Skip to main content

Advertisement

Log in

Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/CAAC.21660

    Article  PubMed  Google Scholar 

  2. Molina JR, Yang P, Cassivi SD et al (2008) Non–Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clinic proceedings Mayo Clinic 83:584. https://doi.org/10.4065/83.5.584

  3. Machado-Rugolo J, Prieto TG, Fabro AT et al (2021) Relevance of PD-L1 non-coding polymorphisms on the prognosis of a genetically admixed NSCLC Cohort. Pharmgenomics Pers Med 14:239. https://doi.org/10.2147/PGPM.S286717

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goffin J, Lacchetti C, Ellis PM et al (2010) First-line systemic chemotherapy in the treatment of advanced non-small cell Lung cancer: a systematic review. J Thorac Oncol 5:260–274. https://doi.org/10.1097/JTO.0B013E3181C6F035

    Article  PubMed  Google Scholar 

  5. Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for Advanced non–small-cell Lung Cancer. N Engl J Med 346:92–98. https://doi.org/10.1056/nejmoa011954

    Article  CAS  PubMed  Google Scholar 

  6. d’Amato TA, Landreneau RJ, Ricketts W et al (2007) Chemotherapy resistance and oncogene expression in non-small cell Lung cancer. J Thorac Cardiovasc Surg 133:352–363. https://doi.org/10.1016/j.jtcvs.2006.10.019

    Article  CAS  PubMed  Google Scholar 

  7. Dell’Atti L, Aguiari G (2023) The role of genetic polymorphisms in the diagnosis and management of Prostate Cancer: an update. Anticancer Res 43:317–322. https://doi.org/10.21873/ANTICANRES.16166

    Article  PubMed  Google Scholar 

  8. Kido T, Sikora-Wohlfeld W, Kawashima M et al (2018) Are minor alleles more likely to be risk alleles? BMC Medical Genomics 2018 11:1 11:1–11. https://doi.org/10.1186/S12920-018-0322-5

  9. Grant CH, Gourley C (2015) Relevant Cancer diagnoses, commonly used Chemotherapy agents and their biochemical mechanisms of action. Cancer Treatment and the Ovary: Clinical and Laboratory Analysis of ovarian toxicity. Elsevier Inc., pp 21–33

  10. Zhou J, Kang Y, Chen L et al (2020) The drug-resistance mechanisms of five platinum-based Antitumor agents. Front Pharmacol 0:343. https://doi.org/10.3389/FPHAR.2020.00343

    Article  Google Scholar 

  11. Galluzzi L, Senovilla L, Vitale I et al (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883

    Article  CAS  PubMed  Google Scholar 

  12. Burgess JT, Rose M, Boucher D et al (2020) The therapeutic potential of DNA damage repair pathways and genomic Stability in Lung Cancer. Front Oncol 0:1256. https://doi.org/10.3389/FONC.2020.01256

    Article  Google Scholar 

  13. Gonzalez-Rajal A, Hastings JF, Watkins DN et al (2020) Breathing New Life into the mechanisms of Platinum Resistance in Lung Adenocarcinoma. Front Cell Dev Biol 8:1–6. https://doi.org/10.3389/fcell.2020.00305

    Article  Google Scholar 

  14. Wynne P, Newton C, Ledermann JA et al (2007) Enhanced repair of DNA interstrand crosslinking in Ovarian cancer cells from patients following treatment with platinum-based chemotherapy. Br J Cancer 2007 97:7. https://doi.org/10.1038/sj.bjc.6603973

    Article  CAS  Google Scholar 

  15. Fink D, Nebel S, Aebi S et al (1996) The role of DNA mismatch repair in platinum drug resistance - PubMed. Cancer Res 56:4881–4886

    CAS  PubMed  Google Scholar 

  16. Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair and mutagenesis. Environ Mol Mutagen 58:235. https://doi.org/10.1002/EM.22087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghosal G, Chen J (2013) DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res 2. https://doi.org/10.21037/1132

  18. Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N (2020) Drug uptake-based chemoresistance in Breast cancer treatment. Biochem Pharmacol 177:113959. https://doi.org/10.1016/J.BCP.2020.113959

    Article  CAS  PubMed  Google Scholar 

  19. Huang Y, Anderle P, Bussey KJ et al (2004) Membrane transporters and channels. Cancer Res 64:4294–4301. https://doi.org/10.1158/0008-5472.CAN-03-3884

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Zheng J, Jiang Y et al (2020) Neglected, Drug-Induced Platinum Accumulation causes Immune Toxicity. Front Pharmacol 11:1166. https://doi.org/10.3389/fphar.2020.01166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tashiro T, Sato Y (1992) Characterization of Acquired Resistance to cis-diamminedichloroplatinum(II) in mouse Leukemia cell lines. Jpn J Cancer Res 83:219–225. https://doi.org/10.1111/J.1349-7006.1992.TB00089.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee RFS, Riedel T, Escrig S et al (2017) Differences in cisplatin distribution in sensitive and resistant Ovarian cancer cells: a TEM/NanoSIMS study. Metallomics 9:1413–1420. https://doi.org/10.1039/C7MT00153C

    Article  CAS  PubMed  Google Scholar 

  23. Robey RW, Pluchino KM, Hall MD et al (2018) Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Reviews Cancer 2018 18:7. https://doi.org/10.1038/s41568-018-0005-8

    Article  CAS  Google Scholar 

  24. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584. https://doi.org/10.1038/NRC2167

    Article  CAS  PubMed  Google Scholar 

  25. Kelley SL, Basu A, Teicher BA et al (1988) Overexpression of metallothionein confers resistance to anticancer drugs. Science (1979) 241:1813–1815. https://doi.org/10.1126/science.3175622

  26. Kasahara K, Fujiwara Y, Nishio K et al (1991) Metallothionein content correlates with the sensitivity of human small cell Lung Cancer Cell lines to Cisplatin. Cancer Res 51

  27. Chen SH, Chang JY (2019) New insights into mechanisms of cisplatin resistance: from Tumor cell to microenvironment. Int J Mol Sci 20. https://doi.org/10.3390/ijms20174136

  28. Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–468. https://doi.org/10.1016/0968-0004(92)90489-V

    Article  CAS  PubMed  Google Scholar 

  29. Liu W, Wang Y, Xie Y et al (2021) Cisplatin remodels the tumor immune microenvironment via the transcription factor EB in ovarian cancer. Cell Death Discovery 2021 7:1 7:1–13. https://doi.org/10.1038/s41420-021-00519-8

  30. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer and Metastasis Reviews 2007 26:2 26:225–239. https://doi.org/10.1007/S10555-007-9055-1

  31. Zhao W, Xia S-Q, Zhuang J-P et al (2016) Hypoxia-induced resistance to cisplatin-mediated apoptosis in osteosarcoma cells is reversed by gambogic acid independently of HIF-1α. Mol Cell Biochem 2016 420(1 420):1–8. https://doi.org/10.1007/S11010-016-2759-1

    Article  CAS  Google Scholar 

  32. Jalota A, Kumar M, Das BC et al (2018) A drug combination targeting hypoxia induced chemoresistance and stemness in glioma cells. Oncotarget 9:18351–18366. https://doi.org/10.18632/ONCOTARGET.24839

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang L, Li X, Ren Y et al (2019) Cancer-associated fibroblasts contribute to cisplatin resistance by modulating ANXA3 in Lung cancer cells. Cancer Sci 110:1609–1620. https://doi.org/10.1111/CAS.13998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Long X, Xiong W, Zeng X et al (2019) Cancer-associated fibroblasts promote cisplatin resistance in Bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death & Disease 2019 10:5. https://doi.org/10.1038/s41419-019-1581-6

    Article  Google Scholar 

  35. Zhai J, Shen J, Xie G et al (2019) Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer. Cancer Lett 454:37–43. https://doi.org/10.1016/J.CANLET.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  36. Mao X, Xu J, Wang W et al (2021) Crosstalk between cancer-associated fibroblasts and immune cells in the Tumor microenvironment: new findings and future perspectives. Mol Cancer 20. https://doi.org/10.1186/S12943-021-01428-1

  37. Linares J, Sallent-Aragay A, Badia-Ramentol J et al (2023) Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes Colorectal cancer progression and resistance to therapy. Nat Commun 2023 14(1):1–18. https://doi.org/10.1038/s41467-023-36334-1

    Article  CAS  Google Scholar 

  38. Murphy K, Janeway CA Jr., Travers P et al (2012) Janeway’s Immunobiology

  39. Ramakrishnan R, Assudani D, Nagaraj S et al (2010) Chemotherapy enhances Tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124. https://doi.org/10.1172/JCI40269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Kryczek I, Dostál L et al (2016) Effector T cells abrogate stroma-mediated Chemoresistance in Ovarian Cancer. Cell 165:1092–1105. https://doi.org/10.1016/J.CELL.2016.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan SC (2018) Low penetrance genetic polymorphisms as potential biomarkers for Colorectal cancer predisposition. J Gene Med 20:e3010. https://doi.org/10.1002/jgm.3010

    Article  PubMed  Google Scholar 

  42. Arora S, Kothandapani A, Tillison K et al (2010) Downregulation of XPF–ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair (Amst) 9:745–753. https://doi.org/10.1016/J.DNAREP.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  43. Mlak R, Krawczyk P, Ramlau R et al (2013) Predictive value of ERCC1 and RRM1 gene single-nucleotide polymorphisms for first-line platinum- and gemcitabine-based chemotherapy in non-small cell Lung cancer patients. Oncol Rep 30:2385–2398. https://doi.org/10.3892/or.2013.2696

    Article  CAS  PubMed  Google Scholar 

  44. Gao H, Ge RC, Liu HY et al (2014) Effect of ERCC1 polymorphism on the response to chemotherapy and clinical outcome of non-small cell Lung cancer. Genet Mol Res 13:8997–9004. https://doi.org/10.4238/2014.October.31.14

    Article  CAS  PubMed  Google Scholar 

  45. Sullivan I, Salazar J, Majem M et al (2014) Pharmacogenetics of the DNA repair pathways in advanced non-small cell Lung cancer patients treated with platinum-based chemotherapy. Cancer Lett 353:160–166. https://doi.org/10.1016/j.canlet.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  46. Joerger M, Burgers SA, Baas P et al (2012) Germline polymorphisms in patients with advanced nonsmall cell Lung cancer receiving first-line platinum-gemcitabine chemotherapy: a prospective clinical study. Cancer 118:2466–2475. https://doi.org/10.1002/cncr.26562

