Skip to main content
Log in

Andrographolide protects against doxorubicin-and arsenic trioxide-induced toxicity in cardiomyocytes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Andrographolide (AG) is a lactone diterpene with valuable biological activities. This in vitro study evaluated whether AG can protect cardiomyocytes under toxicities triggered with anti-cancer chemotherapeutic agents, doxorubicin (DOX) and arsenic trioxide (ATO).

Methods and results

H9C2 cells were pretreated with AG (0.5–10 µM) for 24 h and then exposed to DOX (1 μM) or ATO (35 μM) for another 24 h period. For determination of cell viability or cytotoxicity, MTT and lactate dehydrogenase (LDH) assay were used. Total oxidant and antioxidant capacities were estimated by determining hydroperoxides and ferric reducing antioxidant power (FRAP) levels. Real time-polymerase chain reaction was also used for quantitative evaluation of TLR4 gene expression. AG inhibited cardiomyocytes proliferation at the concentrations of more than 20 μM. However, it considerably enhanced cell viability and decreased cytotoxicity of DOX and ATO at the concentration range of 2.5–10 μM in MTT and LDH assays. AG significantly declined hydroperoxides concentration in ATO-treated cardiomyocytes and raised FRAP value in DOX- and ATO-treated cells. Furthermore, AG notably lessened TLR4 expression in H9C2 cells after exposure to DOX- and ATO.

Conclusion

In conclusion, these data presented that AG was able to reverse DOX- and ATO-induced cardiotoxicity in vitro. The cardiomyocyte protective activities of AG may be due to the decrease in TLR4 expression and total oxidant capacity and increase in total antioxidant capacity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA (2009) Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol 10:391–399. https://doi.org/10.1016/S1470-2045(09)70042-7

    Article  CAS  Google Scholar 

  2. Bird BR, Swain SM (2008) Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res 14:14–24. https://doi.org/10.1158/1078-0432.CCR-07-1033

    Article  CAS  Google Scholar 

  3. Farvadi F, Tamaddon AM, Abolmaali SS, Sobhani Z, Yousefi GH (2014) Micellar stabilized single-walled carbon nanotubes for a pH-sensitive delivery of doxorubicin. Res Pharm Sci 9:1–10

    CAS  Google Scholar 

  4. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229. https://doi.org/10.1124/pr.56.2.6

    Article  CAS  Google Scholar 

  5. Chen B, Peng X, Pentassuglia L, Lim C, Sawyer DB (2007) Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol 7:114–121. https://doi.org/10.1007/s12012-007-0005-5

    Article  CAS  Google Scholar 

  6. Akimoto H, Bruno NA, Slate DL, Biilingham ME, Torti SV, Torti FM (1993) Effect of verapamil on doxorubicin cardiotoxicity: altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Res 53:4658–4664

    CAS  Google Scholar 

  7. Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamrajv S (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234–235:119–124

    Article  Google Scholar 

  8. Schlattner T, Zaugg M, Zuppinger M, Wallimann T, Schlattner U (2006) New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 41:389–405. https://doi.org/10.1016/j.yjmcc.2006.06.009

    Article  CAS  Google Scholar 

  9. Tinajero J, El-Shami K, Wu X, Smith BD, Newman MJ (2022) Arsenic trioxide for acute promyelocytic leukemia in a patient on chronic hemodialysis. Leuk Res Rep 17:100304. https://doi.org/10.1016/j.lrr.2022.100304

    Article  CAS  Google Scholar 

  10. Vineetha VP, Raghu KG (2019) An overview on arsenic trioxide-induced cardiotoxicity. Cardiovasc Toxicol 19:105–119. https://doi.org/10.1007/s12012-018-09504-7

    Article  CAS  Google Scholar 

  11. Zhang JY, Sun GB, Wang M et al (2016) Arsenic trioxide triggered calcium homeostasis imbalance and induced endoplasmic reticulum stress-mediated apoptosis in adult rat ventricular myocytes. Toxicol Res 5:682–688. https://doi.org/10.1039/c5tx00463b

