Skip to main content

Advertisement

Log in

Epigenetic insights in the diagnosis, prognosis, and treatment selection in CRC, an updated review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background/aim

The gradual accumulation of genetic and epigenetic alterations can lead to the development of colorectal cancer. In the last decade much research has been done to discover how methylation as an epigenetic alteration leads to carcinogenesis. While Methylation is a biological process, it can influence gene expression by affecting the promoter activity. This article reviews the role of methylation in critical pathways in CRC.

Methods

In this study using appropriate keywords, all research and review articles related to the role of methylation on different cancers were collected and analyzed. Also, existing information on methylation detection methods and therapeutic sensitivity or resistance due to DNA methylation were reviewed.

Results

The results of this survey revealed that while Methylation is a biological process, it can influence gene expression by affecting the promoter activity. Promoter methylation is associated with up or downregulation of genes involved in critical pathways, including cell cycle, DNA repair, and cell adherence. Hence promoter methylation can be used as a molecular tool for early diagnosis, improving treatment, and predicting treatment resistance.

Conclusion

Current knowledge on potential methylation biomarkers for diagnosis and prognoses of CRC has also been discussed. Our survey proposes that a multi-biomarker panel is more efficient than a single biomarker in the early diagnosis of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  2. Arnold M et al (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66(4):683–691

    Article  PubMed  Google Scholar 

  3. Imperiale TF et al (2014) Multitarget stool DNA testing for colorectal-cancer screening. New Engl J Med 370(14):1287–1297

    Article  CAS  PubMed  Google Scholar 

  4. Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072

    Article  CAS  PubMed  Google Scholar 

  5. André T et al (2015) Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 33(35):4176–4187

    Article  PubMed  Google Scholar 

  6. Consortium, APG (2017) AACR project GENIE: powering precision medicine through aninternational consortium. Cancer Discov 7(8):818–831

    Article  Google Scholar 

  7. Sjöblom T et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274

    Article  PubMed  Google Scholar 

  8. Gargalionis AN et al (2012) Histone modifications as a pathogenic mechanism of colorectal tumorigenesis. Int J Biochem Cell Biol 44(8):1276–1289

    Article  CAS  PubMed  Google Scholar 

  9. Xie X et al (2016) Long non-coding RNAs in colorectal cancer. Oncotarget 7(5):5226

    Article  PubMed  Google Scholar 

  10. Luo Y et al (2014) Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. Gastroenterology 147(2):418–429

    Article  CAS  PubMed  Google Scholar 

  11. Greger V et al (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83(2):155–158

    Article  CAS  PubMed  Google Scholar 

  12. Kim MS, Lee J, Sidransky D (2010) DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 29(1):181–206

    Article  CAS  PubMed  Google Scholar 

  13. Ng JM-K, Yu J (2015) Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci 16(2):2472–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kang X-C et al (2016) Promoter methylation and expression of SOCS-1 affect clinical outcome and epithelial-mesenchymal transition in colorectal cancer. Biomed Pharmacother 80:23–29

    Article  CAS  PubMed  Google Scholar 

  15. Koinuma K et al (2006) Epigenetic silencing of AXIN2 in colorectal carcinoma with microsatellite instability. Oncogene 25(1):139–146

    Article  CAS  PubMed  Google Scholar 

  16. Sun J et al (2019) The role of m SEPT9 in screening, diagnosis, and recurrence monitoring of colorectal cancer. BMC Cancer 19(1):450

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rokni P et al (2018) BMP3 promoter hypermethylation in plasma-derived cell-free DNA in colorectal cancer patients. Genes Genomics 40(4):423–428

    Article  CAS  PubMed  Google Scholar 

  18. Draht MX et al (2018) Prognostic DNA methylation markers for sporadic colorectal cancer: a systematic review. Clin Epigenet 10(1):35

    Article  Google Scholar 

  19. Grady W et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27):3880–3888

    Article  CAS  PubMed  Google Scholar 

  20. Jing N et al (2017) A meta-analysis of the TFPI2 hyper-methylation frequency and colorectal cancer risk. Biomed Res 28(2):951–956