    Article  CAS  PubMed  Google Scholar 

  47. Krawczyk P, Wojas-Krawczyk K, Mlak R et al (2012) Predictive value of ERCC1 single-nucleotide polymorphism in patients receiving platinum-based chemotherapy for locally-advanced and advanced non-small cell Lung cancer–a pilot study. Folia Histochem Cytobiol 50:80–86. https://doi.org/10.2478/18700

    Article  CAS  PubMed  Google Scholar 

  48. Su D, Ma S, Liu P et al (2007) Genetic polymorphisms and treatment response in advanced non-small cell Lung cancer. Lung Cancer 56:281–288. https://doi.org/10.1016/j.lungcan.2006.12.002

    Article  PubMed  Google Scholar 

  49. Cheng J, Ha M, Wang Y et al (2012) A C118T polymorphism of ERCC1 and response to cisplatin chemotherapy in patients with late-stage non-small cell Lung cancer. J Cancer Res Clin Oncol 138:231–238. https://doi.org/10.1007/s00432-011-1090-1

    Article  CAS  PubMed  Google Scholar 

  50. Isla D, Sarries C, Rosell R et al (2004) Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell Lung cancer. Ann Oncol 15:1194–1203. https://doi.org/10.1093/annonc/mdh319

    Article  CAS  PubMed  Google Scholar 

  51. Kimcurran V, Zhou C, Schmid-Bindert G et al (2011) Lack of correlation between ERCC1 (C8092A) single nucleotide polymorphism and efficacy/toxicity of platinum based chemotherapy in Chinese patients with advanced non-small cell Lung cancer. Adv Med Sci 56:30–38. https://doi.org/10.2478/v10039-011-0013-3

    Article  CAS  PubMed  Google Scholar 

  52. Ryu JS, Hong YC, Han HS et al (2004) Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell Lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer 44:311–316. https://doi.org/10.1016/j.lungcan.2003.11.019

    Article  PubMed  Google Scholar 

  53. Kaewbubpa W, Areepium N, Sriuranpong V (2016) Effect of the ERCC1 (C118T) polymorphism on treatment response in Advanced Non-small Cell Lung Cancer patients undergoing platinum-based chemotherapy. Asian Pac J Cancer Prev 17:4917–4920. https://doi.org/10.22034/APJCP.2016.17.11.4917

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wei S, Zhan P, Shi M et al (2011) Predictive value of ERCC1 and XPD polymorphism in patients with advanced non-small cell Lung cancer receiving platinum-based chemotherapy: a systematic review and meta-analysis. Med Oncol 28:315–321. https://doi.org/10.1007/s12032-010-9443-1

    Article  CAS  PubMed  Google Scholar 

  55. Tibaldi C, Giovannetti E, Vasile E et al (2008) Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell Lung cancer patients. Clin Cancer Res 14:1797–1803. https://doi.org/10.1158/1078-0432.CCR-07-1364

    Article  CAS  PubMed  Google Scholar 

  56. Yu D, Shi J, Sun T et al (2012) Pharmacogenetic role of ERCC1 genetic variants in treatment response of platinum-based chemotherapy among advanced non-small cell Lung cancer patients. Tumour Biol 33:877–884. https://doi.org/10.1007/s13277-011-0314-y

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Zhang Q, Zhang H et al (2010) [Association between polymorphisms of ERCC1 and response in patients with advanced non-small cell Lung cancer receiving cisplatin-based chemotherapy]. Zhongguo Fei Ai Za Zhi 13:337–341. https://doi.org/10.3779/j.issn.1009-3419.2010.04.13

    Article  CAS  PubMed  Google Scholar 

  58. Yuan P, Miao X-P, Zhang X-M et al (2005) Correlation of genetic polymorphisms in nucleotide excision repair system to sensitivity of advanced non-small cell Lung cancer patients to platinum-based chemotherapy. Chin J Cancer 24:1510–1513

    CAS  Google Scholar 

  59. Zhou G-R, Ye J-J, Feng J-F et al (2013) Relationgship of genetic polymorphisms of ERCC1 with the clinical prognosis to platin-based chemotherapy in patients with advanced non-small cell Lung cancer. Cancer Res Clin 25:523–526. https://doi.org/10.3760/cma.j.issn.1006-9801.2013.08.006

    Article  CAS  Google Scholar 

  60. Zhao X, Zhang Z, Yuan Y, Yuan X (2014) Polymorphisms in ERCC1 gene could predict clinical outcome of platinum-based chemotherapy for non-small cell Lung cancer patients. Tumour Biol 35:8335–8341. https://doi.org/10.1007/s13277-014-2033-7

    Article  CAS  PubMed  Google Scholar 

  61. Yu JJ, Lee KB, Mu C et al (2000) Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol 16:555–560. https://doi.org/10.3892/ijo.16.3.555

    Article  CAS  PubMed  Google Scholar 

  62. Gao R, Reece K, Sissung T et al (2011) The ERCC1 N118N polymorphism does not change cellular ERCC1 protein expression or platinum sensitivity. Mutat Res 708:21–27. https://doi.org/10.1016/J.MRFMMM.2011.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Das S, Naher L, Das Aka T et al (2017) The ECCR1 rs11615, ERCC4 rs2276466, XPC rs2228000 and XPC rs2228001 polymorphisms increase the Cervical cancer risk and aggressiveness in the Bangladeshi population. https://doi.org/10.1016/j.heliyon.2021.e05919

  64. Woelfelschneider A, Popanda O, Lilla C et al (2008) A distinct ERCC1 haplotype is associated with mRNA expression levels in Prostate cancer patients. Carcinogenesis 29:1758. https://doi.org/10.1093/CARCIN/BGN067

    Article  CAS  PubMed  Google Scholar 

  65. Shi Z-H, Shi G-Y, Liu L-G (2015) Polymorphisms in ERCC1 and XPF gene and response to chemotherapy and overall survival of non-small cell Lung cancer. Int J Clin Exp Pathol 8:3132–3137

    PubMed  PubMed Central  Google Scholar 

  66. Dong J, Hu Z, Shu Y et al (2012) Potentially functional polymorphisms in DNA repair genes and non-small-cell Lung cancer survival: a pathway-based analysis. Mol Carcinog 51:546–552. https://doi.org/10.1002/mc.20819

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Cao S, Zhuang C et al (2021) ERCC1 rs11615 polymorphism and chemosensitivity to platinum Drugs in patients with Ovarian cancer: a systematic review and meta-analysis. J Ovarian Res 2021 14(1 14):1–11. https://doi.org/10.1186/S13048-021-00831-Y

    Article  CAS  Google Scholar 

  68. Chang PM-H, Tzeng C-H, Chen P-M et al (2009) ERCC1 codon 118 C→T polymorphism associated with ERCC1 expression and outcome of FOLFOX-4 treatment in Asian patients with metastatic colorectal carcinoma. Cancer Sci 100:278–283. https://doi.org/10.1111/J.1349-7006.2008.01031.X

    Article  CAS  PubMed  Google Scholar 

  69. Liao W-YY, Ho C-CC, Tsai T-HH et al (2018) Combined effect of ERCC1 and ERCC2 polymorphisms on overall survival in non-squamous non-small-cell Lung cancer patients treated with first-line pemetrexed/platinum. Lung Cancer 118:90–96. https://doi.org/10.1016/j.lungcan.2018.01.011

    Article  PubMed  Google Scholar 

  70. Tan L-MM, Qiu C-FF, Zhu T et al (2017) Genetic polymorphisms and platinum-based Chemotherapy Treatment Outcomes in patients with Non-small Cell Lung Cancer: a genetic epidemiology study based Meta-analysis. Sci Rep 7:5593. https://doi.org/10.1038/s41598-017-05642-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang S, Wang Y, Jin Z et al (2014) Role of ERCC1 variants in response to chemotherapy and clinical outcome of advanced non-small cell Lung cancer. Tumour Biol 35:4023–4029. https://doi.org/10.1007/s13277-013-1526-0

    Article  CAS  PubMed  Google Scholar 

  72. Xue P, Zhang G, Zhang H et al (2022) A miR-15a related polymorphism affects NSCLC prognosis via altering ERCC1 repair to platinum-based chemotherapy. J Cell Mol Med 26:5439–5451. https://doi.org/10.1111/JCMM.17566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Perez-Ramirez C, Canadas-Garre M, Alnatsha A et al (2019) Pharmacogenetics of platinum-based chemotherapy: impact of DNA repair and folate metabolism gene polymorphisms on prognosis of non-small cell Lung cancer patients. Pharmacogenom J 19:164–177. https://doi.org/10.1038/s41397-018-0014-8

    Article  CAS  Google Scholar 

  74. Yang M, Woo HK, Choi Y et al (2006) Effects of ERCC1 expression in peripheral blood on the risk of Head and Neck cancer. Eur J Cancer Prev 15:269–273. https://doi.org/10.1097/01.cej.0000195709.79696.0c

    Article  CAS  PubMed  Google Scholar 

  75. Chen P, Wiencke J, Aldape K et al (2000) Association of an ERCC1 polymorphism with adult-onset glioma - PubMed. Cancer Epidemiol Biomarkers Prev 9:843–847

    CAS  PubMed  Google Scholar 

  76. Yu T, Xue P, Cui S et al (2018) Rs3212986 polymorphism, a possible biomarker to predict smoking-related Lung cancer, alters DNA repair capacity via regulating ERCC1 expression. Cancer Med 7:6317. https://doi.org/10.1002/CAM4.1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou M, Ding YJ, Feng Y et al (2014) Association of Xeroderma pigmentosum group D (Asp312Asn, Lys751Gln) and cytidine deaminase (Lys27Gln, Ala70Thr) polymorphisms with outcome in Chinese non-small cell Lung cancer patients treated with cisplatin-gemcitabine. Genet Mol Res 13:3310–3318. https://doi.org/10.4238/2014.April.29.9

    Article  CAS  PubMed  Google Scholar 

  78. Spitz MR, Wu X, Wang Y et al (2001) Modulation of nucleotide excision repair capacity by XPD polymorphisms in Lung cancer patients. Cancer Res 61:1354–1357

