Skip to main content
Log in

MYB transcription factors and their role in Medicinal plants

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transcription factors are multi-domain proteins that regulate gene expression in eukaryotic organisms. They are one of the largest families of proteins, which are structurally and functionally diverse. While there are transcription factors that are plant-specific, such as AP2/ERF, B3, NAC, SBP and WRKY, some transcription factors are present in both plants as well as other eukaryotic organisms. MYB transcription factors are widely distributed among all eukaryotes. In plants, the MYB transcription factors are involved in the regulation of numerous functions such as gene regulation in different metabolic pathways especially secondary metabolic pathways, regulation of different signalling pathways of plant hormones, regulation of genes involved in various developmental and morphological processes etc. Out of the thousands of MYB TFs that have been studied in plants, the majority of them have been studied in the model plants like Arabidopsis thaliana, Oryza sativa etc. The study of MYBs in other plants, especially medicinal plants, has been comparatively limited. But the increasing demand for medicinal plants for the production of biopharmaceuticals and important bioactive compounds has also increased the need to explore more number of these multifaceted transcription factors which play a significant role in the regulation of secondary metabolic pathways. These studies will ultimately contribute to medicinal plants’ research and increased production of secondary metabolites, either through transgenic plants or through synthetic biology approaches. This review compiles studies on MYB transcription factors that are involved in the regulation of diverse functions in medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zhang CY, Long Y, Feng J, Meng JL (2007) Transcriptional regulation of plant genes and its significance in biology. Yi Chuan 29:793–799. https://doi.org/10.1360/yc-007-0793

    Article  CAS  PubMed  Google Scholar 

  2. Aoi Y, Takahashi YH, Shah AP, Iwanaszko M, Rendleman EJ, Khan NH, Cho BK, Goo YA, Ganesan S, Kelleher NL, Shilatifard A (2021) SPT5 stabilization of promoter-proximal RNA polymerase II. Mol Cell 81:4413–4424. https://doi.org/10.1016/j.molcel.2021.08.006

    Article  CAS  PubMed  Google Scholar 

  3. Braglia P, Kawauchi J, Proudfoot NJ (2011) Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I. Nucleic Acids Res 39:1439–1448. https://doi.org/10.1093/nar/gkq894

    Article  CAS  PubMed  Google Scholar 

  4. Huang Q, Ma C, Chen L, Luo D, Chen R, Liang F (2018) Mechanistic insights into the interaction between transcription factors and epigenetic modifications and the contribution to the development of obesity. Front Endocrinol 9:370. https://doi.org/10.3389/fendo.2018.00370

    Article  Google Scholar 

  5. Schoch H, Abel T (2014) Transcriptional co-repressors and memory storage. Neuropharmacology 80:53–60. https://doi.org/10.1016/j.neuropharm.2014.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gonzalez DH (2016) Introduction to transcription factor structure and function. Pl Transcription Factors 3–11. https://doi.org/10.1016/B978-0-12-800854-6.00001-4

  7. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nuc Acids Res 23:1686–1690. https://doi.org/10.1093/nar/23.10.1686

    Article  CAS  Google Scholar 

  8. Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22:6321–6335. https://doi.org/10.1128/MCB.22.18.6321-6335.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gehring WJ, Affolter M, Burglin T (1994) Homeodomain proteins. Ann. Rev. of Biochem 63: 487–526. https://doi.org/10.1146/annurev.bi.63.070194.002415

  10. Dahl E, Koseki H, Balling R (2005) Pax genes and organogenesis. Bioessays 19: 755–765. https://doi.org/10.1002/bies.950190905

  11. Wolfe SA, Ramm EI, Pabo CO (2000) Combining structure based design with phage display to create new Cys2His2 zinc finger. Structure 8:739–750. https://doi.org/10.1016/S0969-2126(00)00161-1

    Article  CAS  PubMed  Google Scholar 

  12. Hong JC (2016) General Aspects of Plant Transcription Factor Families. https://doi.org/10.1016/B978-0-12-800854-6.00003-8

  13. Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S (2013) DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci 18:267–276. https://doi.org/10.1016/j.tplants.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  14. Takeda Y, Ohlendorf DH, Anderson WF, Matthews BW (1983) DNA binding proteins. Science 221:1020–1026. https://doi.org/10.1126/science.6308768

