Skip to main content

Advertisement

Log in

MiR-26a and miR-138 block the G1/S transition by targeting the cell cycle regulating network in prostate cancer cells

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The tumor-suppressive microRNAs miR-26a and miR-138 are significantly down-regulated in prostate cancer (PCa) and have been identified as direct regulators of enhancer of zeste homolog 2 (EZH2), which is a known oncogene in PCa. In the present study, the influence of miR-26a and miR-138 on EZH2 and cellular function including the impact on the cell cycle regulating network was evaluated in PCa cells.

Methods

PC-3 and DU-145 PCa cells were transfected with 100 nM of miRNA mimics, siRNA against EZH2 (siR-EZH2) or control constructs for 4 h. Analyses of gene expression and cellular function were conducted 48 h after transfection.

Results

Both miRNAs influenced the EZH2 expression and activity only marginally, whereas siR-EZH2 led to a notable decrease of the EZH2 expression and activity. Both miRNAs inhibited short- and/or long-term proliferation of PCa cells but showed no effect on viability and apoptosis. In PC-3 cells, miR-26a and miR-138 caused a significant surplus of cells in the G0/G1 phase of 6 and 12 %, respectively, thus blocking the G1/S-phase transition. Treatment with siR-EZH2 was without substantial influence on cellular function and cell cycle. Therefore, alternative target genes involved in cell cycle regulation were identified in silico. MiR-26a significantly diminished the expression of its targets CCNE1, CCNE2 and CDK6, whereas CCND1, CCND3 and CDK6 were suppressed by their regulator miR-138.

Conclusions

The present findings suggest an anti-proliferative role for miR-26a and miR-138 in PCa by blocking the G1/S-phase transition independent of EZH2 but via a concerted inhibition of crucial cell cycle regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alajez NM, Shi W, Hui AB, Bruce J, Lenarduzzi M, Ito E, Yue S, O’Sullivan B, Liu FF (2010) Enhancer of zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis 1:e85. doi:10.1038/cddis.2010.64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bockhorn J, Prat A, Chang YF, Liu X, Huang S, Shang M, Nwachukwu C, Gomez-Vega MJ, Harrell JC, Olopade OI, Perou CM, Liu H (2014) Differentiation and loss of malignant character of spontaneous pulmonary metastases in patient-derived breast cancer models. Cancer Res 74:7406–7417. doi:10.1158/0008-5472.CAN-14-1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borno ST, Fischer A, Kerick M, Falth M, Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, Isau M, Rohr C, Wunderlich A, Timmermann B, Claus R, Plass C, Graefen M, Simon R, Demichelis F, Rubin MA, Sauter G, Schlomm T, Sultmann H, Lehrach H, Schweiger MR (2012) Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov 2:1024–1035. doi:10.1158/2159-8290.CD-12-0041

    PubMed  Google Scholar 

  • Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT (2007) EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate 67:547–556

    CAS  PubMed  Google Scholar 

  • Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9:108. doi:10.1186/1476-4598-9-108

    PubMed  PubMed Central  Google Scholar 

  • Dang X, Ma A, Yang L, Hu H, Zhu B, Shang D, Chen T, Luo Y (2012) MicroRNA-26a regulates tumorigenic properties of EZH2 in human lung carcinoma cells. Cancer Genet 205:113–123

    CAS  PubMed  Google Scholar 

  • Deb G, Singh AK, Gupta S (2014) EZH2: not EZHY (easy) to deal. Mol Cancer Res 12:639–653. doi:10.1158/1541-7786.MCR-13-0546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, He M, Chen L, Chen C, Zheng J, Cai Z (2013) The loss of miR-26a-mediated post-transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival. PLoS One 8:e76450. doi:10.1371/journal.pone.0076450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M (2013) Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 138:255–271. doi:10.1016/j.pharmthera.2013.01.011

    CAS  PubMed  Google Scholar 

  • Erdmann K, Kaulke K, Thomae C, Huebner D, Sergon M, Froehner M, Wirth MP, Fuessel S (2014a) Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs. BMC Cancer 14:82. doi:10.1186/1471-2407-14-82

    PubMed  PubMed Central  Google Scholar 

  • Erdmann K, Ringel J, Hampel S, Rieger C, Huebner D, Wirth MP, Fuessel S (2014b) Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms. Nanotechnology 25:405102. doi:10.1088/0957-4484/25/40/405102

    PubMed  Google Scholar 

  • Frixa T, Donzelli S, Blandino G (2015) Oncogenic microRNAs: key players in malignant transformation. Cancers 7:2466–2485. doi:10.3390/cancers7040904

    PubMed  PubMed Central  Google Scholar 

  • Fu X, Meng Z, Liang W, Tian Y, Wang X, Han W, Lou G, Wang X, Lou F, Yen Y, Yu H, Jove R, Huang W (2014) miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene 33:4296–4306. doi:10.1038/onc.2013.385