    CAS  PubMed  Google Scholar 

  79. Camps C, Sarries C, Roig B et al (2003) Assessment of nucleotide excision repair XPD polymorphisms in the peripheral blood of gemcitabine/cisplatin-treated advanced non-small-cell Lung cancer patients. Clin Lung Cancer 4:237–241. https://doi.org/10.3816/clc.2003.n.004

    Article  CAS  PubMed  Google Scholar 

  80. Seker H, Butkiewicz D, Bowman E et al (2001) Functional significance of XPD polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res 61:7430–7434

    CAS  PubMed  Google Scholar 

  81. Li M, Chen R, Ji B et al (2021) Contribution of XPD and XPF polymorphisms to susceptibility of Non-small Cell Lung Cancer in High-Altitude areas. Public Health Genomics 1–10. https://doi.org/10.1159/000512641

  82. Gandara DR, Kawaguchi T, Crowley J et al (2009) Japanese-US common-arm analysis of paclitaxel plus carboplatin in advanced non-small-cell Lung cancer: a model for assessing population-related pharmacogenomics. J Clin Oncol 27:3540–3546. https://doi.org/10.1200/JCO.2008.20.8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lunn RM, Helzlsouer KJ, Parshad R et al (2000) XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21:551–555. https://doi.org/10.1093/CARCIN/21.4.551

    Article  CAS  PubMed  Google Scholar 

  84. Yao C-Y, Huang X-E, Li C et al (2009) Lack of influence of XRCC1 and XPD gene polymorphisms on outcome of platinum-based chemotherapy for advanced non small cell Lung Cancers. Asian Pac J Cancer Prev 10:859–864

    PubMed  Google Scholar 

  85. Giachino DF, Ghio P, Regazzoni S et al (2007) Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in Lung cancer. Clin Cancer Res 13:2876–2881. https://doi.org/10.1158/1078-0432.CCR-06-2543

    Article  CAS  PubMed  Google Scholar 

  86. Yuan P, Miao X, Zhang X et al (2005) Polymorphisms in nucleotide excision repair genes XPC and XPD and clinical responses to platinum-based chemotherapy in advanced non-small cell Lung cancer. Zhonghua Yi Xue Za Zhi 85:972–975

    CAS  PubMed  Google Scholar 

  87. Coin F, Marinoni J-C, Rodolfo C et al (1998) Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nature Genetics 1998 20:2 20:184–188. https://doi.org/10.1038/2491

  88. Dubaele S, De Santis LP, Bienstock RJ et al (2003) Basal transcription defect discriminates between Xeroderma Pigmentosum and Trichothiodystrophy in XPD patients. Mol Cell 11:1635–1646. https://doi.org/10.1016/S1097-2765(03)00182-5

    Article  CAS  PubMed  Google Scholar 

  89. Moriel-Carretero M, Tous C, Aguilera A (2011) Control of the function of the transcription and repair factor TFIIH by the action of the cochaperone Ydj1. Proceedings of the National Academy of Sciences 108:15300–15305. https://doi.org/10.1073/PNAS.1107425108

  90. Lee SY, Kang H-GG, Yoo SS et al (2013) Polymorphisms in DNA repair and apoptosis-related genes and clinical outcomes of patients with non-small cell Lung cancer treated with first-line paclitaxel-cisplatin chemotherapy. Lung Cancer 82:330–339. https://doi.org/10.1016/j.lungcan.2013.07.024

    Article  PubMed  Google Scholar 

  91. Li Y-K, Xu Q, Sun L-P et al (2020) Nucleotide excision repair pathway gene polymorphisms are associated with risk and prognosis of Colorectal cancer. World J Gastroenterol 26:307. https://doi.org/10.3748/WJG.V26.I3.307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim S-H, Kim MJ, Cho YJ et al (2012) Clinical significance of ERCC2 haplotype-tagging single nucleotide polymorphisms in patients with unresectable non-small cell Lung Cancer treated with First-line platinum-based Chemotherapy. Am J Clin Oncol 77:294–299. https://doi.org/10.1097/COC.0b013e318297f333

    Article  CAS  Google Scholar 

  93. Rulli E, Guffanti F, Caiola E et al (2016) The 5’UTR variant of ERCC5 fails to influence outcomes in ovarian and Lung cancer patients undergoing treatment with platinum-based Drugs. Sci Rep 6:39217. https://doi.org/10.1038/srep39217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang X, Crawford EL, Blomquist TM et al (2016) Haplotype and diplotype analyses of variation in ERCC5 transcription cis-regulation in normal bronchial epithelial cells. Physiol Genomics 48:537–543. https://doi.org/10.1152/physiolgenomics.00021.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He C, Duan Z, Li P et al (2013) Role of ERCC5 promoter polymorphisms in response to platinum-based chemotherapy in patients with advanced non-small-cell Lung cancer. Anticancer Drugs 24:300–305. https://doi.org/10.1097/CAD.0b013e32835bd6ce

    Article  CAS  PubMed  Google Scholar 

  96. Somers J, Wilson LA, Kilday J-P et al (2015) A common polymorphism in the 5′ UTR of ERCC5 creates an upstream ORF that confers resistance to platinum-based chemotherapy. Genes Dev 29:1891–1896. https://doi.org/10.1101/GAD.261867.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Powley IR, Kondrashov A, Young LA et al (2009) Translational reprogramming following UVB irradiation is mediated by DNA-PKcs and allows selective recruitment to the polysomes of mRNAs encoding DNA repair enzymes. Genes Dev 23:1207–1220. https://doi.org/10.1101/gad.516509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blomquist TM, Crawford EL, Willey JC (2010) Cis-acting genetic variation at an E2F1/YY1 response site and putative p53 site is associated with altered allele-specific expression of ERCC5 (XPG) transcript in normal human bronchial epithelium. Carcinogenesis 31:1242. https://doi.org/10.1093/CARCIN/BGQ057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Crawford EL, Blomquist T, Mullins DN et al (2007) CEBPG regulates ERCC5/XPG expression in human bronchial epithelial cells and this regulation is modified by E2F1/YY1 interactions. Carcinogenesis 28:2552–2559. https://doi.org/10.1093/carcin/bgm214

    Article  CAS  PubMed  Google Scholar 

  100. Denechaud P-D, Fajas L, Giralt A (2017) E2F1, a Novel Regulator of Metabolism. Front Endocrinol (Lausanne) 0:311. https://doi.org/10.3389/FENDO.2017.00311

    Article  Google Scholar 

  101. Gordon S, Akopyan G, Garban H, Bonavida B (2005) Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 2006 25:8. https://doi.org/10.1038/sj.onc.1209080

    Article  CAS  Google Scholar 

  102. Jin ZY, Zhao XT, Zhang LN et al (2014) Effects of polymorphisms in the XRCC1, XRCC3, and XPG genes on clinical outcomes of platinum-based chemotherapy for treatment of non-small cell Lung cancer. Genet Mol Res 13:7617–7625. https://doi.org/10.4238/2014.March.31.13

    Article  CAS  PubMed  Google Scholar 

  103. Liu D, Wu J, Shi GY et al (2014) Role of XRCC1 and ERCC5 polymorphisms on clinical outcomes in advanced non-small cell Lung cancer. Genet Mol Res 13:3100–3107. https://doi.org/10.4238/2014.April.17.6

    Article  CAS  PubMed  Google Scholar 

  104. Feng J, Sun X, Sun N et al (2009) XPA A23G polymorphism is associated with the elevated response to platinum-based chemotherapy in advanced non-small cell Lung cancer. Acta Biochim Biophys Sin (Shanghai) 41:429–435. https://doi.org/10.1093/abbs/gmp027

    Article  CAS  PubMed  Google Scholar 

  105. Xu M, Liu Y, Li D et al (2018) Chinese C allele carriers of the ERCC5 rs1047768 polymorphism are more sensitive to platinum-based chemotherapy: a meta-analysis. Oncotarget 9:1248–1256. https://doi.org/10.18632/oncotarget.18981

    Article  PubMed  Google Scholar 

  106. Zienolddiny S, Skaug V (2012) Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell Lung cancer. Lung Cancer: Targets and Therapy 3:1–14

    CAS  PubMed  Google Scholar 

  107. Li M, Chen R, Ji B et al (2021) Role of ERCC5 polymorphisms in nonsmall cell Lung cancer risk and responsiveness/toxicity to cisplatinbased chemotherapy in the Chinese population. Oncol Rep 45:1295–1305. https://doi.org/10.3892/or.2021.7935

    Article  CAS  PubMed  Google Scholar 

  108. Song X, Wang S, Hong X et al (2017) Single nucleotide polymorphisms of nucleotide excision repair pathway are significantly associated with outcomes of platinum-based chemotherapy in Lung cancer. Sci Rep 7:11785. https://doi.org/10.1038/s41598-017-08257-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Said R, Bougatef K, Setti Boubaker N et al (2018) Polymorphisms in XPC gene and risk for Prostate cancer. Mol Biol Rep 0:3. https://doi.org/10.1007/s11033-018-4572-2

    Article  CAS  Google Scholar 

  110. Kusakabe M, Onishi Y, Tada H et al (2019) Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes and Environment 2019 41:1 41:1–6. https://doi.org/10.1186/S41021-019-0119-6

  111. Zhu XL, Sun XC, Chen BA et al (2010) XPC Lys939Gln polymorphism is associated with the decreased response to platinum based chemotherapy in advanced non-small-cell Lung cancer. Chin Med J (Engl) 123:3427–3432. https://doi.org/10.3760/cma.j.issn.0366-6999.2010.23.010

    Article  CAS  PubMed  Google Scholar 

  112. Khan SSG, Metter EJE, Tarone RRE et al (2000) A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis 21:1821–1825. https://doi.org/10.1093/CARCIN/21.10.1821

    Article  CAS  PubMed  Google Scholar 

  113. Lawania S, Singh N, Behera D, Sharma S (2018) XPC Polymorphism and Risk for Lung Cancer in North Indian patients treated with Platinum Based Chemotherapy and Its Association with clinical outcomes. Pathol \& Oncol Res 24:353–366. https://doi.org/10.1007/s12253-017-0252-0

