Skip to main content
Log in

NFR2/ABC transporter axis in drug resistance of breast cancer cells

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer is one of the most serious malignancies among women, accounting for about 12% of all cancers. The inherent complexity and heterogeneity of breast cancer results in failure to respond to treatment in the advanced stages of the disease. Breast cancer is caused by several genetic and environmental factors. One of the significant factors involved in the development of breast cancer is oxidative stress, which is generally regulated by nuclear factor erythroid 2-related factor 2 (NRF2). The level of NRF2 expression is low in healthy cells, which maintains the balance of the antioxidant system; however, its expression is higher in cancer cells, which have correlation characteristics such as angiogenesis, stem cell formation, drug resistance, and metastasis. Drug resistance increases with the upregulation of NRF2 expression, which contributes to cell protection. NRF2 controls this mechanism by increasing the expression of ATP-binding cassettes (ABCs). Considering the growing number of studies in this field, we aimed to investigate the relationship between NRF2 and ABCs, as well as their role in the development of drug resistance in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beňačka R et al (2022) Classic and new markers in diagnostics and classification of breast cancer. Cancers 14(21):5444

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fattahi M et al (2020) The correlation between twist 1 and 2 promoter methylation status and clinicopathologic characteristics of patients with breast cancer. Gene Rep 20:100741

    Article  CAS  Google Scholar 

  3. Onodera Y et al (2014) NRF2 immunolocalization in human breast cancer patients as a prognostic factor. Endocrine-related Cancer 21(2):241–252

    Article  CAS  PubMed  Google Scholar 

  4. Zhang C et al (2016) NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 7(45):73593

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maghsoodi MS et al (2023) VEGF-634G > C (rs2010963) gene polymorphism and high risk of breast Cancer in the Northwest of Iran. Indian J Gynecologic Oncol 21(1):6

    Article  Google Scholar 

  6. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300

    Article  CAS  PubMed  Google Scholar 

  7. Sun Y-S et al (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drukteinis JS et al (2013) Beyond mammography: new frontiers in breast cancer screening. Am J Med 126(6):472–479

    Article  PubMed  PubMed Central  Google Scholar 

  9. Majeed W et al (2014) Breast cancer: major risk factors and recent developments in treatment. Asian Pac J Cancer Prev 15(8):3353–3358

    Article  PubMed  Google Scholar 

  10. Khodabandeh Z et al (2022) The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer, p.1–12

  11. Preston RJ (2007) Epigenetic processes and cancer risk assessment. Mutat Research/Fundamental Mol Mech Mutagen 616(1–2):7–10

    Article  CAS  Google Scholar 

  12. Kennedy RD, D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24(23):3799–3808

    Article  CAS  PubMed  Google Scholar 

  13. Rushmore TH, Tony Kong A (2002) Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 3(5):481–490

    Article  CAS  PubMed  Google Scholar 

  14. Nakata K et al (2006) Nuclear receptor-mediated transcriptional regulation in phase I, II, and III xenobiotic metabolizing systems. Drug Metab Pharmacokinet 21(6):437–457

    Article  CAS  PubMed  Google Scholar 

  15. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev 27(20):2179–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho H-Y, Marzec J, Kleeberger SR (2015) Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med 88:362–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tascioglu Aliyev A et al (2021) Involvement of NRF2 in breast cancer and possible therapeutical role of polyphenols and melatonin. Molecules 26(7):1853

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jeddi F et al (2017) Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance. DNA Repair 54:13–21

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y et al (2015) Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med 88:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pandey P et al (2017) The see-saw of Keap1-Nrf2 pathway in cancer. Crit Rev Oncol/Hematol 116:89–98

    Article  PubMed  Google Scholar 

  21. Menegon S, Columbano A, Giordano S (2016) The dual roles of NRF2 in cancer. Trends Mol Med 22(7):578–593

    Article  CAS  PubMed  Google Scholar 

  22. Ghareghomi S et al (2022) Nrf2 modulation in breast cancer. Biomedicines 10(10):2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jemal A et al (2005) Cancer statistics, 2006

  24. Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42(7):1007–1017

    Article  CAS  PubMed  Google Scholar 

  25. Rottenberg S et al (2007) Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer Proceedings of the National Academy of Sciences, 104(29): p. 12117–12122

  26. Szakács G et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discovery 5(3):219–234

    Article  PubMed  Google Scholar 

  27. Kim H-R et al (2008) Suppression of Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung cancer A549 cells toward cisplatin. Lung Cancer 60(1):47–56

    Article  PubMed  Google Scholar 

  28. Young LC et al (2001) Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res 7(6):1798–1804

    CAS  PubMed  Google Scholar 

  29. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moi P et al (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region Proceedings of the National Academy of Sciences, 91(21): p. 9926–9930

  31. Nioi P et al (2005) The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol 25(24):10895–10906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamamoto M (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6:857–868Fukamizu A, and