    CAS  PubMed  Google Scholar 

  • Guo K, Zheng S, Xu Y, Xu A, Chen B, Wen Y (2016) Loss of miR-26a-5p promotes proliferation, migration, and invasion in prostate cancer through negatively regulating SERBP1. Tumour Biol. doi:10.1007/s13277-016-5158-z

    PubMed Central  Google Scholar 

  • Han LP, Fu T, Lin Y, Miao JL, Jiang QF (2015) MicroRNA-138 negatively regulates non-small cell lung cancer cells through the interaction with cyclin D3. Tumour Biol. doi:10.1007/s13277-015-3757-8

    Google Scholar 

  • Huang B, Li H, Huang L, Luo C, Zhang Y (2015) Clinical significance of microRNA 138 and cyclin D3 in hepatocellular carcinoma. J Surg Res 193:718–723. doi:10.1016/j.jss.2014.03.076

    CAS  PubMed  Google Scholar 

  • Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23:1327–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA involvement in human cancer. Carcinogenesis 33:1126–1133. doi:10.1093/carcin/bgs140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen MP, Reijm EA, Sieuwerts AM, Ruigrok-Ritstier K, Look MP, Rodriguez-Gonzalez FG, Heine AA, Martens JW, Sleijfer S, Foekens JA, Berns EM (2012) High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer. Breast Cancer Res Treat 133:937–947. doi:10.1007/s10549-011-1877-4

    CAS  PubMed  Google Scholar 

  • Karanikolas BD, Figueiredo ML, Wu L (2010) Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate 70:675–688. doi:10.1002/pros.21112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 107:2183–2188. doi:10.1073/pnas.0909896107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kisliouk T, Yosefi S, Meiri N (2011) MiR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine 27, and affects thermotolerance acquisition. Eur J Neurosci 33:224–235

    PubMed  Google Scholar 

  • Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, De Marzo AM (2011) Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget 2:669–683

    PubMed  PubMed Central  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuser-Abali G, Alptekin A, Cinar B (2014) Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression. Epigenetics 9:634–643. doi:10.4161/epi.27957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu L, Shen Y, Wang T, Chen L, Xu D, Wen F (2014) MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts. Biochem Biophys Res Commun 454:512–517. doi:10.1016/j.bbrc.2014.10.106

    CAS  PubMed  Google Scholar 

  • Liang J, Zhang Y, Jiang G, Liu Z, Xiang W, Chen X, Chen Z, Zhao J (2013) MiR-138 induces renal carcinoma cell senescence by targeting EZH2 and is downregulated in human clear cell renal cell carcinoma. Oncol Res 21:83–91. doi:10.3727/096504013X13775486749218

    PubMed  Google Scholar 

  • Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, Dai Y, Zhou X (2011) MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 440:23–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wu X, Liu B, Wang C, Liu Y, Zhou Q, Xu K (2012a) MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochim Biophys Acta 1822:1692–1704. doi:10.1016/j.bbadis.2012.07.019

    CAS  PubMed  Google Scholar 

  • Liu X, Lv XB, Wang XP, Sang Y, Xu S, Hu K, Wu M, Liang Y, Liu P, Tang J, Lu WH, Feng QS, Chen LZ, Qian CN, Bei JX, Kang T, Zeng YX (2012b) MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle 11:2495–2506

    CAS  PubMed  Google Scholar 

  • Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q, Chen YC, Peng Y, Yao KT, Kung HF, Li XP (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71:225–233

    CAS  PubMed  Google Scholar 

  • Ma DN, Chai ZT, Zhu XD, Zhang N, Zhan DH, Ye BG, Wang CH, Qin CD, Zhao YM, Zhu WP, Cao MQ, Gao DM, Sun HC, Tang ZY (2016) MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2. J Hematol Oncol 9:1. doi:10.1186/s13045-015-0229-y

    PubMed  PubMed Central  Google Scholar 

  • Nna E (2013) The end of the road for prostate specific antigen testing? Niger J Clin Pract 16:407–417. doi:10.4103/1119-3077.116871

    CAS  PubMed  Google Scholar 

  • Qiu S, Huang D, Yin D, Li F, Li X, Kung HF, Peng Y (2013) Suppression of tumorigenicity by microRNA-138 through inhibition of EZH2-CDK4/6-pRb-E2F1 signal loop in glioblastoma multiforme. Biochim Biophys Acta 1832:1697–1707. doi:10.1016/j.bbadis.2013.05.015

    CAS  PubMed  Google Scholar 

  • Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Moller P, Stilgenbauer S, Pollack JR, Wirth T (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112:4202–4212

    CAS  PubMed  Google Scholar 

  • Saramaki OR, Tammela TL, Martikainen PM, Vessella RL, Visakorpi T (2006) The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer 45:639–645. doi:10.1002/gcc.20327