    Article  CAS  PubMed  Google Scholar 

  15. Rosinski JA, Atchley WR (1997) Molecular Evolution of the Myb Family of Transcription Factors: Evidence for Polyphyletic Origin. J of Mol Evol 46:74–83. https://doi.org/10.1007/pl00006285

    Article  Google Scholar 

  16. Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828. https://doi.org/10.1093/mp/ssu004

    Article  CAS  PubMed  Google Scholar 

  17. Liu C, Long J, Zhu K, Liu L, Yang W, Zhang H, Li L, Xu Q, Deng X (2016) Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis. Sci Rep 6:25352. https://doi.org/10.1038/srep25352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang W, Wang Y, Li H, Liu Z, Cui X, Zhuang J (2018) Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant Camellia sinensis (L.) O. Kuntze. BMC Pl Biol 18. https://doi.org/10.1186/s12870-018-1502-3

  19. Yuan Y, Qi L, Yang J, Wu C, Liu Y, Huang L (2014) Erratum to: A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates favonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell Tissue Organ Culture (PCTOC) 120:973–973. https://doi.org/10.1007/s11240-014-0686-y

    Article  Google Scholar 

  20. Baumann K, Rodriguez MP, Bradley D, Venail J, Bailey P, Jin H, Koes R, Roberts K, Martin C (2007) Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134:1691–1701

    Article  CAS  PubMed  Google Scholar 

  21. Xiao R, Zhang C, Guo X, Li H, Lu H (2021) MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int J of Mol Sc 22:3560. https://doi.org/10.3390/ijms22073560

    Article  CAS  Google Scholar 

  22. Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors control flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Pl. J: For Cell and Mol Biol 50:660–677. https://doi.org/10.1111/j.1365-313X.2007.03078.x

    Article  CAS  Google Scholar 

  23. Mu RL, Cao YR, Liu YF et al (2009) An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res 19:1291–1304. https://doi.org/10.1038/cr.2009.83

    Article  CAS  PubMed  Google Scholar 

  24. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol and Mol Bio Of Pl : An Int J of Func Pl Biol 19:307–321. https://doi.org/10.1007/s12298-013-0179-1.

    Article  CAS  Google Scholar 

  25. Oshima Y, Mitsuda N (2013) The MIXTA-like transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs. Pl Sig Behav 8:e26826

    Article  Google Scholar 

  26. Liu R, Lü B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, Dong H (2010) Thirty-seven transcription factor genes differentially respond to a hairpin protein and affect resistance to the green peach aphid in Arabidopsis. J Biosci 35:435–450

    Article  CAS  PubMed  Google Scholar 

  27. Klempnauer KH, Symonds G, Evan GI, Bishop JM (1984) Subcellular localization of proteins encoded by oncogenes of avian myeloblastosis virus and avian leukemia virus E26 and by the chicken c-myb gene. Cell 37:537–547. https://doi.org/10.1016/0092-8674(84)90384-2

    Article  CAS  PubMed  Google Scholar 

  28. Ares JP, Ghosal D, Wienand U, Peterson PA (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO J 6:3553–3558. https://doi.org/10.1002/j.1460-2075.1987.tb02684.x

    Article  Google Scholar 

  29. Zhou Y, Ness SA (2011) Myb proteins: angels and demons in normal and transformed cells. Front Biosc 16:1109–1131. https://doi.org/10.2741/3738

    Article  CAS  Google Scholar 

  30. Bessa M, Joaquin M, Tavner F, Saville MK, Watson RJ (2001) Regulation of the cell cycle by B-Myb blood cells. Mol Dis 27:416–421. https://doi.org/10.1006/bcmd.2001.0399

    Article  CAS  Google Scholar 

  31. Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154. https://doi.org/10.1105/tpc.10.2.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen.Genetics149: 479–490. https://doi.org/10.1093/genetics/149.2.479

  33. Strader L, Weijers D, Wagner D (2022) Plant Transcription Factors- being in the right place with the right company. Cur Op in Pl Biol 65:102136. https://doi.org/10.1016/j.pbi.2021.102136