    Article  CAS  Google Scholar 

  114. Sak SC, Barrett JH, Paul AB et al (2006) Comprehensive Analysis of 22 XPC polymorphisms and Bladder Cancer risk. Cancer Epidemiol Prev Biomarkers 15:2537–2541. https://doi.org/10.1158/1055-9965.EPI-06-0288

    Article  CAS  Google Scholar 

  115. Xie Z, Liu S, Zhang Y, Wang Z (2004) Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res 32:5981–5990. https://doi.org/10.1093/NAR/GKH934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zafereo ME, Sturgis EM, Liu Z et al (2009) Nucleotide excision repair core gene polymorphisms and risk of second primary malignancy in patients with index squamous cell carcinoma of the head and neck. Carcinogenesis 30:997–1002. https://doi.org/10.1093/CARCIN/BGP096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu L-B, Xu Q, Hong C-Y et al (2010) XPC gene intron 11 C/A polymorphism is a predictive biomarker for the sensitivity to NP chemotherapy in patients with non-small cell Lung cancer. Anticancer Drugs 21:669–673. https://doi.org/10.1097/CAD.0b013e32833ad5aa

    Article  CAS  PubMed  Google Scholar 

  118. Khan SG, Muniz-Medina V, Shahlavi T et al (2002) The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res 30:3624–3631. https://doi.org/10.1093/nar/gkf469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ronson GE, Piberger AL, Higgs MR et al (2018) PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nat Commun 2018 9(1):1–12. https://doi.org/10.1038/s41467-018-03159-2

    Article  CAS  Google Scholar 

  120. Caldecott KW (2019) Special Issue-DNA damage responses and neurological disease-Preface. https://doi.org/10.1016/j.dnarep.2008.04.011

  121. Kim J, Pyun J-A, Cho SW et al (2011) Lymph node Metastasis of gastric Cancer is Associated with the Interaction between Poly (ADP-Ribose) polymerase 1 and Matrix Metallopeptidase 2. DNA Cell Biol 30:1011–1017. https://doi.org/10.1089/dna.2011.1250

    Article  CAS  PubMed  Google Scholar 

  122. Nguewa PA, Fuertes MA, Valladares B et al (2005) Poly(ADP-Ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. Prog Biophys Mol Biol 88:143–172. https://doi.org/10.1016/J.PBIOMOLBIO.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  123. Dong J, Wang X, Yu Y et al (2018) Association of Base Excision Repair Gene polymorphisms with the response to Chemotherapy in Advanced Non-small Cell Lung Cancer. Chin Med J (Engl) 1311904. https://doi.org/10.4103/0366-6999.238141

  124. Wang XG, Wang ZQ, Tong WM, Shen Y (2007) PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochem Biophys Res Commun 354:122–126. https://doi.org/10.1016/j.bbrc.2006.12.162

    Article  CAS  PubMed  Google Scholar 

  125. Wei Q, Frazier ML, Levin B (2000) DNA repair: a double-edged sword. J Natl Cancer Inst 92:440–441

    Article  CAS  PubMed  Google Scholar 

  126. Shiraishi K, Kohno T, Tanai C et al (2010) Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell Lung cancer. J Clin Oncol 28:4945–4952. https://doi.org/10.1200/JCO.2010.30.5334

    Article  CAS  PubMed  Google Scholar 

  127. Bushra MU, Rivu SF, Sifat AE et al (2020) Genetic polymorphisms of GSTP1, XRCC1, XPC and ERCC1: prediction of clinical outcome of platinum-based chemotherapy in advanced non-small cell Lung cancer patients of Bangladesh. Mol Biol Rep 47:7073–7082. https://doi.org/10.1007/s11033-020-05771-2

    Article  CAS  PubMed  Google Scholar 

  128. Liu JY, Liu QM, Li LR (2015) Association of GSTP1 and XRCC1 gene polymorphisms with clinical outcomes of patients with advanced non-small cell Lung cancer. Genet Mol Res 14:10331–10337. https://doi.org/10.4238/2015.August.28.19

    Article  CAS  PubMed  Google Scholar 

  129. Han B, Guo Z, Ma Y et al (2015) Association of GSTP1 and XRCC1 gene polymorphisms with clinical outcome of advanced non-small cell Lung cancer patients with cisplatin-based chemotherapy. Int J Clin Exp Pathol 8:4113–4119

    PubMed  PubMed Central  Google Scholar 

  130. Bu L, Zhang LB, Mao X, Wang P (2016) GSTP1 Ile105Val and XRCC1 Arg399Gln gene polymorphisms contribute to the clinical outcome of patients with advanced non-small cell Lung cancer. Genet Mol Res 15:1–9. https://doi.org/10.4238/gmr.15027611

    Article  CAS  Google Scholar 

  131. Zhang L, Ma W, Li Y et al (2014) Pharmacogenetics of DNA repair gene polymorphisms in non-small-cell lung carcinoma patients on platinum-based chemotherapy. Genet Mol Res 13:228–236. https://doi.org/10.4238/2014.January.14.2

    Article  CAS  PubMed  Google Scholar 

  132. Zhao W, Hu L, Xu J et al (2013) Polymorphisms in the base excision repair pathway modulate prognosis of platinum-based chemotherapy in advanced non-small cell Lung cancer. Cancer Chemother Pharmacol 71:1287–1295. https://doi.org/10.1007/s00280-013-2127-8

    Article  CAS  PubMed  Google Scholar 

  133. Pérez-Ramírez C, Cañadas-Garre M, Alnatsha A et al (2019) Pharmacogenetics of platinum-based chemotherapy: impact of DNA repair and folate metabolism gene polymorphisms on prognosis of non-small cell Lung cancer patients. Pharmacogenomics J 19:164–177. https://doi.org/10.1038/s41397-018-0014-8

    Article  CAS  PubMed  Google Scholar 

  134. Zhou F, Yu Z, Jiang T et al (2011) Genetic polymorphisms of GSTP1 and XRCC1: prediction of clinical outcome of platinum-based chemotherapy in advanced non-small cell Lung cancer (NSCLC) patients. Swiss Med Wkly 141:w13275. https://doi.org/10.4414/smw.2011.13275

    Article  CAS  PubMed  Google Scholar 

  135. Li D, Zhou Q, Liu Y et al (2012) DNA repair gene polymorphism associated with sensitivity of Lung cancer to therapy. Med Oncol 29:1622–1628. https://doi.org/10.1007/s12032-011-0033-7

    Article  CAS  PubMed  Google Scholar 

  136. Xu C, Wang X, Zhang Y, Li L (2011) Effect of the XRCC1 and XRCC3 genetic polymorphisms on the efficacy of platinum-based chemotherapy in patients with advanced non-small cell Lung cancer. Chin J Lung cancer 14:912–917. https://doi.org/10.3779/j.issn.1009-3419.2011.12.03

    Article  Google Scholar 

  137. Zamarron B, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7:651–658. https://doi.org/10.7150/IJBS.7.651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang Z-H, Miao X-P, Tan W et al (2004) Single nucleotide polymorphisms in XRCC1 and clinical response to platin-based chemotherapy in advanced non-small cell Lung cancer. Chin J Cancer 23:865–868

    CAS  Google Scholar 

  139. Zhao R, Chen G (2015) Role of GSTP1 Ile105Val and XRCC1 Arg194Trp, Arg280His and Arg399Gln gene polymorphisms in the clinical outcome of advanced non-small cell Lung cancer. Int J Clin Exp Pathol 8:14909–14916

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hong C-Y, Xu Q, Yue Z et al (2009) Correlation of the sensitivity to vinorelbine plus cisplatin (NP) chemotherapy with polymorphism in the DNA repair gene XRCC1 in non-small Lung cancer. Chin J Cancer 28:53–59

    Article  Google Scholar 

  141. Singh A, Singh N, Behera D, Sharma S (2017) Polymorphism in XRCC1 gene modulates survival and clinical outcomes of advanced north Indian Lung cancer patients treated with platinum-based doublet chemotherapy. Med Oncol 34. https://doi.org/10.1007/s12032-017-0923-4

  142. Lunn R, Langlois R, Hsieh L et al (1999) XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency - PubMed. Cancer Res 59:2557–2561

    CAS  PubMed  Google Scholar 

  143. Matullo G, Palli D, Peluso M et al (2001) XRCC1, XRCC3, XPD gene polymorphisms, Smoking and 32P-DNA adducts in a sample of healthy subjects. Carcinogenesis 22:1437–1445. https://doi.org/10.1093/carcin/22.9.1437

    Article  CAS  PubMed  Google Scholar 

  144. Au WW, Salama SA, Sierra-Torres CH (2003) Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect 111:1843–1850. https://doi.org/10.1289/ehp.6632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gong L, Luo M, Sun R et al (2021) Significant Association between XRCC1 expression and its rs25487 polymorphism and Radiotherapy-Related Cancer Prognosis. Front Oncol 0:1269. https://doi.org/10.3389/FONC.2021.654784

    Article  Google Scholar 

  146. Berquist BR, Singh DK, Fan J et al (2010) Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population. Nucleic Acids Res 38:5023–5035. https://doi.org/10.1093/nar/gkq193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Milani L, Gupta M, Andersen M et al (2007) Allelic imbalance in gene expression as a guide to cis-acting regulatory single nucleotide polymorphisms in cancer cells. Nucleic Acids Res 35:e34–e34. https://doi.org/10.1093/NAR/GKL1152

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sun X, Li F, Sun N et al (2009) Polymorphisms in XRCC1 and XPG and response to platinum-based chemotherapy in advanced non-small cell Lung cancer patients. Lung Cancer 65:230–236. https://doi.org/10.1016/j.lungcan.2008.11.014

    Article  PubMed  Google Scholar 

  149. Yuan Z, Li J, Hu R et al (2015) Predictive assessment in pharmacogenetics of XRCC1 gene on clinical outcomes of advanced Lung cancer patients treated with platinum-based chemotherapy. Sci Rep 2015 5(1 5):1–21. https://doi.org/10.1038/srep16482

    Article  CAS  Google Scholar 

  150. Ke H-G, Li J, Shen Y et al (2012) Prognostic significance of GSTP1, XRCC1 and XRCC3 polymorphisms in non-small cell Lung cancer patients. Asian Pac J Cancer Prev 13:4413–4416. https://doi.org/10.7314/apjcp.2012.13.9.4413

