Skip to main content

Advertisement

Log in

Metformin alleviates ethanol-induced cardiomyocyte injury by activating AKT/Nrf2 signaling in an ErbB2-dependent manner

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Metformin, a first-line oral anti-diabetic drug, has recently been reported to exert protective effect on various cardiovascular diseases. However, the potential role of metformin in ethanol-induced cardiomyocyte injury is still unknown. Therefore, this study was aimed to investigate the effect of metformin on ethanol-induced cardiomyocyte injury and its underlying mechanism.

Methods and results

H9c2 cardiomyocytes were exposed to ethanol for 24 h to establish an ethanol-induced cardiomyocyte injury model, and followed by treatment with metformin in the presence or absence of Lapatinib (an ErbB2 inhibition). CCK8 and LDH assays demonstrated that metformin improved cell viability in cardiomyocytes exposed to ethanol. Furthermore, metformin suppressed cardiomyocyte apoptosis and reduced the expressions of apoptosis-related proteins (Bax and C-CAS-3). In addition, our results showed that metformin activated the AKT/Nrf2 pathway, and then promoted Nrf2 nuclear translocation and the transcription of its downstream antioxidant genes (HO-1, CAT and SOD2), thereby inhibiting oxidative stress. Interestingly, we found that ErbB2 protein expression was significantly inhibited in ethanol-treated cardiomyocytes, which was markedly reversed by metformin. In contrast, Lapatinib largely abrogated the activation of AKT/Nrf2 signaling by metformin, accompanied by the increases in oxidative stress and cardiomyocyte apoptosis, indicating that metformin prevented ethanol-induced cardiomyocyte injury in an ErbB2-dependent manner.

Conclusion

In summary, our study provides the first evidence that metformin protects cardiomyocyte against ethanol-induced oxidative stress and apoptosis by activating ErbB2-mediated AKT/Nrf2 signaling. Thus, metformin may be a potential novel treatment approach for alcoholic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data that supports the findings of this study are available from the corresponding author on reasonable request.

References

  1. Day E, Rudd J (2019) Alcohol use disorders and the heart. Addiction 114(9):1670–1678. https://doi.org/10.1111/add.14703

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang B, Turdi S, Li Q et al (2010) Cardiac overexpression of insulin-like growth factor 1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction but not hypertrophy: Roles of Akt, mTOR, GSK3beta, and PTEN. Free Radic Biol Med 49(7):1238–1253. https://doi.org/10.1016/j.freeradbiomed.2010.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernández-Solà J (2020) The Effects of ethanol on the heart: alcoholic cardiomyopathy. Nutrients 12(2):572. https://doi.org/10.3390/nu12020572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang C, Li S, Liu Q et al (2022) Ectopic accumulation of ceramide in cardiomyocytes modulates alcoholic cardiomyopathy via the TLR4-dependent pathway. Alcohol Clin Exp Res 46(6):1011–1022. https://doi.org/10.1111/acer.14822

    Article  CAS  PubMed  Google Scholar 

  5. Tian G, Yu Y, Deng H et al (2021) Empagliflozin alleviates ethanol-induced cardiomyocyte injury through inhibition of mitochondrial apoptosis via a SIRT1/PTEN/Akt pathway. Clin Exp Pharmacol Physiol 48(6):837–845. https://doi.org/10.1111/1440-1681.13470

    Article  CAS  PubMed  Google Scholar 

  6. Wang W, Kang PM (2020) Oxidative stress and antioxidant treatments in Cardiovascular Diseases. Antioxid 9(12):1292. https://doi.org/10.3390/antiox9121292

    Article  CAS  Google Scholar 

  7. Chen L, Chu H, Hu L et al (2022) The role of NADPH oxidase 1 in alcohol-induced oxidative stress injury of intestinal epithelial cells. Cell Biol Toxicol. https://doi.org/10.1007/s10565-022-09725-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Das SK, Vasudevan DM (2007) Alcohol-induced oxidative stress. Life Sci 81(3):177–187. https://doi.org/10.1016/j.lfs.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  9. Triggle CR, Mohammed I, Bshesh K et al (2022) Metformin: is it a drug for all reasons and diseases? Metabolism 133:155223. https://doi.org/10.1016/j.metabol.2022.155223

    Article  CAS  PubMed  Google Scholar 

  10. Zilov AV, Abdelaziz SI, AlShammary A et al (2019) Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev 35(7):e3173. https://doi.org/10.1002/dmrr.3173