    Article  CAS  Google Scholar 

  34. Schwechheimer C, Zourelidou M, Bevan MW (1998) Plant transcription factor studies. Ann. Rev. of Pl. Phy. and Pl. Mol. Biol 49: 127–150. https://doi.org/10.1146/annurev.arplant.49.1.127

  35. Tolosa LN, Zhang Z (2020) The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives.Plants9:56. https://doi.org/10.3390/plants9010056

  36. Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ (2020) Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. Plants 9:491. https://doi.org/10.3390/plants9040491

    Article  CAS  PubMed Central  Google Scholar 

  37. Liu L, White MJ, Macrae TH (1999) Transcription Factors and their genes in higher plants: Functional Domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  38. Liu Q, Zhang G, Chen S (2001) Structure and regulatory function of plant transcription factors. Chin Sci Bull 46: 271–278. https://doi.org/10.1007/BF03187184

  39. Tolosa LN, Zhang Z (2020) The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives. Plants 9:56. https://doi.org/10.3390/plants9010056

    Article  CAS  PubMed Central  Google Scholar 

  40. Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran LP (2017) Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr Genomics 18:483–497. https://doi.org/10.2174/1389202918666170227150057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ (2020) Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. Plants 9:491. https://doi.org/10.3390/plants9040491

    Article  CAS  PubMed Central  Google Scholar 

  42. Kalia R, Sareen S, Nagpal A, Katnoria J, Bhardwaj R (2017) ROS-Induced Transcription Factors During Oxidative Stress in Plants: A Tabulated Review. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress 129–158. https://doi.org/10.1007/978-981-10-5254-5

  43. Ramachandran S, Hiratsuka K, Chua NH (1994) Transcription factors in plant growth and development. Curr Opin Genet Dev 4(5):642–646. https://doi.org/10.1016/0959-437x(94)90129-q

    Article  CAS  PubMed  Google Scholar 

  44. Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73. https://doi.org/10.1016/s0168-9525(96)10049-4

    Article  CAS  PubMed  Google Scholar 

  45. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends in Pl Sc 15:573–581. https://doi.org/10.1016/j.tplants.2010.06.005

    Article  CAS  Google Scholar 

  46. Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochem Mosc 74:1–11. https://doi.org/10.1134/S0006297909010015

    Article  CAS  Google Scholar 

  47. Li J, Han G, Sun C, Sui N (2019) Research advances of MYB transcription factors in plant stress resistance and breeding. Pl Sig & Behaviour 14. https://doi.org/10.1080/15592324.2019.1613131

  48. Baldoni E, Genga A, Cominelli E (2015) Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int J of Mol Sc 16:15811–15851. https://doi.org/10.3390/ijms160715811

    Article  CAS  Google Scholar 

  49. Cao Y, Li K, Li Y, Zhao X, Wang L (2020) MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. Biology. 2020; 9: 61. https://doi.org/10.3390/biology9030061

  50. Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61: 107 – 14. https://doi.org/10.1016/s0031-9422(02)00185-1

  51. Cao Y, Li K, Li Y, Zhao X, Wang L (2020) MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. Biology. 2020; 9: 61. https://doi.org/10.3390/biology9030061

  52. Biedenkapp H, Borgmeyer U, Sippel A, Klempnauer KH (1988) Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 335:835–837. https://doi.org/10.1038/335835a0

    Article  CAS  PubMed  Google Scholar 

  53. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) Myb transcription factors in Arabidopsis. Trends Pl Sc 15:573–581. https://doi.org/10.1016/j.tplants.2010.06.005

    Article  CAS  Google Scholar 

  54. Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A (1996) The cavity in the hydrophobic core of Myb DNA binding domain is reserved for DNA recognition and trans-activation. Nat Struct Biol 3:178–818. https://doi.org/10.1038/nsb0296-178

    Article  CAS  PubMed  Google Scholar 

  55. Jia L, Clegg MT, Jiang T (2004) Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol 134:575–585. https://doi.org/10.1104/pp.103.027201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) Myb transcription factors in Arabidopsis. Trends Pl Sc 15:573–581. https://doi.org/10.1016/j.tplants.2010.06.005