    Article  PubMed  Google Scholar 

  33. Itoh K et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  PubMed  Google Scholar 

  34. Jung B-J et al (2018) Dysregulation of NRF2 in cancer: from molecular mechanisms to therapeutic opportunities. Biomolecules & therapeutics 26(1):57

    Article  CAS  Google Scholar 

  35. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    Article  CAS  PubMed  Google Scholar 

  36. Soghli N et al (2023) NRF2 signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer.Pathology-Research and Practice, p.154341

  37. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140

    Article  CAS  PubMed  Google Scholar 

  38. Shibata T et al (2008) Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy Proceedings of the National Academy of Sciences, 105(36): p. 13568–13573

  39. Network CGAR (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519

    Article  Google Scholar 

  40. RK SAMVT, Lee H, Ames S (2006) Hoque MO. Herman JG. Baylin SB. Sidransky D. Gabrielson E. Brock MV. Biswal S. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:e420

    Article  Google Scholar 

  41. Muscarella LA et al (2011) Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics 6(6):710–719

    Article  CAS  PubMed  Google Scholar 

  42. Zhao XQ et al (2015) Promoter demethylation of nuclear factor-erythroid 2-related factor 2 gene in drug-resistant colon cancer cells. Oncol Lett 10(3):1287–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang P et al (2010) Loss of Kelch-Like ECH-Associated protein 1 function in prostate Cancer cells causes Chemoresistance and Radioresistance and promotes Tumor GrowthThe loss of Keap1 activity in prostate Cancer cells. Mol Cancer Ther 9(2):336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q et al (2017) CDK20 interacts with KEAP1 to activate NRF2 and promotes radiochemoresistance in lung cancer cells. Oncogene 36(37):5321–5330

    Article  CAS  PubMed  Google Scholar 

  45. Umemura A et al (2016) 62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29(6):935–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jain A et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription Journal of biological chemistry, 285(29): p. 22576–22591

  47. Zhang HS et al (2019) Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF‐1α/Notch1 axis. J Cell Mol Med 23(5):3451–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ge W et al (2017) iASPP is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for Keap1 binding. Cancer Cell 32(5):561–573e6

    Article  CAS  PubMed  Google Scholar 

  49. Yi J et al (2019) Effect of miR-101 on proliferation and oxidative stress-induced apoptosis of breast cancer cells via Nrf2 signaling pathway. Eur Rev Med Pharmacol Sci 23:8931–8939

    CAS  PubMed  Google Scholar 

  50. De Blasio A et al (2020) A loop involving NRF2, miR-29b‐1‐5p and AKT, regulates cell fate of MDA‐MB‐231 triple‐negative breast cancer cells. J Cell Physiol 235(2):629–637

    Article  PubMed  Google Scholar 

  51. Xu Y et al (2018) CDCA4, a downstream gene of the Nrf2 signaling pathway, regulates cell proliferation and apoptosis in the MCF–7/ADM human breast cancer cell line. Mol Med Rep 17(1):1507–1512

    CAS  PubMed  Google Scholar 

  52. Chen Y et al (2015) Disordered signaling governing ferroportin transcription favors breast cancer growth. Cell Signal 27(1):168–176

    Article  CAS  PubMed  Google Scholar 

  53. Holland IB et al (2003) ABC proteins: from bacteria to man. Elsevier

  54. Modi A et al (2022) ABC transporters in breast cancer: their roles in multidrug resistance and beyond. J Drug Target 30(9):927–947

    Article  CAS  PubMed  Google Scholar 

  55. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71(1):537–592

    Article  CAS  PubMed  Google Scholar 

  56. Inoue Y et al (2010) Correlation of axillary osmidrosis to a SNP in the ABCC11 gene determined by the Smart amplification process (SmartAmp) method. J Plast Reconstr aesthetic Surg 63(8):1369–1374

    Article  CAS  Google Scholar 

  57. Matsuo H et al (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population Science translational medicine, 1(5): p. 5ra11-5ra11

  58. Nakano M et al (2009) A strong association of axillary osmidrosis with the wet earwax type determined by genotyping of the ABCC11 gene. BMC Genet 10(1):1–5

    Article  Google Scholar 

  59. Sharom FJ et al (2011) The controversial role of ABC transporters in clinical oncology. Essays Biochem 50:209–232

    Article  Google Scholar 

  60. Xiao H et al (2021) Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 12:648407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He J et al (2021) Pleiotropic roles of ABC transporters in breast cancer. Int J Mol Sci 22(6):3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ween M et al (2015) The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol/Hematol 96(2):220–256

    Article  CAS  PubMed  Google Scholar 

  63. Robey RW et al (2018) Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 18(7):452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen Z et al (2010) Suppression of ABCG2 inhibits cancer cell proliferation. Int J Cancer 126(4):841–851