    Article  PubMed  Google Scholar 

  151. Yuan P, Miao X, Zhang X et al (2006) [XRCC1 and XPD genetic polymorphisms predict clinical responses to platinum-based chemotherapy in advanced non-small cell Lung cancer]. Zhonghua Zhong Liu Za Zhi 28:196–199

    CAS  PubMed  Google Scholar 

  152. Nicoloso MS, Sun H, Spizzo R et al (2010) SINGLE NUCLEOTIDE POLYMORPHISMS INSIDE microRNA TARGET SITES INFLUENCE TUMOR SUSCEPTIBILITY. Cancer Res 70:2789. https://doi.org/10.1158/0008-5472.CAN-09-3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Francis AM, Ramya R, Ganesan N et al (2018) Breast Cancer susceptibility gene in base excision repair pathway in a Southern Indian Population. J Clin Diagn Res 12

  154. Ulker M, Duman BB, Sahin B, Gumurdulu D (2015) ERCC1 and RRM1 as a predictive parameter for non-small cell lung, ovarian or pancreas cancer treated with cisplatin and/or gemcitabine. Contemp Oncol 19:207. https://doi.org/10.5114/WO.2015.52656

    Article  CAS  Google Scholar 

  155. Bepler G, Zheng Z, Gautam A et al (2005) Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer 47:183–192. https://doi.org/10.1016/j.lungcan.2004.07.043

    Article  PubMed  Google Scholar 

  156. Wang J, Wang X, Zhao M et al (2014) Potentially functional SNPs (pfSNPs) as Novel genomic predictors of 5-FU response in metastatic Colorectal Cancer patients. PLoS ONE 9. https://doi.org/10.1371/JOURNAL.PONE.0111694

  157. Feng J-F, Wu J-Z, Hu S-N et al (2009) Polymorphisms of the ribonucleotide reductase M1 gene and sensitivity to platin-based chemotherapy in non-small cell Lung cancer. Lung Cancer 66:344–349. https://doi.org/10.1016/j.lungcan.2009.02.015

    Article  PubMed  Google Scholar 

  158. Xu X-L, Zhang Y-P, Fang Y et al (2015) The genotype of ribonucleotidereductase M1 -269C > A is associated with the response to platinum-based chemotherapy and as a prognostic biomarker in advanced nonsmall cell Lung cancer. J Cancer Res Ther 11(Suppl 1):C49–55. https://doi.org/10.4103/0973-1482.163839

    Article  CAS  PubMed  Google Scholar 

  159. Dong S, Guo A-L, Chen Z-H et al (2010) RRM1 single nucleotide polymorphism – 37 C→A correlates with progression-free survival in NSCLC patients after gemcitabine-based chemotherapy. J Hematol Oncol 2010 3(1 3):1–8. https://doi.org/10.1186/1756-8722-3-10

    Article  CAS  Google Scholar 

  160. Chen XX, Sun H, Ren XS et al (2011) ASSOCIATION OF XRCC3 AND XPD751 SNP WITH RESPONSE TO PLATINUM-BASED CHEMOTHERAPY IN ADVANCED NSCLC PATIENTS. J Thorac Oncol 6:S1190

    Google Scholar 

  161. Viñolas N, Provencio M, Reguart N et al (2011) Single nucleotide polymorphisms in MDR1 gen correlates with outcome in advanced non-small-cell Lung cancer patients treated with cisplatin plus vinorelbine. Lung Cancer 71:191–198. https://doi.org/10.1016/j.lungcan.2010.05.005

    Article  PubMed  Google Scholar 

  162. V L, I F, L P, et al (2011) Association of cytidine deaminase and xeroderma pigmentosum group D polymorphisms with response, toxicity, and survival in cisplatin/gemcitabine-treated advanced non-small cell Lung cancer patients. J Thorac Oncol 6:2018–2026. https://doi.org/10.1097/JTO.0B013E3182307E1F

  163. Cao X, Mitra AK, Pounds S et al (2013) RRM1 and RRM2 pharmacogenetics: association with phenotypes in HapMap cell lines and acute Myeloid Leukemia patients. Pharmacogenomics 14:1449–1466. https://doi.org/10.2217/PGS.13.131

    Article  CAS  PubMed  Google Scholar 

  164. Yuan Z-J, Zhou W-W, Liu W et al (2015) Association of GSTP1 and RRM1 polymorphisms with the response and toxicity of gemcitabine-cisplatin combination chemotherapy in Chinese patients with non-small cell Lung Cancer. Asian Pac J Cancer Prev 16:4347–4351. https://doi.org/10.7314/apjcp.2015.16.10.4347

    Article  PubMed  Google Scholar 

  165. X C, H S, S R, et al (2012) Association of XRCC3 and XPD751 SNP with efficacy of platinum-based chemotherapy in advanced NSCLC patients. Clin Transl Oncol 14:207–213. https://doi.org/10.1007/s12094-012-0785-3

  166. Zheng Y, Ma L, Sun Q (2021) Clinically-relevant ABC transporter for Anti-cancer Drug Resistance. Front Pharmacol 0:705. https://doi.org/10.3389/FPHAR.2021.648407

    Article  CAS  Google Scholar 

  167. Vesel M, Rapp J, Feller D et al (2017) ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell Lung Cancers (NSCLC) and expression is modified by cisplatin treatment via altered wnt signaling. Respir Res 18:52. https://doi.org/10.1186/s12931-017-0537-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Qiao R, Wu W, Lu D, Han B (2016) Influence of single nucleotide polymorphisms in ABCB1, ABCG2 and ABCC2 on clinical outcomes to paclitaxel-platinum chemotherapy in patients with non-small-cell Lung cancer. Int J Clin Exp Med 9:298–307

    CAS  Google Scholar 

  169. Tamura A, Wakabayashi K, Onishi Y et al (2007) Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci 98:231–239. https://doi.org/10.1111/J.1349-7006.2006.00371.X

    Article  CAS  PubMed  Google Scholar 

  170. Furukawa T, Wakabayashi K, Tamura A et al (2009) Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res 26:469–479. https://doi.org/10.1007/S11095-008-9752-7

    Article  CAS  PubMed  Google Scholar 

  171. Ripperger A, Benndorf R (2016) The C421A (Q141K) polymorphism enhances the 3’-untranslated region (3’-UTR)-dependent regulation of ATP-binding cassette transporter ABCG2. Biochem Pharmacol 104:139–147. https://doi.org/10.1016/J.BCP.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  172. Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109:238–246. https://doi.org/10.1002/IJC.11669

    Article  CAS  PubMed  Google Scholar 

  173. Kondo C, Suzuki H, Itoda M et al (2004) Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 21:1895–1903. https://doi.org/10.1023/B:PHAM.0000045245.21637.d4

    Article  CAS  PubMed  Google Scholar 

  174. Ishikawa T, Wakabayashi-Nakao K, Nakagawa H (2013) Methods to examine the impact of nonsynonymous SNPs on protein degradation and function of human ABC transporter. Methods Mol Biol 1015:225–250. https://doi.org/10.1007/978-1-62703-435-7_15

    Article  CAS  PubMed  Google Scholar 

  175. Basseville A, Tamaki A, Ierano C et al (2012) Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res 72:3642–3651. https://doi.org/10.1158/0008-5472.CAN-11-2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Woodward OM, Tukaye DN, Cui J et al (2013) Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci U S A 110:5223. https://doi.org/10.1073/PNAS.1214530110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sarankó H, Tordai H, Telbisz Á et al (2013) Effects of the gout-causing Q141K polymorphism and a CFTR δF508 mimicking mutation on the processing and stability of the ABCG2 protein. Biochem Biophys Res Commun 437:140–145. https://doi.org/10.1016/j.bbrc.2013.06.054

    Article  CAS  PubMed  Google Scholar 

  178. Wang L, Sun C, Li X et al (2021) A pharmacogenetics study of platinum-based chemotherapy in Lung cancer: ABCG2 polymorphism and its genetic interaction with SLC31A1 are associated with response and survival. J Cancer 12:1270–1283. https://doi.org/10.7150/JCA.51621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sobek K, Cummings J, Bacich D, O’Keefe D (2017) Contrasting roles of the ABCG2 Q141K variant in Prostate cancer. Exp Cell Res 354:40–47. https://doi.org/10.1016/J.YEXCR.2017.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Patch AM, Christie EL, Etemadmoghadam D et al (2015) Whole-genome characterization of chemoresistant Ovarian cancer. Nature 521:489–494. https://doi.org/10.1038/nature14410

    Article  CAS  PubMed  Google Scholar 

  181. Yan P, Huang X, Yan F et al (2011) Influence of MDR1 gene codon 3435 polymorphisms on outcome of platinum-based chemotherapy for advanced non small cell Lung cancer. Asian Pac J Cancer Prev 12:2291–2294

    PubMed  Google Scholar 

  182. Pan J-H, Han J-X, Wu J-M et al (2009) MDR1 single nucleotide polymorphism G2677T/A and haplotype are correlated with response to docetaxel-cisplatin chemotherapy in patients with non-small-cell Lung cancer. Respiration 78:49–55. https://doi.org/10.1159/000158454

    Article  CAS  PubMed  Google Scholar 

  183. Dogu GG, Kargi A, Turgut S et al (2012) MDR1 single nucleotide polymorphism C3435T in Turkish patients with non-small-cell Lung cancer. Gene 506:404–407. https://doi.org/10.1016/j.gene.2012.06.057

    Article  CAS  PubMed  Google Scholar 

  184. MM KLF G (2009) A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochim Biophys Acta 1794:860–871. https://doi.org/10.1016/J.BBAPAP.2009.02.014

    Article  Google Scholar 

  185. Hodges LM, Markova SM, Chinn LW et al (2011) Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics 21:152. https://doi.org/10.1097/FPC.0B013E3283385A1C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang D, Sadée W (2006) Searching for polymorphisms that affect gene expression and mRNA processing: Example ABCB1 (MDR1). AAPS J 8

  187. Hoffmeyer S, Burk O, Von Richter O et al (2000) Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proceedings of the National Academy of Sciences 97:3473–3478. https://doi.org/10.1073/pnas.050585397

