Skip to main content
Log in

MiR-138-5p improves the chemosensitivity of MDA-MB-231 breast cancer cell line to paclitaxel

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Chemotherapy is a predominant strategy for breast cancer (BC) treatment and paclitaxel (PTX) has been known as a conventional chemotherapeutic drug. However, insensitivity of BC cells to PTX limits the anti-tumor effects of this agent. MicroRNAs are closely related to BC which are suggested as therapeutic factors in the combination therapy of BC. We examined the possible efficacy of miR-138-5p restoration in combination with PTX to impove BC treatment.

Methods

The human breast cancer cell line MDA-MB-231 was transfected with miR-138-5p mimics and treated with PTX, in a combined or separate manner. The MTT assay was accomplished to determine inhibitory doses of PTX. Annexin V/PI assay and DAPI staining were applied to evaluate apoptosis. Flow cytometry was applied to determine cells arrested in different phases of the cell-cycle. Expression levels of molecular factors involved in cell migration, proliferation, apoptosis, and cell cycle were determined via western blotting and qRT-PCR.

Results

MiR-138-5p combined with PTX suppressed cell migration via modulating MMP2, E-cadherin, and vimentin and sustained colony formation and proliferation by downregulation of the PI3K/AKT pathway. qRT-PCR showed that miR-138-5p increases BC chemosensitivity to PTX by regulating the apoptosis factors, including Bcl-2, Bax, Caspase 3, and Caspase 9. Moreover, miR-138-5p restoration and paclitaxel therapy combined arrest the cells in the sub-G1 and G1 phases of cell cycle by regulating p21, CCND1, and CDK4.

Conclusions

Restored miR-138-5p intensified the chemosensitivity of MDA-MB-231 cell line to PTX, and the combination of miR-138-5p with PTX might represent a novel approach in BC treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

Abbreviations

BC:

Breast cancer

PTX:

Paclitaxel (Taxol)

FDA:

Food and drug administration

5 FU:

5 fluorouracil

GBM:

Glioblastoma

TMZ:

Temozolomide

PD-L1:

programmed cell death ligand1

NC-miR:

Negative control miRNA

IC50:

half maximal inhibitory concentration

IC25:

quarter maximal inhibitory concentration

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DMSO:

Dimethyl sulfoxide

MMP2:

matrix metalloproteinase-2

E-cadherin:

epithelial cadherin

AKT:

Protein kinase B (PKB)

p-AKT:

phosphorylated Protein kinase B (PKB)

p-PI3K:

phosphorylated Phosphoinositide 3-kinases

PI3K:

Phosphoinositide 3-kinases

BCL-2:

B-cell lymphoma-2

BAX:

Bcl-2-associated X protein

Caspase 3:

Cysteine-Aspartic Acid Protease 3

Caspase 8:

Cysteine-Aspartic Acid Protease

Caspase 9:

Cysteine-Aspartic Acid Protease 9

P21:

Cyclin-dependent kinase inhibitor 1

CDK4:

Cyclin-dependent kinase 4

CCND1:

cyclin D1

CDK6:

cyclin-dependent kinase 6

OXA:

oxaliplatin

pRb:

retinoblastoma protein

APOBEC3B:

apolipoprotein B mRNA editing catalytic polypeptide-like 3B

TP53INP1:

Tumor protein p53-inducible nuclear protein 1

References

  1. Ferlay J et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    Article  CAS  PubMed  Google Scholar 

  2. Abotaleb M et al (2018) Chemotherapeutic agents for the treatment of metastatic breast cancer: an update. Biomed Pharmacother 101:458–477

    Article  CAS  PubMed  Google Scholar 

  3. Walsh V, Goodman J (2002) From taxol to taxol®: the changing identities and ownership of an anti-cancer drug. Med Anthropol 21(3–4):307–336

    Article  PubMed  Google Scholar 

  4. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  CAS  PubMed  Google Scholar 