    Article  CAS  Google Scholar 

  12. Sadat Alamolhodaei N, Shirani K, Karimi G (2015) Arsenic cardiotoxicity: an overview. Environ Toxicol Pharmacol 40:1005–1014. https://doi.org/10.1016/j.etap.2020.103524

    Article  CAS  Google Scholar 

  13. Hossain MD, Urbi Z, Sule A, Rahman KM (2014) Andrographis paniculata (Burm. F.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. Sci World J 2014:274905. https://doi.org/10.1155/2014/274905

    Article  Google Scholar 

  14. Banerjee M, Chattopadhyay S, Choudhuri T et al (2016) Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci 23:40. https://doi.org/10.1186/s12929-016-0257-0

    Article  CAS  Google Scholar 

  15. Yang T, Shi HX, Wang ZT et al (2012) Hypolipidemic effects of andrographolide and neoandrographolide in mice and rats. Phytother Res 27:618–623. https://doi.org/10.1002/ptr.4771

    Article  CAS  Google Scholar 

  16. Shi S, Ji X, Shi J et al (2022) Andrographolide in atherosclerosis: integrating network pharmacology and in vitro pharmacological evaluation. Biosci Rep. https://doi.org/10.1042/BSR20212812

  17. Xie S, Deng W, Chen J et al (2020) Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway. Int J Biol Sci 16:12–26. https://doi.org/10.7150/ijbs.37269

    Article  CAS  Google Scholar 

  18. Woo AY, Waye MM, Tsui SK, Yeung ST, Cheng CH (2008) Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J Pharmacol Exp Ther 325:226–235. https://doi.org/10.1124/jpet.107.133918

    Article  CAS  Google Scholar 

  19. Gao H, Wang J (2016) Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway. Mol Med Rep 13:1827–1832. https://doi.org/10.3892/mmr.2015.4703

    Article  CAS  Google Scholar 

  20. Malekara E, Pazhouhi M, Rashidi I, Jalili C (2020) Anti-proliferative and cytotoxic effect of Iranian snake (Vipera raddei kurdistanica) venom on human breast cancer cells via reactive oxygen species-mediated apoptosis. Res Pharm Sci 15:76–86. https://doi.org/10.4103/1735-5362.278717

    Article  Google Scholar 

  21. Feghhi-Najafabadi S, Safaeian L, Zolfaghari B (2019) In vitro antioxidant effects of different extracts obtained from the leaves and seeds of Allium ampeloprasum subsp. persicum. J Herbmed Pharmacol 8:256–260. https://doi.org/10.15171/jhp.2019.37

    Article  CAS  Google Scholar 

  22. Safaeian L, Ghasemi-Dehkordi N, Javanmard SH, Namvar H (2015) Antihypertensive and antioxidant effects of a hydroalcoholic extract obtained from aerial parts of Otostegia persica (Burm.) Boiss. Res Pharm Sci 10:192–199

    CAS  Google Scholar 

  23. Safaeian L, Shafiee F, Naderi M (2022) Pramlintide: an amylin analogue protects endothelial cells against oxidative stress through regulating oxidative markers and NF-κb expression. Int J Prev Med 13:20. https://doi.org/10.4103/ijpvm.IJPVM_425_20

    Article  Google Scholar 

  24. Kalam K, Marwick TH (2013) Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer 49:2900–2909. https://doi.org/10.1016/j.ejca.2013.04.030

    Article  CAS  Google Scholar 

  25. Dey SK, Bose D, Hazra A (2013) Cytotoxic activity and apoptosis-inducing potential of di-spiropyrrolidino and di-spiropyrrolizidino oxindole andrographolide derivatives. PLoS ONE 8:e58055. https://doi.org/10.1371/journal.pone.0058055

    Article  CAS  Google Scholar 

  26. Liang E, Liu X, Du Z (2018) Andrographolide ameliorates diabetic cardiomyopathy in mice by blockage of oxidative damage and NF-κB-mediated inflammation. Oxid Med Cell Longev 25(2018):9086747. https://doi.org/10.1155/2018/9086747

    Article  CAS  Google Scholar 

  27. Wu QQ, Ni J, Zhang N, Yang R, Zhao Y (2017) Andrographolide protects against aortic banding-induced experimental cardiac hypertrophy by inhibiting MAPKs signaling. Front Pharmacol 8:808. https://doi.org/10.3389/fphar.2017.00808