  188. Kroetz DL, Pauli-Magnus C, Hodges LM et al (2003) Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 13:481–494. https://doi.org/10.1097/00008571-200308000-00006

    Article  CAS  PubMed  Google Scholar 

  189. Drain S, Catherwood MA, Bjourson AJ et al (2012) Neither P-gp SNP variants, P-gp expression nor functional P-gp activity predicts MDR in a preliminary study of plasma cell Myeloma. Cytometry B Clin Cytom 82B:229–237. https://doi.org/10.1002/CYTO.B.21018

    Article  CAS  Google Scholar 

  190. Zhang S, Wang J, Zhang A et al (2020) A SNP involved in alternative splicing of ABCB1 is associated with clopidogrel resistance in coronary Heart Disease in Chinese population. Aging 12:25684–25699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pan J, Han J, Wu J et al (2008) MDR1 single nucleotide polymorphisms predict response to vinorelbine-based chemotherapy in patients with non-small cell Lung cancer. Respiration 75:380–385. https://doi.org/10.1159/000108407

    Article  CAS  PubMed  Google Scholar 

  192. Chen S, Huo X, Lin Y et al (2010) Association of MDR1 and ERCC1 polymorphisms with response and toxicity to cisplatin-based chemotherapy in non-small-cell Lung cancer patients. Int J Hyg Environ Health 213:140–145. https://doi.org/10.1016/j.ijheh.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  193. Kimchi-Sarfaty C, Gribar JJ, Gottesman MM (2002) Functional characterization of coding polymorphisms in the human MDR1 gene using a Vaccinia virus expression system. Mol Pharmacol 62:1–6. https://doi.org/10.1124/mol.62.1.1

    Article  CAS  PubMed  Google Scholar 

  194. Morita N, Yasumori T, Nakayama K (2003) Human MDR1 polymorphism: G2677T/A and C3435T have no effect on MDR1 transport activities. Biochem Pharmacol 65:1843–1852. https://doi.org/10.1016/S0006-2952(03)00178-3

    Article  CAS  PubMed  Google Scholar 

  195. Wang H, Ding K, Zhang Y et al (2007) Comparative and evolutionary pharmacogenetics of ABCB1: complex signatures of positive selection on coding and regulatory regions. Pharmacogenet Genomics 17:667–668

    Article  CAS  PubMed  Google Scholar 

  196. Soranzo N, Cavalleri GL, Weale ME et al (2004) Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene. Genome Res 14:1333–1344. https://doi.org/10.1101/gr.1965304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Johnson AD, Zhang Y, Papp AC et al (2008) Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues. Pharmacogenet Genomics 18:781. https://doi.org/10.1097/FPC.0B013E3283050107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sun N, Sun X, Chen B et al (2010) MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell Lung cancer. Cancer Chemother Pharmacol 65:437–446. https://doi.org/10.1007/s00280-009-1046-1

    Article  CAS  PubMed  Google Scholar 

  199. Chen Y, Zhou H, Yang S, Su D (2021) IncreasedABCC2expression predicts cisplatin resistance in non-small cell Lung cancer. Cell Biochem Funct 39:277–286. https://doi.org/10.1002/cbf.3577

    Article  CAS  PubMed  Google Scholar 

  200. Korita PV, Wakai T, Shirai Y et al (2010) Multidrug resistance-associated protein 2 determines the efficacy of cisplatin in patients with hepatocellular carcinoma. Oncol Rep 23. https://doi.org/10.3892/or_00000721

  201. Yamasaki M, Makino T, Masuzawa T et al (2011) Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. 104:707–713. https://doi.org/10.1038/sj.bjc.6606071

  202. Kool M, de Haas M, Scheffer G et al (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–3547

    CAS  PubMed  Google Scholar 

  203. Liedert B, Materna V, Schadendorf D et al (2003) Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in Melanoma cells resistant to cisplatin. J Invest Dermatology 121:172–176. https://doi.org/10.1046/j.1523-1747.2003.12313.x

    Article  CAS  Google Scholar 

  204. Han B, Gao G, Wu W et al (2011) Association of ABCC2 polymorphisms with platinum-based chemotherapy response and severe toxicity in non-small cell Lung cancer patients. Lung Cancer 72:238–243. https://doi.org/10.1016/j.lungcan.2010.09.001

    Article  PubMed  Google Scholar 

  205. Qiao R, Han B, Zhang W et al (2016) The correlation between single nucleotide polymorphism of ABC transporter and response rate and severe toxicity in Lung cancer patients treated with platinum-based chemotherapy. Respirology 16:131. https://doi.org/10.3978/j.issn.2095-6959.2016.01.008

    Article  Google Scholar 

  206. Han J-Y, Lim H-S, Yoo Y-K et al (2007) Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell Lung cancer. Cancer 110:138–147. https://doi.org/10.1002/cncr.22760

    Article  PubMed  Google Scholar 

  207. Nguyen TD, Markova S, Liu W et al (2013) Functional characterization of ABCC2 promoter polymorphisms and allele-specific expression. Pharmacogenomics J 13:396–402. https://doi.org/10.1038/tpj.2012.20

    Article  CAS  PubMed  Google Scholar 

  208. Zhang Y, Zhao T, Li W, Vore M (2010) The 5′-untranslated region of multidrug resistance associated protein 2 (MRP2; ABCC2) regulates downstream open reading frame expression through translational regulation. Mol Pharmacol 77:237–246. https://doi.org/10.1124/mol.109.058982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Werk AN, Bruckmueller H, Haenisch S, Cascorbi I (2014) Genetic variants may play an important role in mRNA-miRNA interaction: evidence for haplotype-dependent downregulation of ABCC2 (MRP2) by miRNA-379. Pharmacogenet Genomics 24:283–291. https://doi.org/10.1097/FPC.0000000000000046

    Article  CAS  PubMed  Google Scholar 

  210. Qian CY, Zheng Y, Wang Y et al (2016) Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-sma. Chin J Cancer 35:85. https://doi.org/10.1186/s40880-016-0145-8

    Article  PubMed  PubMed Central  Google Scholar 

  211. Howell SB, Safaei R, Larson CA, Sailor MJ (2010) Copper transporters and the Cellular Pharmacology of the platinum-containing Cancer Drugs. Mol Pharmacol 77:887. https://doi.org/10.1124/MOL.109.063172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kim ES, Lee JJ, He G et al (2012) Tissue platinum concentration and Tumor Response in non–small-cell Lung Cancer. J Clin Oncol 30:3345. https://doi.org/10.1200/JCO.2011.40.8120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zisowsky J, Koegel S, Leyers S et al (2007) Relevance of drug uptake and efflux for cisplatin sensitivity of Tumor cells. Biochem Pharmacol 73:298–307. https://doi.org/10.1016/j.bcp.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  214. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proceedings of the National Academy of Sciences 99:14298–14302. https://doi.org/10.1073/PNAS.162491399

  215. Kim ES, Tang X, Peterson DR et al (2014) Copper transporter CTR1 expression and tissue platinum concentration in non-small cell Lung cancer. Lung Cancer 85:88–93. https://doi.org/10.1016/j.lungcan.2014.04.005

    Article  PubMed  Google Scholar 

  216. Ishida S, McCormick F, Smith-McCune K, Hanahan D (2010) Enhancing tumor-specific uptake of the Anticancer Drug Cisplatin with a Copper Chelator. Cancer Cell 17:574–583. https://doi.org/10.1016/J.CCR.2010.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bompiani KM, Tsai CY, Achatz FP et al (2016) Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity. Metallomics 8:951–962. https://doi.org/10.1039/c6mt00076b

    Article  CAS  PubMed  Google Scholar 

  218. Akerfeldt MC, Tran CMN, Shen C et al (2017) Interactions of cisplatin and the copper transporter CTR1 in human colon Cancer cells. J Biol Inorg Chem 22:765–774. https://doi.org/10.1007/s00775-017-1467-y

    Article  CAS  PubMed  Google Scholar 

  219. Xu X, Duan L, Zhou B et al (2012) Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin Exp Pharmacol Physiol 39:786–792. https://doi.org/10.1111/j.1440-1681.2012.05741.x

    Article  CAS  PubMed  Google Scholar 

  220. Xiao HL, Yang ZT, Han F, Wei HX (2016) Association of glutathione S-transferase (GST) genetic polymorphisms with treatment outcome of cisplatin-based chemotherapy for advanced non-small cell Lung cancer in a Chinese population. Genet Mol Res 15. https://doi.org/10.4238/gmr.15027320

  221. Luca A, De, Parker LJ, Ang WH et al (2019) A structure-based mechanism of cisplatin resistance mediated by glutathione transferase P1-1. Proceedings of the National Academy of Sciences 116:13943–13951. https://doi.org/10.1073/PNAS.1903297116

  222. Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative Diseases. Oncog 2018 7(1):1–15. https://doi.org/10.1038/s41389-017-0025-3

    Article  CAS  Google Scholar 

  223. Nakagawa K, Yokota J, Wada M, IN HUMAN LUNG CANCER CELL LINES CORRELATE WITH THE RESISTANCE TO CISPLATIN AND CARBOPLATIN (1988) LEVELS OF GLUTATHIONES TRANSFERASE π mRNA. Jpn J Cancer Res 79:301–304. https://doi.org/10.1111/J.1349-7006.1988.TB01590.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Masters JRW, Thomas R, Hall AG et al (1996) Sensitivity of testis tumour cells to chemotherapeutic Drugs: role of detoxifying pathways. Eur J Cancer 32:1248–1253. https://doi.org/10.1016/0959-8049(96)00033-0

    Article  Google Scholar 

  225. Byun S-S, Kim SW, Choi H et al (2005) Augmentation of cisplatin sensitivity in cisplatin-resistant human Bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. BJU Int 95:1086–1090. https://doi.org/10.1111/J.1464-410X.2005.05472.X

    Article  CAS  PubMed  Google Scholar 

  226. Hirano T, Kato H, Maeda M et al (2005) Identification of postoperative adjuvant chemotherapy responders in non-small cell Lung cancer by novel biomarker. Int J Cancer 117:460–468. https://doi.org/10.1002/IJC.21172

    Article  CAS  PubMed  Google Scholar 

  227. Wu G, Jiang B, Liu X et al (2015) Association of GSTs gene polymorphisms with treatment outcome of advanced non-small cell Lung cancer patients with cisplatin-based chemotherapy. Int J Clin Exp Pathol 8:13346–13352