    Article  CAS  Google Scholar 

  57. Davidson CJ, Guthrie EE, Lipsick JS (2012) Duplication and maintenance of the myb genes of vertebrate animals. Biol Open 2:101–110

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bilaud T, Koering CE, Binet-Brasselet E, Ancelin K, Pollice A, Gasser SM, Gilson E (1996) The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res 24:1294–1303. https://doi.org/10.1093/nar/24.7.1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jia L, Clegg MT, Jiang T (2004) Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol 134:575–585. https://doi.org/10.1104/pp.103.027201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A (1996) The cavity in the hydrophobic core of Myb DNA binding domain is reserved for DNA recognition and trans-activation. Nat Struct Biol 3:178–818. https://doi.org/10.1038/nsb0296-178

    Article  CAS  PubMed  Google Scholar 

  61. Braun EL, Grotewold E (1999) Newly discovered plant. gene family Pl Physio 121:21–24. https://doi.org/10.1104/pp.121.1.2

    Article  CAS  Google Scholar 

  62. Rosinski JA, Atchley WR (1998) Molecular evolution of the Myb family of transcription factors: Evidence for polyphyletic origin. J Mol Evol 46:74–83

    Article  CAS  PubMed  Google Scholar 

  63. Jiang C, Gu J, Chopra S, Gu X, Peterson T (2004) Ordered origin of the typical two- and three-repeat Myb genes. Gene 326:13–22. https://doi.org/10.1016/j.gene.2003.09.049

    Article  CAS  PubMed  Google Scholar 

  64. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585. https://doi.org/10.1023/a:1006319732410

    Article  CAS  PubMed  Google Scholar 

  65. Ares JP, Ghosal D, Wienand U, Peterson PA (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO J 6:3553–3558. https://doi.org/10.1002/j.1460-2075.1987.tb02684.x

    Article  Google Scholar 

  66. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456. https://doi.org/10.1016/s1369-5266(00)00199-0

    Article  CAS  PubMed  Google Scholar 

  67. Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochem (Mosc) 74:1–11. https://doi.org/10.1134/s0006297909010015

    Article  CAS  Google Scholar 

  68. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) Myb transcription factors in Arabidopsis. Trends Pl Sc 15:573–581. https://doi.org/10.1016/j.tplants.2010.06.005

    Article  CAS  Google Scholar 

  69. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971. https://doi.org/10.1038/35050091

    Article  CAS  PubMed  Google Scholar 

  70. Fraser LG, Seal AG, Montefiori M, McGhie TK, Tsang GK, Datson PM, Hilario E, Marsh HE, Dunn JK, Hellens RP, Davies KM, McNeilage MA, DeSilva HN, Allan AC (2013) An R2R3 MYB transcription factor determines red petal colour in an. (kiwifruit) hybrid population BMC Genomics 14. https://doi.org/10.1186/1471-2164-14-28

  71. João R, Rómulo S, Paul B, Herlander A, Lisete G, Jorge A, Enrico C, Manuela C (2013) A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. The Plant journal: for cell and molecular biology 75. https://doi.org/10.1111/tpj.12225

  72. Hernandez LM, Jiang W, Yang K, Tang K, Brodelius PE, Pelaz S (2017) AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Pl J 90:520–534. https://doi.org/10.1111/tpj.13509

    Article  CAS  Google Scholar 

  73. Zhang S, Wang J, Chen G, Ye X, Zhang L, Zhu S, Yuan L, Hou J, Wang C (2019) Functional analysis of a MYB transcription factor BrTDF1 in Tapetum development of Wucai (Brassica rapa ssp.). Scientia Hort 257. https://doi.org/10.1016/j.scienta.2019.108728

  74. Yang H, Xue Q, Zhang Z, Du J, Yu D, Huang F (2018) GmMYB181, a soybean R2R3-MYB protein, increases branch number in transgenic Arabidopsis, Front. Plant Sci 9:1027. https://doi.org/10.3389/fpls.2018.01027

    Article  Google Scholar 

  75. Mahjoub A, Hernould M, Joubes J, Decendit A, Mars M, Barrieu F, Hamdi S, Delrot S (2009) Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism. Pl Phy and Biochem 47:551–561. https://doi.org/10.1016/j.plaphy.2009.02.015