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fu YN, Xiao H, Ma XW et al (2011) Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 32(7):879–887. https://doi.org/10.1038/aps.2010.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bromage DI, Godec TR, Pujades-Rodriguez M et al (2019) Metformin use and cardiovascular outcomes after acute myocardial infarction in patients with type 2 diabetes: a cohort study. Cardiovasc Diabetol 18(1):168. https://doi.org/10.1186/s 12933-019-0972-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salvatore T, Galiero R, Caturano A et al (2021) Effects of Metformin in Heart failure: from pathophysiological rationale to clinical evidence. Biomolecules 11(12):1834. https://doi.org/10.3390/biom11121834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xin Y, Bai Y, Jiang X et al (2018) Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway. Redox Biol 15:405–417. https://doi.org/10.1016/j.redox.2017.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen G, Chen X, Niu C et al (2018) Baicalin alleviates hyperglycemia-induced endothelial impairment 1 via Nrf2. J Endocrinol. https://doi.org/10.1530/JOE-18-0457. 1: JOE-18-0457.R1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen QM, Maltagliati AJ (2017) Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 50(2):77–97. https://doi.org/10.1152/physiolgenomics.00041.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang G, Fu Y, Li J et al (2021) Aqueous extract of Polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the Nrf2/ARE pathway. J Food Biochem 45(1):e13537. https://doi.org/10.1111/jfbc.13537

    Article  CAS  PubMed  Google Scholar 

  18. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182. https://doi.org/10.1126/science.3798106

    Article  CAS  PubMed  Google Scholar 

  19. Baselga J (2001) Clinical trials of Herceptin(R) (trastuzumab). Eur J Cancer 1:18–24. https://doi.org/10.1016/S0959-8049(00)00404-4

    Article  Google Scholar 

  20. Belmonte F, Das S, Sysa-Shah P et al (2015) ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol 309(8):H1271–1280. https://doi.org/10.1152/ajpheart.00517.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vermeulen Z, Segers VF, De Keulenaer GW (2016) ErbB2 signaling at the crossing between heart failure and cancer. Basic Res Cardiol 111(6):60. https://doi.org/10.1007/s00395-016-0576-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee KF, Simon H, Chen H et al (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378(6555):394–398. https://doi.org/10.1038/378394a0

    Article  CAS  PubMed  Google Scholar 

  23. Crone SA, Zhao YY, Fan L et al (1995) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8(5):459–465. https://doi.org/10.1038/nm0502-459

    Article  CAS  Google Scholar 

  24. Aharonov A, Shakked A, Umansky KB et al (2020) ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol 22(11):1346–1356. https://doi.org/10.1038/s41556-020-00588-4

    Article  CAS  PubMed  Google Scholar 

  25. Ozcelik C, Erdmann B, Pilz B et al (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A 99(13):8880–8885. https://doi.org/10.1073/pnas.122249299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shraim BA, Moursi MO, Benter IF et al (2021) The role of epidermal growth factor receptor family of receptor tyrosine kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 12:701390. https://doi.org/10.3389/fphar.2021.701390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D’Uva G, Aharonov A, Lauriola M et al (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 17(5):627–638. https://doi.org/10.1038/ncb3149

    Article  CAS  PubMed  Google Scholar 

  28. Vashi R, Patel BM (2021) NRF2 in Cardiovascular Diseases: a Ray of Hope! J Cardiovasc Transl Res 14(3):573–586. https://doi.org/10.1007/s12265-020-10083-8

    Article  PubMed  Google Scholar 

  29. Walker RK, Cousins VM, Umoh NA et al (2013) The good, the bad, and the ugly with alcohol use and abuse on the heart. Alcohol Clin Exp Res 37(8):1253–1260. https://doi.org/10.1111/acer.12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng CL, Jiang N, Zhao JF et al (2021) Metformin relieves H/R-induced cardiomyocyte injury through miR-19a/ACSL axis - possible therapeutic target for myocardial I/R injury. Toxicol Appl Pharmacol 414:115408. https://doi.org/10.1016/j.taap.2021.115408

    Article  CAS  PubMed  Google Scholar 

  31. Rozier R, Paul R, Madji Hounoum B et al (2021) Pharmacological preconditioning protects from ischemia/reperfusion-induced apoptosis by modulating Bcl-xL expression through a ROS-dependent mechanism. FEBS J 288(11):3547–3569

    Article  CAS  PubMed  Google Scholar 

  32. Baradaran Z, Vakilian A, Zare M et al (2021) Metformin improved memory impairment caused by chronic ethanol consumption during adolescent to adult period of rats: role of oxidative stress and neuroinflammation. Behav Brain Res 411:113399. https://doi.org/10.1016/j.bbr.2021.113399

    Article  CAS  PubMed  Google Scholar 

  33. Patel F, Parwani K, Patel D et al (2021) Metformin and Probiotics Interplay in Amelioration of Ethanol-Induced Oxidative Stress and Inflammatory Response in an In Vitro and In Vivo Model of Hepatic Injury. Mediators Inflamm 2021:6636152. https://doi.org/10.1155/2021/6636152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. İpek BE, Yüksel M, Cumbul A et al (2022) The effect of metformin on ethanol- and Indomethacin-Induced gastric ulcers in rats. Turk J Gastroenterol. https://doi.org/10.5152/tjg.2022.21195

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fathi R, Nasiri K, Akbari A et al (2020) Exercise protects against ethanol-induced damage in rat heart and liver through the inhibition of apoptosis and activation of Nrf2/Keap-1/HO-1 pathway. Life Sci 256:117958. https://doi.org/10.1016/j.lfs.2020.117958