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Ada AO, Kunak SC, Hancer F et al (2010) CYP and GST polymorphisms and survival in advanced non-small cell Lung cancer patients. Neoplasma 57:512–521. https://doi.org/10.4149/neo_2010_06_512

    Article  CAS  PubMed  Google Scholar 

  229. Lv H, Han T, Shi X et al (2014) Genetic polymorphism of GSTP1 and ERCC1 correlated with response to platinum-based chemotherapy in non-small cell Lung cancer. Med Oncol 31:86. https://doi.org/10.1007/s12032-014-0086-5

    Article  CAS  PubMed  Google Scholar 

  230. Liu K, Lin Q, Ding H et al (2015) Predictive potential role of GSTs gene polymorphisms in the treatment outcome of advanced non-small cell Lung cancer patients. Int J Clin Exp Med 8:20918–20924

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Deng J-H, Deng J, Shi D-H et al (2015) Clinical outcome of cisplatin-based chemotherapy is associated with the polymorphisms of GSTP1 and XRCC1 in advanced non-small cell Lung cancer patients. Clin Transl Oncol 17:720–726. https://doi.org/10.1007/s12094-015-1299-6

    Article  CAS  PubMed  Google Scholar 

  232. F A-O TMI (2002) Allelic variants of the human glutathione S-transferase P1 gene confer differential cytoprotection against anticancer agents in Escherichia coli. Pharmacogenetics 12:543–553. https://doi.org/10.1097/00008571-200210000-00006

    Article  Google Scholar 

  233. Booten R, Ward T, Heighway J et al (2006) Glutathione-S-transferase P1 isoenzyme polymorphisms, platinum-based chemotherapy, and non-small cell Lung cancer. J Thorac Oncol 1:679–683. https://doi.org/10.1016/s1556-0864(15)30381-6

    Article  Google Scholar 

  234. Moyer AM, Salavaggione OE, Wu T-Y et al (2008) Glutathione S-Transferase P1: gene sequence variation and functional genomic studies. Cancer Res 68:4791. https://doi.org/10.1158/0008-5472.CAN-07-6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yang Y, Xian L, Y Y, L X (2014) The association between the GSTP1 A313G and GSTM1 null/present polymorphisms and the treatment response of the platinum-based chemotherapy in non-small cell Lung cancer (NSCLC) patients: a meta-analysis. Tumour Biol 35:6791–6799. https://doi.org/10.1007/s13277-014-1866-4

    Article  CAS  PubMed  Google Scholar 

  236. Watson M, Stewart R, Smith G et al (1998) Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19:275–280. https://doi.org/10.1093/CARCIN/19.2.275

    Article  CAS  PubMed  Google Scholar 

  237. Allan J, Wild C, Rollinson S et al (2001) Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced Leukemia. Proc Natl Acad Sci U S A 98:11592–11597. https://doi.org/10.1073/PNAS.191211198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Leclerc D, Sibani S, Rozen R (2013) Molecular Biology of Methylenetetrahydrofolate Reductase (MTHFR) and Overview of Mutations/Polymorphisms. Landes Bioscience

  239. Zhu N, Gong Y, He J et al (2013) Influence of methylenetetrahydrofolate reductase C677T polymorphism on the risk of Lung cancer and the clinical response to platinum-based chemotherapy for advanced non-small cell Lung cancer: an updated meta-analysis. Yonsei Med J 54:1384–1393. https://doi.org/10.3349/ymj.2013.54.6.1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Cui L-H, Yu Z, Zhang T-T et al (2011) Influence of polymorphisms in MTHFR 677 C→T, TYMS 3R→2R and MTR 2756 A→G on NSCLC risk and response to platinum-based chemotherapy in advanced NSCLC. Pharmacogenomics 12:797–808. https://doi.org/10.2217/pgs.11.27

    Article  CAS  PubMed  Google Scholar 

  241. Hong W, Wang K, Zhang Y et al (2013) Methylenetetrahydrofolate reductase C677T polymorphism predicts response and time to progression to gemcitabine-based chemotherapy for advanced non-small cell Lung cancer in a Chinese Han population. J Zhejiang Univ Sci B 14:207–215. https://doi.org/10.1631/jzus.B1200101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Garcia Campelo R, Penas RD, Alberola V et al (2004) Effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and the methlonine synthase (MS) A2756G polymorphisms on cisplatin/gemcitabin-treated stage IV non-small-cell Lung cancer (NSCLC) patients: a Spanish Lung Cancer Group study. Ann Oncol 15:188

    Google Scholar 

  243. Shi M, Gao C, Wu J et al (2006) Genetic polymorphisms in methylenetetrahydrofolate reductase and clinical response to chemotherapy in non-small cell Lung cancer. Chin J Lung cancer 9:519–524. https://doi.org/10.3779/j.issn.1009-3419.2006.06.09

    Article  CAS  Google Scholar 

  244. Weisberg I, Tran P, Christensen B et al (1998) A second genetic polymorphism in Methylenetetrahydrofolate Reductase. MTHFR) Associated with Decreased Enzyme Activity

  245. Weisberg IS, Jacques PF, Selhub J et al (2001) The 1298A→C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156:409–415. https://doi.org/10.1016/S0021-9150(00)00671-7

    Article  CAS  PubMed  Google Scholar 

  246. Maring JG, Groen HJMM, Wachters FM et al (2005) Genetic factors influencing pyrimidine-antagonist chemotherapy. Pharmacogenom J 5:226–243. https://doi.org/10.1038/sj.tpj.6500320

    Article  CAS  Google Scholar 

  247. Burda P, Suormala T, Heuberger D et al (2017) Functional characterization of missense mutations in severe methylenetetrahydrofolate reductase deficiency using a human expression system. J Inherit Metab Dis 40:297–306. https://doi.org/10.1007/s10545-016-9987-0

    Article  CAS  PubMed  Google Scholar 

  248. Tibaldi C, Camerini A, Tiseo M et al (2018) Cytidine deaminase enzymatic activity is a prognostic biomarker in gemcitabine/platinum-treated advanced non-small-cell Lung cancer: a prospective validation study. Br J Cancer 119:1326–1331. https://doi.org/10.1038/s41416-018-0307-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Masters GA, Temin S, Azzoli CG et al (2015) Systemic therapy for Stage IV Non-small-cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 33:3488–3515. https://doi.org/10.1200/JCO.2015.62.1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Li J, Xu D, Huang J et al (2019) Associations of cytosine deaminase gene polymorphisms with effectiveness of gemcitabine/cisplatin chemotherapy in patients of Xinjiang Uyghur and Han nationality with non-small cell Lung cancer. Int J Biol Markers 34:389–397. https://doi.org/10.1177/1724600819882940

    Article  CAS  PubMed  Google Scholar 

  251. Hu L, Mao X, Gao C et al (2021) Cytidine deaminase 435C > T polymorphism relates to gemcitabine-platinum efficacy and hematological toxicity in Chinese non-small-cell Lung cancer patients. https://doi.org/10.4149/neo_2021_201116N1229. Neoplasma

  252. Ludovini V, Floriani I, Pistola L et al (2011) Association of cytidine deaminase and xeroderma pigmentosum group D polymorphisms with response, toxicity, and survival in cisplatin/gemcitabine-treated advanced non-small cell Lung cancer patients. J Thorac Oncol 6:2018–2026. https://doi.org/10.1097/JTO.0b013e3182307e1f

    Article  PubMed  Google Scholar 

  253. Ciccolini J, Serdjebi C, Peters GJ, Giovannetti E (2016) Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: an EORTC-PAMM perspective. Cancer Chemother Pharmacol 2016 78(1):1–12. https://doi.org/10.1007/S00280-016-3003-0

    Article  PubMed  Google Scholar 

  254. Carpi FM, Vincenzetti S, Ubaldi J et al (2013) CDA gene polymorphisms and enzyme activity: genotype-phenotype relationship in an italian-caucasian population. Pharmacogenomics 14:769–781. https://doi.org/10.2217/pgs.13.56

    Article  CAS  PubMed  Google Scholar 

  255. Tibaldi C, Giovannetti E, Tiseo M et al (2012) Correlation of cytidine deaminase polymorphisms and activity with clinical outcome in gemcitabine-/platinum-treated advanced non-small-cell Lung cancer patients. Ann Oncol 23:670–677. https://doi.org/10.1093/annonc/mdr280

    Article  CAS  PubMed  Google Scholar 

  256. Giovannetti E, Laan AC, Vasile E et al (2008) Correlation between cytidine deaminase genotype and gemcitabine deamination in blood samples. Nucleosides, nucleotides and nucleic acids. Nucleosides Nucleotides Nucleic Acids, pp 720–725

  257. Micozzi D, Carpi FM, Pucciarelli S et al (2014) Human cytidine deaminase: a biochemical characterization of its naturally occurring variants. Int J Biol Macromol 63:64–74. https://doi.org/10.1016/j.ijbiomac.2013.10.029

    Article  CAS  PubMed  Google Scholar 

  258. Gilbert J, Salavaggione O, Ji Y et al (2006) Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res 12:1794–1803. https://doi.org/10.1158/1078-0432.CCR-05-1969

    Article  CAS  PubMed  Google Scholar 

  259. Lee SY, Jung DK, Choi JE et al (2016) PD-L1 polymorphism can predict clinical outcomes of non-small cell Lung cancer patients treated with first-line paclitaxel-cisplatin chemotherapy. Sci Rep 6:25952. https://doi.org/10.1038/srep25952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Bremnes RM, Busund LT, Kilver TL et al (2016) The role of Tumor-infiltrating lymphocytes in Development, Progression, and prognosis of non–small cell Lung Cancer. J Thorac Oncol 11:789–800. https://doi.org/10.1016/J.JTHO.2016.01.015

    Article  PubMed  Google Scholar 

  261. Du W, Zhu J, Chen Y et al (2017) Variant SNPs at the microRNA complementary site in the B7-H1 3′-untranslated region increase the risk of non-small cell Lung cancer. Mol Med Rep 16:2682. https://doi.org/10.3892/MMR.2017.6902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Hao Y, Liu J, Wang P et al (2014) OPN polymorphism is related to the Chemotherapy response and prognosis in Advanced NSCLC. Int J Genomics 2014:846142. https://doi.org/10.1155/2014/846142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482. https://doi.org/10.1096/FASEBJ.7.15.8262332