    Article  CAS  Google Scholar 

  76. Schwinn KE, Ngo H, Kenel F, Brummell DA, Albert NW, McCallum JA, Joyce MP, Crowhurst RN, Eady C, Davies KM (2016) The Onion (. L) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis Frontiers in Pl Sc 7. https://doi.org/10.3389/fpls.2016.01865

  77. Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J, Merillon J, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Pl Phy 140. https://doi.org/10.1104/pp.105.067231

  78. Wang W, Wang Y, Li H, Liu Z, Cui X, Zhuang J (2018) Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze. BMC Pl Biol 18. https://doi.org/10.1186/s12870-018-1502-3

  79. Kumar A, Singh RS, Kumar U, Rekha K, Thakur D, Pal AK, Singh PK (2018) Expression of MYB Transcription Factor Genes in Response to Methyl Jasmonate, Salicylic Acid and Sodium Nitropruside in Selaginella bryopteris. (L) Baker Internl J of Agri Envirn and Biotech 11:243–251. https://doi.org/10.30954/0974-1712.04.2018.4

    Article  Google Scholar 

  80. Laura B, Matteo B, Flavia F, Alessandro P, Giuseppe M, Justyna M, Enrico F, Roberta P (2020) In silico identification of MYB and bHLH families reveal candidate transcription factors for secondary metabolic pathways in Cannabis sativa L. 8839. https://doi.org/10.3390/IECPS2020-08839

  81. Arce-Rodríguez ML, Ochoa-Alejo N (2017) An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol 174:1359–1370. https://doi.org/10.1104/pp.17.00506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Changchun F, Hangjun C, Haiyan G, Yin L, Chao H, Yanchao H (2020) Two papaya MYB proteins function in fruit ripening through regulating some genes involved in cell wall degradation and carotenoid biosynthesis. J of the Sc of Food and Agri 100. https://doi.org/10.1002/jsfa.10484

  83. Jia N, Liu J, Tan P, Sun Y, Lv Y, Liu J, Sun J, Huang Y, Lu J, Jin N, Li M, Md S, Uddin Imam K, Xin F, Fan B (2019) Citrus sinensis MYB transcription factor CsMYB85 induce fruit juice sac lignification through interaction with other CsMYB transcription factors. Front. Plant Sci 10:213. https://doi.org/10.3389/fpls.2019.00213

    Article  Google Scholar 

  84. Goicoechea M, Lacombe E, Legay S, Mihaljević S, Rech P, Jauneau A, Catherine L, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Pl J: for cell and molecular biology 43:553–567. https://doi.org/10.1111/j.1365-313X.2005.02480.x

    Article  CAS  Google Scholar 

  85. Huang W, Sun W, Lv H, Luo M, Zeng S, Pattanaik S, Yuan L, Wang Y (2013) A R2R3-MYB Transcription Factor from Epimedium sagittatum Regulates the Flavonoid Biosynthetic Pathway. PLoS ONE 8:e70778. https://doi.org/10.1371/journal.pone.0070778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proceedings of the National Academy of Sciences 109: 1766–1771. https://doi.org/10.1073/pnas.1120916109

  87. Liu T, Luo T, Guo X, Zhou D, Afrin S, Li G, Zhang Y, Zhang R, Luo Z (2019) PgMYB2, a MeJA-responsive transcription factor, positively regulates the Dammarenediol Synthase gene expression in Panax Ginseng. Intn J of Mol Sc 20:2219. https://doi.org/10.3390/ijms20092219

    Article  CAS  Google Scholar 

  88. Kakeshpour T, Nayebi S, Monfared SR, Moieni A, Karimzadeh G (2015) Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L. Phys and Mol Biol of Pl 21:465–478. https://doi.org/10.1007/s12298-015-0325-z

    Article  CAS  Google Scholar 

  89. Deng C, Wang Y, Huang F, Lu S, Zhao L, Ma X, Kai G (2020) SmMYB2 promotes salvianolic acid biosynthesis in the medicinal herb Salvia miltiorrhiza. J of Int Pl Biol 62:1688–1702. https://doi.org/10.1111/jipb.12943