    CAS  PubMed  Google Scholar 

  65. Yamada A et al (2018) ABCC1-Exported Sphingosine-1-phosphate, Produced by Sphingosine Kinase 1, Shortens Survival of Mice and Patients with Breast CancerActivated SPHK1 and S1P Export via ABCC1 Worsen Prognosis Molecular Cancer Research, 16(6): p. 1059–1070

  66. Ricardo S et al (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946

    Article  PubMed  Google Scholar 

  67. Ouhtit A et al (2018) Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int J Biol Sci 14(13):1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao J et al (2017) ABCB5–ZEB1 Axis promotes Invasion and Metastasis in breast Cancer cells. Oncol Res 25(3):305

    Article  PubMed  PubMed Central  Google Scholar 

  69. Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol Sci 34(6):340–346

    Article  CAS  PubMed  Google Scholar 

  70. Li P-C et al (2018) Bioengineered NRF2-siRNA is effective to interfere with NRF2 pathways and improve chemosensitivity of human cancer cells. Drug Metab Dispos 46(1):2–10

    Article  PubMed  PubMed Central  Google Scholar 

  71. Singh A et al (2010) Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther 9(8):2365–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao L et al (2021) Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant hepatocellular carcinoma cells. PLoS ONE 16(9):e0256755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duong H-Q et al (2014) Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine. Int J Oncol 44(3):959–969

    Article  CAS  PubMed  Google Scholar 

  74. Bao L et al (2017) ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells. Mol Carcinog 56(6):1543–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahaffey CM et al (2009) Multidrug-resistant protein-3 gene regulation by the transcription factor Nrf2 in human bronchial epithelial and non-small-cell lung carcinoma. Free Radic Biol Med 46(12):1650–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Loignon M et al (2009) Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens, to oxidative stress, and to chemotherapyReduced Nrf2 in breast Cancer. Mol Cancer Ther 8(8):2432–2440

    Article  CAS  PubMed  Google Scholar 

  77. Ryoo I-g, Choi B-h, Kwak M-K (2015) Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget 6(10):8167

    Article  PubMed  PubMed Central  Google Scholar 

  78. Choi B-h et al (2014) The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing. PLoS ONE 9(9):e107158

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dharmaraja AT (2017) Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem 60(8):3221–3240

    Article  CAS  PubMed  Google Scholar 

  80. Kuo MT (2009) Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 11(1):99–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O-Uchi J et al (2014) Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 21(6):987–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wartenberg M et al (2010) Glycolytic pyruvate regulates P-Glycoprotein expression in multicellular tumor spheroids via modulation of the intracellular redox state. J Cell Biochem 109(2):434–446

    CAS  PubMed  Google Scholar 

  83. Terada Y et al (2014) Intestinal P-glycoprotein expression is multimodally regulated by intestinal ischemia-reperfusion. J Pharm Pharm Sci 17(2):266–276

    Article  PubMed  Google Scholar 

  84. Chen J et al (2008) Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 61:979–987

    Article  CAS  PubMed  Google Scholar 

  85. Wartenberg M et al (2003) Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia‐inducible factor‐1 and reactive oxygen species. FASEB J 17(3):1–22

    Article  Google Scholar 

  86. Birner P et al (2000) Overexpression of hypoxia-inducible factor 1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 60(17):4693–4696

    CAS  PubMed  Google Scholar 

  87. Maxwell PH et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  CAS  PubMed  Google Scholar 

  88. Fang J et al (2007) Apigenin inhibits tumor angiogenesis through decreasing HIF-1α and VEGF expression. Carcinogenesis 28(4):858–864

    Article  CAS  PubMed  Google Scholar 

  89. Hofer T, Wenger R, Gassmann M (2002) Oxygen sensing, HIF-1α stabilization and potential therapeutic strategies. Pflügers Archiv-European Journal of Physiology 443:503–507

    Article  CAS  PubMed  Google Scholar 

  90. Ge C et al (2017) The down-regulation of SLC7A11 enhances ROS induced P-gp over-expression and drug resistance in MCF-7 breast cancer cells. Sci Rep 7(1):3791

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Urmia University of Medical Sciences for supporting this research.

Funding

The authors declare no potential conflict of interest with respect to research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Valilo participated in the study design and drafting the manuscript. Yalda Yazdani and Elmira Aboutalebi Vand Beilankouhi were involved in writing the manuscript and drawing the figures. Zinat Sargazi, Amir Tahavvori, Hamed Rahmani Youshanlouei and Vahid Alivirdiloo were involved in revising.

Corresponding author

Correspondence to Mohammad Valilo.

Ethics declarations

Ethical approval

None of the authors performed any studies on human participants or animals.

Conflict of interest

The authors declare no potential conflict of interest with respect to research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargazi, Z., Yazdani, Y., Tahavvori, A. et al. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep 50, 5407–5414 (2023). https://doi.org/10.1007/s11033-023-08384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08384-7

Keywords

Navigation