    Article  CAS  PubMed  Google Scholar 

  36. Shi X, Li Y, Hu J et al (2016) Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes. Int J Mol Med 38(1):123–130. https://doi.org/10.3892/ijmm.2016.2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alzahrani AM, Rajendran P, Veeraraghavan VP et al (2021) Cardiac protective effect of Kirenol against Doxorubicin-Induced Cardiac Hypertrophy in H9c2 cells through Nrf2 Signaling via PI3K/AKT pathways. Int J Mol Sci 22(6):3269. https://doi.org/10.3390/ijms22063269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen L, Yang QH, Ma XL et al (2021) Inhibition of TNFAIP1 ameliorates the oxidative stress and inflammatory injury in myocardial ischemia/reperfusion injury through modulation of Akt/GSK-3β/Nrf2 pathway. Int Immunopharmacol 99:107993. https://doi.org/10.1016/j.intimp.2021.107993

    Article  CAS  PubMed  Google Scholar 

  39. Tong G, Liang Y, Xue M et al (2020) The protective role of bFGF in myocardial infarction and hypoxia cardiomyocytes by reducing oxidative stress via Nrf2. Biochem Biophys Res Commun 527(1):15–21. https://doi.org/10.1016/j.bbrc.202004.053

    Article  CAS  PubMed  Google Scholar 

  40. Yang K, Cao F, Qiu S et al (2022) Metformin promotes differentiation and attenuates H2O2-Induced oxidative damage of osteoblasts via the PI3K/AKT/Nrf2/HO-1 pathway. Front Pharmacol 13:829830. https://doi.org/10.3389/fphar.2022.829830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katila N, Bhurtel S, Park PH et al (2021) Metformin attenuates rotenone-induced oxidative stress and mitochondrial damage via the AKT/Nrf2 pathway. Neurochem Int 148:105120. https://doi.org/10.1016/j.neuint.2021.105120

    Article  CAS  PubMed  Google Scholar 

  42. Weinberger F, Eschenhagen T (2020) Cardiac regeneration: new hope for an old dream. Annu Rev Physiol 83:59–81. https://doi.org/10.1146/annurev-physiol-031120-103629

    Article  CAS  PubMed  Google Scholar 

  43. Gui C, Wang JA, Li N et al (2008) Changes of ErbB receptors mRNA expression in left ventricle of myocardial infarction. Zhejiang Da Xue Xue Bao Yi Xue Ban 37(4):381–385. https://doi.org/10.3785/j.issn.1008-9292

    Article  CAS  PubMed  Google Scholar 

  44. Yan X, Morgan JP (2011) Neuregulin1 as novel therapy for heart failure. Curr Pharm Des 17(18):1808–1817. https://doi.org/10.2174/138161211796391010

    Article  CAS  PubMed  Google Scholar 

  45. Lin Y, Liu H, Wang X (2020) Neuregulin–1, a microvascular endothelial–derived protein, protects against myocardial ischemia–reperfusion injury (review). Int J Mol Med 46(3):925–935. https://doi.org/10.3892/ijmm.2020.4662

    Article  CAS  PubMed  Google Scholar 

  46. Jabbour A, Hayward CS, Keogh AM et al (2010) Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 13(1):83–92. https://doi.org/10.1093/eurjhf/hfq152

    Article  CAS  PubMed  Google Scholar 

  47. Yu D, Zhu D, Wang X et al (2022) Prenatal di-(2-ethylhexyl) phthalate exposure induced myocardial cytotoxicity via the regulation of the NRG1-dependent ErbB2/ErbB4-PI3K/AKT signaling pathway in fetal mice. Ecotoxicol Environ Saf 241:113771. https://doi.org/10.1016/j.ecoenv.2022.113771

    Article  CAS  PubMed  Google Scholar 

  48. Li S, Ma YM, Zheng PS et al (2018) GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res 37(1):80. https://doi.org/10.1186/s13046-018-0744-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu P, Davis M, Blackwelder AJ et al (2014) Metformin selectively targets tumor-initiating cells in ErbB2-overexpressing breast cancer models. Cancer Prev Res (Phila) 7(2):199–210. https://doi.org/10.1158/1940-6207.CAPR-13-0181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge and appreciate our colleagues for their valuable suggestions and technical assistance for this study.

Funding

This work was supported by the Natural Science Fund of Ningbo (202003N4251, 2022J223) and Science and Technology Innovation 2025 Major Project of Ningbo (2021Z018).

Author information

Authors and Affiliations

Authors

Contributions

YC, SZ, ZL, XC and XZ conceived, designed and supervised the study. YC, YZ, CJ and SH performed the experiment and the data analyses. YC, XZ, CJ and ZL contributed to manuscript preparation and reversion. XC and SZ helped perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xueqin Chen or Xuan Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhu, S., Lin, Z. et al. Metformin alleviates ethanol-induced cardiomyocyte injury by activating AKT/Nrf2 signaling in an ErbB2-dependent manner. Mol Biol Rep 50, 3469–3478 (2023). https://doi.org/10.1007/s11033-023-08310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08310-x

Keywords

Navigation