    Article  CAS  Google Scholar 

  90. Liu Y, Shi Z, Maximova SN, Payne MJ, Guiltinan MJ (2015) Tc-MYBPA, an Arabidopsis TT2-like transcription factor functions in the regulation of proanthocyanidin synthesis in Theobroma cacao. BMC Plant Biol 15:160. https://doi.org/10.1186/s12870-015-0529-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Holl J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in. The Plant Cell25 4135–4149. https://doi.org/10.1105/tpc.113.117127

  92. Zhang Y, Tang W, Wang L, Hu Y, Liu X, Liu Y (2019) Kiwifruit (. J of Integr Agri 18 417–427. https://doi.org/10.1016/S2095-3119(18)62127-6. Arabidopsis thaliana

  93. Chen N, Yang Q, Pan L, Chi X, Chen M, Hu D, Yang Z, Wang T, Wang M, Yu S (2014) Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.). Gene 533:332–345. https://doi.org/10.1016/j.gene.2013.08.092

    Article  CAS  PubMed  Google Scholar 

  94. Jeena GS, Kumar S, Shukla RK (2021) Characterization of MYB35 regulated methyl jasmonate and wound responsive Geraniol 10-hydroxylase-1 gene from Bacopa monnieri. Planta 253:89. https://doi.org/10.1007/s00425-021-03614-3

    Article  CAS  PubMed  Google Scholar 

  95. Chen B, Niu F, Liu W, Yang B, Zhang J, Ma J, Cheng H, Han F, Jiang Y (2016) Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death. DNA Res 23:101–114. https://doi.org/10.1093/dnares/dsv040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie YF, Zhang RX, Qin LJ, Song LL, Zhao DG, Xia ZM (2022) Genome-wide identification and genetic characterization of the CaMYB family and its response to five types of heavy metal stress in hot pepper (Capsicum annuum cv. CM334). Plant Physiol Biochem 170:98–109. https://doi.org/10.1016/j.plaphy.2021.11.024

    Article  CAS  PubMed  Google Scholar 

  97. Liu X, Yu W, Zhang X, Wang G, Cao F, Chang H (2017) Identification and expression analysis under abiotic stress of the R2R3-MYB genes in Ginkgo biloba L. Physiol. Mol Biol Plants 27:503–516. https://doi.org/10.1007/s12298-017-0436-9

    Article  CAS  Google Scholar 

  98. Su LT, Li JW, Liu DQ, Zhai Y, Zhang HJ, Li XW, Zhang QL, Wang Y, Wang QY (2014) A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 538:46–55. https://doi.org/10.1016/j.gene.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  99. Li HL, Guo D, Peng SQ (2014) Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor. Genet Mol Biol 37:549–555. https://doi.org/10.1590/s1415-47572014000400011

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ruan MB, Guo X, Wang B, Yang YL, Li WQ, Yu XL, Zhang P, Peng M (2017) Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Bot 68:3657–3672. https://doi.org/10.1093/jxb/erx202

    Article  CAS  PubMed  Google Scholar 

  101. Wang B, Guo X, Zhao P, Liao W, Zeng C, Li K, Zhou Y, Xiao J, Ruan M, Peng M, Bai Y, Chen Y (2021) MeMYB26, a drought-responsive transcription factor in cassava (Manihot esculenta Crantz). Crop Breed App Biotech 21:e34432114. https://doi.org/10.1590/1984-70332021v21n1a4

    Article  CAS  Google Scholar 

  102. Dossa K, Mmadi MA, Zhou R, Liu A, Yang Y, Diouf D, You J, Zhang X (2020) Ectopic expression of the sesame MYB transcription factor SiMYB305 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis. AoB Plants 12:plz081. https://doi.org/10.1093/aobpla/plz081

    Article  CAS  PubMed  Google Scholar 

  103. Li JB, Luan YS, Yin YL (2014) SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene 547:145–151. https://doi.org/10.1016/j.gene.2014.06.049

    Article  CAS  PubMed  Google Scholar 

  104. Galbiati M, Matus JT, Francia P, Rusconi F, Canon P, Medina C, Conti L, Cominelli E, Tonelli C, Johnson P (2011) The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC Pl Biol 11. https://doi.org/10.1186/1471-2229-11-142