    Article  CAS  Google Scholar 

  28. Zhang J, Zhu D, Wang Y (2015) Andrographolide attenuates LPS-induced cardiac malfunctions through inhibition of IκB phosphorylation and apoptosis in mice. Cell Physiol Biochem 37:1619–1628. https://doi.org/10.1159/000438528

    Article  CAS  Google Scholar 

  29. Mussard E, Cesaro A, Lespessailles E, Legrain B, Berteina-Raboin S, Toumi H (2019) Andrographolide, a natural antioxidant: an update. Antioxidants 8:571. https://doi.org/10.3390/antiox8120571

    Article  CAS  Google Scholar 

  30. Riad A, Bien S, Gratz M et al (2008) Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur J Heart fail 10:233–243. https://doi.org/10.1016/j.ejheart.2008.01.004

    Article  CAS  Google Scholar 

  31. El-Zayat SR, Sibaii H, Mannaa FA (2019) Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 43:187. https://doi.org/10.1186/s42269-019-0227-2

    Article  Google Scholar 

  32. Ma Y, Zhang X, Bao H et al (2012) Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS ONE 7:e40763. https://doi.org/10.1371/journal.pone.0040763

    Article  CAS  Google Scholar 

  33. Zheng B, Yang Y, Li J et al (2021) Magnesium isoglycyrrhizinate alleviates arsenic trioxide-induced cardiotoxicity: contribution of Nrf2 and TLR4/NF-κB signaling pathway. Drug Des Devel Ther 15:543–556. https://doi.org/10.2147/DDDT.S296405

    Article  Google Scholar 

  34. Nie X, Chen SR, Wang K et al (2017) Attenuation of innate immunity by andrographolide derivatives through NF-κB signaling pathway. Sci Rep 7:4738. https://doi.org/10.1038/s41598-017-04673-x

    Article  CAS  Google Scholar 

  35. Zhang QQ, Ding Y, Lei Y et al (2014) Andrographolide suppress tumor growth by inhibiting TLR4/NF-κB signaling activation in insulinoma. Int J Biol Sci 10:404–414. https://doi.org/10.7150/ijbs.7723

    Article  CAS  Google Scholar 

  36. Zhu T, Wang DX, Zhang W et al (2013) Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB. PLoS ONE 8(2):e56407. https://doi.org/10.1371/journal.pone.0056407

    Article  CAS  Google Scholar 

  37. Ding Y, Chen L, Wu W, Yang J, Yang Z, Liu S (2017) Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-kappaB and JAK-STAT signaling pathway. Microbes Infect 19:605–615. https://doi.org/10.1016/j.micinf.2017.08.009

    Article  CAS  Google Scholar 

  38. Chan SJ, Wong WS, Wong PT, Bian JS (2010) Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol 161:668–679. https://doi.org/10.1111/j.1476-5381.2010.00906.x

    Article  CAS  Google Scholar 

  39. Chen YY, Hsu MJ, Hsieh CY, Lee LW, Chen ZC, Sheu JR (2014) Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells. Sci World J 2014:130381. https://doi.org/10.1155/2014/130381

    Article  CAS  Google Scholar 

  40. Li Y, He S, Tang J et al (2017) Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW2647 cells through suppression of NF-κB/MAPK signaling pathway. Evid Based Complement Alternat Med 2017:8248142. https://doi.org/10.1155/2017/8248142

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Vice-Chancellery for Research and Technology of Isfahan University of Medical Sciences (Grant No. 299264).

Author information

Authors and Affiliations

Authors

Contributions

LS and FS contributed to the study conception and design. Material preparation, data collection and analysis was performed by SH. SH wrote the manuscript in consultation with LS and FS All authors discussed the results and approved the final form of the manuscript.

Corresponding author

Correspondence to Leila Safaeian.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Disclosure

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaeian, L., Shafiee, F. & Haghighatnazar, S. Andrographolide protects against doxorubicin-and arsenic trioxide-induced toxicity in cardiomyocytes. Mol Biol Rep 50, 389–397 (2023). https://doi.org/10.1007/s11033-022-08042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08042-4

Keywords

Navigation