  5. Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7(5):637–651

    Article  CAS  PubMed  Google Scholar 

  6. Blagosklonny MV (2007) Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6(1):70–74

    Article  CAS  PubMed  Google Scholar 

  7. Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5(12):2963–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan Z, Avila A, Gollahon L (2014) Paclitaxel induces apoptosis in breast cancer cells through different calcium—regulating mechanisms depending on external calcium conditions. Int J Mol Sci 15(2):2672–2694

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marupudi NI et al (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Exp Opin Drug Saf 6(5):609–621

    Article  CAS  Google Scholar 

  10. Chen J et al (2018) Downregulation of miR–200c–3p contributes to the resistance of breast cancer cells to paclitaxel by targeting SOX2. Oncol Rep 40(6):3821–3829

    CAS  PubMed  Google Scholar 

  11. Loh H-Y et al (2019) The regulatory role of microRNAs in breast cancer. Int J Mol Sci 20(19):4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakraborty C et al (2018) The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget 9(11):10164

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhao C et al (2019) MicroRNA-138-5p inhibits cell migration, invasion and EMT in breast cancer by directly targeting RHBDD1. Breast Cancer 26:817–825

    Article  PubMed  Google Scholar 

  14. Sha H-H et al (2017) MiR-138: a promising therapeutic target for cancer. Tumor Biology 39(4):1010428317697575

    Article  PubMed  Google Scholar 

  15. Rasoolnezhad M et al (2021) MiRNA-138–5p: a strong tumor suppressor targeting PD-L-1 inhibits proliferation and motility of breast cancer cells and induces apoptosis. Eur J Pharmacol 896:173933

    Article  CAS  PubMed  Google Scholar 

  16. Yu C et al (2015) Upregulation of microRNA–138–5p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity. Mol Med Rep 12(4):5135–5140

    Article  CAS  PubMed  Google Scholar 

  17. Yuan M et al (2020) MicroRNA–138 inhibits tumor growth and enhances chemosensitivity in human cervical cancer by targeting H2AX. Experimental and therapeutic medicine. 19(1):630–638

  18. Yoo J-Y et al (2021) Microrna-138 increases chemo-sensitivity of glioblastoma through downregulation of survivin. Biomedicines 9(7):780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu L et al (2023) MiR-138–5p inhibits prostate cancer cell proliferation and chemoresistance by targeting APOBEC3B. Translational Oncol 35:101723

    Article  CAS  Google Scholar 

  20. Dastmalchi N et al (2021) MicroRNA-424-5p enhances chemosensitivity of breast cancer cells to Taxol and regulates cell cycle, apoptosis, and proliferation. Mol Biol Rep 48:1345–1357

    Article  CAS  PubMed  Google Scholar 

  21. Dastmalchi N et al (2022) The combined therapy of mir-383-5p restoration and paclitaxel for treating MDA-MB-231 breast cancer. Med Oncol 39:1–11

    Article  Google Scholar 

  22. Oualla K et al (2017) Novel therapeutic strategies in the treatment of triple-negative breast cancer. Therapeutic Adv Med Oncol 9(7):493–511

    Article  CAS  Google Scholar 

  23. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu K-D et al (2020) Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: a phase 3 randomized clinical trial. JAMA Oncol 6(9):1390–1396

    Article  PubMed  Google Scholar 

  25. Jeong YJ et al (2016) Breast cancer cells evade paclitaxel-induced cell death by developing resistance to dasatinib. Oncol Lett 12(3):2153–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walker FE (1993) Paclitaxel (TAXOL®): side effects and patient education issues. In seminars in oncology nursing. Elsevier

  27. Lai D et al (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738

    Article  CAS  PubMed  Google Scholar 

  28. Kohlhapp FJ et al (2015) MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 34(48):5857–5868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi Y et al (2023) Mir-142-3p improves paclitaxel sensitivity in resistant breast cancer by inhibiting autophagy through the GNB2-AKT-mTOR pathway. Cell Signal 103:110566