  105. Chen H, Lai L, Li L, Liu L, Jakada BH, Huang Y, He Q, Chai M, Niu X, Qin Y (2020) AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling. Int J of Mol Sc 21:5727. https://doi.org/10.3390/ijms21165727

    Article  CAS  Google Scholar 

  106. Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188(3):774–786. https://doi.org/10.1111/j.1469-8137.2010.03432.x

    Article  CAS  PubMed  Google Scholar 

  107. Yan J, Wang B, Zhong Y, Yao L, Cheng L, Wu T (2015) The soybean R2R3 MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis. Plant Mol Biol 89:35–48. https://doi.org/10.1007/s11103-015-0349-3

    Article  CAS  PubMed  Google Scholar 

  108. Zhou ML, Hou HL, Zhu XM, Shao JR, Wu YM, Tang YX (2011) Soybean transcription factor GmMYBZ2 represses catharanthine biosynthesis in hairy roots of Catharanthus roseus. Appl Microbiol Biotechnol 91:1095–1105. doi:https://doi.org/10.1007/s00253-011-3288-1

    Article  CAS  PubMed  Google Scholar 

  109. Reddy VA, Wang Q, Dhar N, Kumar N, Venkatesh PN, Rajan C, Panicker D, Sridhar V, Mao HZ, Sarojam R (2017) Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU). Plant Biotechnol J 15(9):1105–1119. https://doi.org/10.1111/pbi.12701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dhakarey R, Yaritz U, Tian L, Amir R (2022) A Myb transcription factor, PgMyb308-like, enhances the level of shikimate, aromatic amino acids, and lignins, but represses the synthesis of flavonoids and hydrolyzable tannins, in pomegranate (Punica granatum L.). Horti Res 9. https://doi.org/10.1093/hr/uhac008

  111. Huang YF, Vialet S, Guiraud JL, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry.New Phyto201:795–809. https://doi.org/10.1111/nph.12557

  112. Hsieh LC, Lin SI, Shih A, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-Mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant physiol 151:2120–2132. https://doi.org/10.1104/pp.109.147280

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gonzalez A, Zhao M, Leavitt J, Lloyd A (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/BHLH/MYB transcriptional complex in Arabidopsis seedlings. The Plant journal: for cell and molecular biology 53: 814 – 27. https://doi.org/10.1111/j.1365-313X.2007.03373.x

    Article  Google Scholar 

  114. Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256. https://doi.org/10.1104/pp.108.133454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Neequaye M, Stavnstrup S, Harwood W, Lawrenson T, Hundleby P, Irwin J, Tronscoso-Rey P, Saha S, Traka MH, Mithen R, Ostergaard L (2021) CRISPR-Cas9-mediated gene editing of MYB28 Genes impair glucoraphanin accumulation of Brassica oleracea in the field. The CRISPR J 4:416–426. https://doi.org/10.1089/crispr.2021.0007

    Article  CAS  PubMed  Google Scholar 

  116. Camargo-Ramírez R, Val-Torregrosa B, San-Segundo B (2018) MiR858-mediated regulation of flavonoid-specific MYB transcription factor genes controls resistance to pathogen infection in Arabidopsis. Plant Cell Physiol 59:190–204. https://doi.org/10.1093/pcp/pcx175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology under Ministry of Science and Technology, Govt. of India for providing financial assistance through DBT-JRF Fellowship and the Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow for providing the facilities. The CSIR-CIMAP publication number for this review is CIMAP/PUB/ 2022/30.

Funding

There has been no funding done for this study.

Author information

Authors and Affiliations

Authors

Contributions

ST collected the literature, compiled, prepared the draft and the final review. The conceptualizing and manuscript corrections were done by PV.

Corresponding author

Correspondence to Sudipa Thakur.

Ethics declarations

Disclosure of potential conflicts of interest:

On behalf of all the authors, it is being declared that they have no conflict of interest in the publication.

Research involving human participants and/or animals

The study does not involve any human participant and/or animals. Hence, not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Vasudev, P.G. MYB transcription factors and their role in Medicinal plants. Mol Biol Rep 49, 10995–11008 (2022). https://doi.org/10.1007/s11033-022-07825-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07825-z

Keywords

Navigation