    Article  CAS  PubMed  Google Scholar 

  264. Gardner H, Berse B, Senger D (1994) Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts - PubMed. Oncogene 9:2321–2326

    CAS  PubMed  Google Scholar 

  265. Hu Z, Lin D, Yuan J et al (2005) Overexpression of osteopontin is Associated with more aggressive phenotypes in Human non–small cell Lung Cancer. Clin Cancer Res 11:4646–4652. https://doi.org/10.1158/1078-0432.CCR-04-2013

    Article  CAS  PubMed  Google Scholar 

  266. Wang X-M, Li J, Yan M-X et al (2013) Integrative analyses identify Osteopontin, LAMB3 and ITGB1 as critical pro-metastatic genes for Lung Cancer. PLoS ONE 8:e55714. https://doi.org/10.1371/JOURNAL.PONE.0055714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Schultz J, Lorenz P, Ibrahim SM et al (2009) The functional – 443T/C osteopontin promoter polymorphism influences osteopontin gene expression in Melanoma cells via binding of c-Myb transcription factor. Mol Carcinog 48:14–23. https://doi.org/10.1002/mc.20452

    Article  CAS  PubMed  Google Scholar 

  268. Shen Z, Chen B, Hou X et al (2014) Polymorphism – 433 C > T of the Osteopontin Gene is Associated with the susceptibility to develop gliomas and their prognosis in a Chinese cohort. Cell Physiol Biochem 34:1190–1198. https://doi.org/10.1159/000366331

    Article  CAS  PubMed  Google Scholar 

  269. Dong Q-Z, Zhang X-F, Zhao Y et al (2013) Osteopontin promoter polymorphisms at locus – 443 significantly affect the Metastasis and prognosis of human hepatocellular carcinoma. Hepatology 57:1024–1034. https://doi.org/10.1002/HEP.26103

    Article  CAS  PubMed  Google Scholar 

  270. Zhang R, Yang W, Li YC et al (2015) The OPN Gene Polymorphism confers the susceptibility and response to Ara-C based chemotherapy in Chinese AML patients. Cell Physiol Biochem 35:175–183. https://doi.org/10.1159/000369685

    Article  CAS  PubMed  Google Scholar 

  271. Saito A, Horie M, Nagase T (2018) TGF-β signaling in Lung Health and Disease. Int J Mol Sci 19. https://doi.org/10.3390/IJMS19082460

  272. Xian S, Jilu L, Zhennan T et al (2014) BMP-4 genetic variants and protein expression are associated with platinum-based chemotherapy response and prognosis in NSCLC. Biomed Res Int 2014:801640. https://doi.org/10.1155/2014/801640

    Article  PubMed  PubMed Central  Google Scholar 

  273. Capasso M, Ayala F, Russo R et al (2009) A predicted functional single-nucleotide polymorphism of bone morphogenetic protein-4 gene aVects mRNA expression and shows a signiWcant association with cutaneous Melanoma in Southern Italian population. J Cancer Res Clin Oncol 135:1799–1807. https://doi.org/10.1007/s00432-009-0628-y

    Article  CAS  PubMed  Google Scholar 

  274. Wu X, Ruan L, Yang Y, Mei Q (2017) Analysis of gene expression changes associated with human carcinoma-associated fibroblasts in non-small cell lung carcinoma. Biol Res 2017 50(1):1–8. https://doi.org/10.1186/S40659-017-0108-9

    Article  Google Scholar 

  275. Cui JJ, Wang LY, Zhu T et al (2017) Gene-gene and gene-environment interactions influence platinum-based chemotherapy response and toxicity in non-small cell Lung cancer patients. Sci Rep 7. https://doi.org/10.1038/S41598-017-05246-8

  276. Oliveira A, Rodrigues F, Santos R et al (2010) GSTT1, GSTM1, and GSTP1 polymorphisms and chemotherapy response in locally advanced Breast cancer. Genet Mol Res 9:1045–1053. https://doi.org/10.4238/vol9-2gmr726

    Article  CAS  PubMed  Google Scholar 

  277. Nagel ZD, Chaim IA, Samson LD (2014) Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 19:199–213. https://doi.org/10.1016/J.DNAREP.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  278. Curtis A, Yu Y, Carey M et al (2022) Examining SNP-SNP interactions and risk of clinical outcomes in Colorectal cancer using multifactor dimensionality reduction based methods. Front Genet 13:902217. https://doi.org/10.3389/FGENE.2022.902217/FULL

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Van Leeuwen EM, Smouter FAS, Kam-Thong T et al (2014) The challenges of genome-wide Interaction studies: lessons to learn from the analysis of HDL blood levels. PLoS ONE 9:109290. https://doi.org/10.1371/JOURNAL.PONE.0109290

    Article  Google Scholar 

  280. Sharma BB, Rai K, Blunt H et al (2021) Pathogenic DPYD variants and treatment-related mortality in patients receiving Fluoropyrimidine Chemotherapy: a systematic review and Meta‐analysis. Oncologist 26:1008. https://doi.org/10.1002/ONCO.13967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Schulz C, Heinemann V, Schalhorn A et al (2009) UGT1A1 gene polymorphism: impact on toxicity and efficacy of irinotecan-based regimens in metastatic Colorectal cancer. World J Gastroenterol 15:5058. https://doi.org/10.3748/WJG.15.5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Lecomte T, Ferraz JM, Zinzindohoué F et al (2004) Thymidylate synthase gene polymorphism predicts toxicity in Colorectal cancer patients receiving 5-fluorouracil-based chemotherapy. Clin Cancer Res 10:5880–5888. https://doi.org/10.1158/1078-0432.CCR-04-0169

    Article  CAS  PubMed  Google Scholar 

  283. Wu X, Lu W, Jiang C et al (2023) Effect of ERCC1 polymorphisms on the response to platinum-based chemotherapy: a systematic review and meta-analysis based on Asian population. PLoS ONE 18:1–27. https://doi.org/10.1371/journal.pone.0284825

    Article  Google Scholar 

  284. Delgado A, Guddati AK (2021) Clinical endpoints in oncology - a primer. Am J Cancer Res 11:1121

    PubMed  PubMed Central  Google Scholar 

  285. Matullo G, Peluso M, Polidoro S et al (2003) Combination of DNA repair gene single nucleotide polymorphisms and increased levels of DNA adducts in a population-based study - PubMed. Cancer Epidemiol Biomarkers 12:674–677

    CAS  Google Scholar 

  286. Meng Z, Zaykin DV, Xu C-F et al (2003) Selection of Genetic Markers for Association Analyses, using linkage disequilibrium and haplotypes. Am J Hum Genet 73:115. https://doi.org/10.1086/376561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Tawfik GM, Dila KAS, Mohamed MYF et al (2019) A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop Med Health 47:1–9. https://doi.org/10.1186/s41182-019-0165-6

    Article  Google Scholar 

  288. Russo MW (2007) How to review a meta-analysis. Gastroenterol Hepatol (N Y) 3:637–642

    PubMed  Google Scholar 

  289. Ali R, Aouida M, Sulaiman AA et al (2022) Can Cisplatin Therapy be Improved? Pathways that can be targeted. Int J Mol Sci 23. https://doi.org/10.3390/IJMS23137241

  290. Xu B, Zeng M, Zeng J et al (2018) Meta-analysis of clinical trials comparing the efficacy and safety of liposomal cisplatin versus conventional nonliposomal cisplatin in nonsmall cell Lung cancer (NSCLC) and squamous cell carcinoma of the head and neck (SCCHN). https://doi.org/10.1097/MD.0000000000013169. Medicine 97:

  291. Song H, Quan F, Yu Z et al (2019) Carboplatin prodrug conjugated Fe3O4 nanoparticles for magnetically targeted drug delivery in Ovarian cancer cells. J Mater Chem B 7:433–442. https://doi.org/10.1039/C8TB02574F

    Article  CAS  PubMed  Google Scholar 

  292. Liu D, Poon C, Lu K et al (2014) Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat Commun 5. https://doi.org/10.1038/NCOMMS5182

  293. Kuo MT, Huang YF, Chou CY, Chen HHW (2021) Targeting the Copper Transport System to improve treatment efficacies of platinum-containing Drugs in Cancer Chemotherapy. Pharmaceuticals 14. https://doi.org/10.3390/PH14060549

  294. Li YQ, Yin JY, Liu ZQ, Li XP (2018) Copper efflux transporters ATP7A and ATP7B: novel biomarkers for platinum drug resistance and targets for therapy. IUBMB Life 70:183–191. https://doi.org/10.1002/IUB.1722

    Article  CAS  PubMed  Google Scholar 

  295. Chisholm CL, Wang H, Wong AHH et al (2016) Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of Breast cancer to cisplatin. Oncotarget 7:84439–84452. https://doi.org/10.18632/ONCOTARGET.12992

    Article  PubMed  PubMed Central  Google Scholar 

  296. Lin W, Qian J, Wang H et al (2022) Cisplatin plus anti-PD-1 antibody enhanced treatment efficacy in advanced esophageal squamous cell carcinoma - PubMed. Am J Cancer Res 12:451–468

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Sun F, Cui L, Li T et al (2019) Oxaliplatin induces immunogenic cells death and enhances therapeutic efficacy of checkpoint inhibitor in a model of murine lung carcinoma. J Recept Signal Transduct Res 39:208–214. https://doi.org/10.1080/10799893.2019.1655050

    Article  CAS  PubMed  Google Scholar 

  298. Curtin NJ, Szabo C (2013) Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 34:1217–1256. https://doi.org/10.1016/j.mam.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  299. Prince AER, Suter SM, Uhlmann WR, Scherer AM (2022) The goldilocks conundrum: disclosing discrimination risks in informed consent. J Genet Couns 31:1383. https://doi.org/10.1002/JGC4.1613

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research in SCT’s laboratory is supported by the Research University Grant of Universiti Kebangsaan Malaysia (GUP-2020-076).

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Hilary Sito or Shing Cheng Tan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sito, H., Tan, S.C. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 51, 102 (2024). https://doi.org/10.1007/s11033-023-08915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08915-2

Keywords

Navigation