    Article  CAS  PubMed  Google Scholar 

  30. Sun H et al (2019) Involvement of miR-4262 in paclitaxel resistance through the regulation of PTEN in non-small cell lung cancer. Open biology 9(7):180227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y et al (2021) MicroRNA-155-5p promotes tumor progression and contributes to paclitaxel resistance via TP53INP1 in human breast cancer. Pathology-Research and Practice 220:153405

    Article  CAS  PubMed  Google Scholar 

  32. Liang M et al (2022) Overexpression of mir-138-5p sensitizes taxol-resistant epithelial ovarian cancer cells through targeting cyclin-dependent kinase 6. Gynecol Obstet Invest 86(6):533–541

    Article  Google Scholar 

  33. Huang G et al (2021) Upregulated UCA1 contributes to oxaliplatin resistance of hepatocellular carcinoma through inhibition of mir-138‐5p and activation of AKT/mTOR signaling pathway, vol 9. Pharmacology research & perspectives, p e00720. 1

  34. Axel DI et al (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96(2):636–645

    Article  CAS  PubMed  Google Scholar 

  35. Wiskirchen J et al (2004) The effects of paclitaxel on the three phases of restenosis: smooth muscle cell proliferation, migration, and matrix formation: an in vitro study. Invest Radiol 39(9):565–571

    Article  CAS  PubMed  Google Scholar 

  36. Fu S et al (2019) Combined bazedoxifene and paclitaxel treatments inhibit cell viability, cell migration, colony formation, and tumor growth and induce apoptosis in breast cancer. Cancer Lett 448:11–19

    Article  CAS  PubMed  Google Scholar 

  37. Kumari S et al (2017) Synergistic effects of coralyne and paclitaxel on cell migration and proliferation of breast cancer cells lines. Biomed Pharmacother 91:436–445

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J et al (2015) MicroRNA-138 modulates metastasis and EMT in breast cancer cells by targeting vimentin, vol 77. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 135–141

  39. Li G et al (2020) Paclitaxel inhibits proliferation and invasion and promotes apoptosis of breast cancer cells by blocking activation of the PI3K/AKT signaling pathway. Adv Clin Experimental Med, 29(11)

  40. Cui D et al (2020) Long non-coding RNA TRPM2-AS sponges microRNA-138-5p to activate epidermal growth factor receptor and PI3K/AKT signaling in non-small cell lung cancer. Annals of Translational Medicine, 8(20)

  41. Diehl JA (2002) Cycling to cancer with cyclin D1. Cancer Biol Ther 1(3):226–231

    Article  CAS  PubMed  Google Scholar 

  42. Matsushime H et al (1992) Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71(2):323–334

    Article  CAS  PubMed  Google Scholar 

  43. Xiong Y et al (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366(6456):701–704

    Article  CAS  PubMed  Google Scholar 

  44. Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65(10):3980–3985

    Article  CAS  PubMed  Google Scholar 

  45. Deng C et al (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82(4):675–684

    Article  CAS  PubMed  Google Scholar 

  46. Liu X et al (2012) MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle 11(13):2495–2506

    Article  CAS  PubMed  Google Scholar 

  47. Erdmann K et al (2016) MiR-26a and miR-138 block the G1/S transition by targeting the cell cycle regulating network in prostate cancer cells. J Cancer Res Clin Oncol 142:2249–2261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thanks Tabriz Immunology Research Center (IRC), Iran for providing facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Safaralizadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasoolnezhad, M., Safaralizadeh, R., Hosseinpour Feizi, M. et al. MiR-138-5p improves the chemosensitivity of MDA-MB-231 breast cancer cell line to paclitaxel. Mol Biol Rep 50, 8407–8420 (2023). https://doi.org/10.1007/s11033-023-08711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08711-y

Keywords

Navigation