doi.org/10.1016/j.lfs.2019.116769

    Article  CAS  PubMed  Google Scholar 

  97. Lv Z, Jiang R, Hu X et al (2021) Dysregulated lncRNA TUG1 in different pulmonary artery cells under hypoxia. Ann Transl Med 9:879–879. https://doi.org/10.21037/atm-21-2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang S, Cao W, Gao S et al (2019) TUG1 regulates pulmonary arterial smooth muscle cell proliferation in pulmonary arterial hypertension. Can J Cardiol 35:1534–1545. https://doi.org/10.1016/j.cjca.2019.07.630

    Article  PubMed  Google Scholar 

  99. Zhang J, Zhang Y, Gao J et al (2021) Long noncoding RNA TUG1 promotes angiotensin II-induced renal fibrosis by binding to mineralocorticoid receptor and negatively regulating MicroR-29b-3p. Hypertension 78:693–705. https://doi.org/10.1161/HYPERTENSIONAHA.120.16395

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Council for Scientific and Technological Development (CNPq, Grant No. 310905/2020-6, CNPq Research Productivity Scholarship), Universidade Federal de Ouro Preto (Grant No. 17202317) and Minas Gerais State Research Support Foundation (FAPEMIG, Process APQ-03555-22).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed and approved the creation of the figures and the writing of the final manuscript.

Corresponding author

Correspondence to Glenda Nicioli da Silva.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha Agostini, L., Almeida, T.C. & da Silva, G.N. ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases. Mol Biol Rep 51, 31 (2024). https://doi.org/10.1007/s11033-023-09007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09007-x

Keywords

Navigation