    CAS  PubMed  Google Scholar 

  • Schmidt U, Fuessel S, Koch R, Baretton GB, Lohse A, Tomasetti S, Unversucht S, Froehner M, Wirth MP, Meye A (2006) Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 66:1521–1534

    CAS  PubMed  Google Scholar 

  • Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST (2016) MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2. Oncotarget 7:15173–15186. doi:10.18632/oncotarget.7908

    PubMed  PubMed Central  Google Scholar 

  • Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647:21–29

    CAS  PubMed  Google Scholar 

  • Song QC, Shi ZB, Zhang YT, Ji L, Wang KZ, Duan DP, Dang XQ (2014) Downregulation of microRNA-26a is associated with metastatic potential and the poor prognosis of osteosarcoma patients. Oncol Rep 31:1263–1270. doi:10.3892/or.2014.2989

    CAS  PubMed  Google Scholar 

  • Sun TY, Xie HJ, He H, Li Z, Kong LF (2016) miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression. Am J Transl Res 8:1037–1046

    PubMed  PubMed Central  Google Scholar 

  • Tian L, Fang YX, Xue JL, Chen JZ (2013) Four microRNAs promote prostate cell proliferation with regulation of PTEN and its downstream signals in vitro. PLoS One 8:e75885. doi:10.1371/journal.pone.0075885

    PubMed  PubMed Central  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. doi:10.3322/caac.21262

    PubMed  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    CAS  PubMed  Google Scholar 

  • Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT (2012) MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 33:1113–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JL, Greer PA, Squire JA (2014) Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genet 207:474–488. doi:10.1016/j.cancergen.2014.09.003

    CAS  PubMed  Google Scholar 

  • Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843

    CAS  PubMed  Google Scholar 

  • Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110. doi:10.1093/nar/gkn851

    CAS  PubMed  Google Scholar 

  • Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338:1465–1469. doi:10.1126/science.1227604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Fu H, Gao L, Wang L, Wang W, Li J, Li Y, Dou L, Gao X, Luo X, Jing Y, Chim CS, Zheng X, Yu L (2014) BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene 33:44–54. doi:10.1038/onc.2012.557

    CAS  PubMed  Google Scholar 

  • Zeitels LR, Acharya A, Shi G, Chivukula D, Chivukula RR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Richardson JA, Mendell JT (2014) Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis. Genes Dev 28:2585–2590. doi:10.1101/gad.250951.114

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, Li MF, Chen GQ, Zhao Q (2011) Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis 32:2–9. doi:10.1093/carcin/bgq209

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhang H, Zhao M, Lv Z, Zhang X, Qin X, Wang H, Wang S, Su J, Lv X, Liu H, Du W, Zhou W, Chen X, Fei K (2013) MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cell Physiol Biochem 31:56–65. doi:10.1159/000343349

    CAS  PubMed  Google Scholar 

  • Zhang X, Xiao D, Wang Z, Zou Y, Huang L, Lin W, Deng Q, Pan H, Zhou J, Liang C, He J (2014) MicroRNA-26a/b regulate DNA replication licensing, tumorigenesis, and prognosis by targeting CDC6 in lung cancer. Mol Cancer Res 12:1535–1546. doi:10.1158/1541-7786.MCR-13-0641

    CAS  PubMed  Google Scholar 

  • Zhao S, Ye X, Xiao L, Lian X, Feng Y, Li F, Li L (2014) MiR-26a inhibits prostate cancer progression by repression of Wnt5a. Tumour Biol 35:9725–9733. doi:10.1007/s13277-014-2206-4

    CAS  PubMed  Google Scholar 

  • Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM (2012) MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 40:4615–4625

    CAS  PubMed  Google Scholar 

  • Zhu Z, Tang J, Wang J, Duan G, Zhou L, Zhou X (2016) MiR-138 acts as a tumor suppressor by targeting EZH2 and enhances cisplatin-induced apoptosis in osteosarcoma cells. PLoS One 11:e0150026. doi:10.1371/journal.pone.0150026

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the Wilhelm Sander-Foundation (Grant No.: 2010.041.1). Kati Erdmann and Karsten Salomo also received financial support from the Förderverein Hilfe bei Prostatakrebs e.V. (Movember Campaign; Grant No.: MOV-2013-06). Furthermore, the authors are grateful to Dr. Matthias Kotzsch, Andrea Lohse-Fischer and Ulrike Lotzkat for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Erdmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Kati Erdmann and Knut Kaulke have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdmann, K., Kaulke, K., Rieger, C. et al. MiR-26a and miR-138 block the G1/S transition by targeting the cell cycle regulating network in prostate cancer cells. J Cancer Res Clin Oncol 142, 2249–2261 (2016). https://doi.org/10.1007/s00432-016-2222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2222-4

Keywords

Navigation