  21. Huang Q et al (2017) Screening of exon methylation biomarkers for colorectal cancer via LC-MS/MS strategy. J Mass Spectrom 52(12):860–866

    Article  CAS  PubMed  Google Scholar 

  22. Chen X et al (2019) DNA methylation-regulated and tumor‐suppressive roles of miR‐487b in colorectal cancer via targeting MYC, SUZ12, and KRAS. Cancer Med 8(4):1694–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han YD et al (2019) Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clin Epigenet 11(1):51

    Article  CAS  Google Scholar 

  24. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130(8):1715–1725

    Article  CAS  PubMed  Google Scholar 

  25. Hsu C-H et al (2020) Multiple gene promoter methylation and clinical stage in adjacent normal tissues: effect on prognosis of colorectal cancer in Taiwan. Sci Rep 10(1):1–11

    Google Scholar 

  26. Liang J-T et al (1999) Hypermethylation of the p16 gene in sporadic T3N0M0 stage colorectal cancers: association with DNA replication error and shorter survival. Oncology 57(2):149–156

    Article  CAS  PubMed  Google Scholar 

  27. Dasgupta N et al (2015) Caveolin-1 is transcribed from a hypermethylated promoter to mediate colonocyte differentiation and apoptosis. Exp Cell Res 334(2):323–336

    Article  CAS  PubMed  Google Scholar 

  28. Torrejón B et al (2017) Caveolin-1 is markedly downregulated in patients with early-stage colorectal cancer. World J Surg 41(10):2625–2630

    Article  PubMed  Google Scholar 

  29. Yu X et al (2005) Chfr is required for tumor suppression and aurora A regulation. Nat Genet 37(4):401–406

    Article  CAS  PubMed  Google Scholar 

  30. Bertholon J et al (2003) Chfr inactivation is not associated to chromosomal instability in colon cancers. Oncogene 22(55):8956–8960

    Article  CAS  PubMed  Google Scholar 

  31. Morioka Y et al (2006) Aberrant methylation of the CHFR gene is frequently detected in non-invasive colorectal cancer. Anticancer Res 26(6B):4267–4270

    CAS  PubMed  Google Scholar 

  32. Sun Z et al (2017) The diagnostic and prognostic value of CHFR hypermethylation in colorectal cancer, a meta-analysis and literature review. Oncotarget 8(51):89142

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pelosof L et al (2014) CHFR silencing or microsatellite instability is associated with increased antitumor activity of docetaxel or gemcitabine in colorectal cancer. Int J Cancer 134(3):596–605

    Article  CAS  PubMed  Google Scholar 

  34. Matthaios D et al (2016) Methylation status of the APC and RASSF1A promoter in cellfree circulating DNA and its prognostic role in patients with colorectal cancer. Oncol Lett 12(1):748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang T-J et al (2017) APC hypermethylation for early diagnosis of colorectal cancer: a meta-analysis and literature review. Oncotarget 8(28):46468

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu X et al (2019) DNA methylation of SFRP1, SFRP2, and WIF1 and prognosis of postoperative colorectal cancer patients. BMC Cancer 19(1):1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z et al (2018) Effects of secreted frizzled-related protein 1 on proliferation, migration, invasion, and apoptosis of colorectal cancer cells. Cancer Cell Int 18(1):1–10

    Article  Google Scholar 

  38. Kumar A et al (2019) Prognostic relevance of SFRP1 gene promoter methylation in colorectal carcinoma. Asian Pac J Cancer Prev 20(5):1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Satelli A, Rao US (2011) Galectin-1 is silenced by promoter hypermethylation and its re-expression induces apoptosis in human colorectal cancer cells. Cancer Lett 301(1):38–46

    Article  CAS  PubMed  Google Scholar 

  40. Katzenmaier EM et al (2017) Analyzing epigenetic control of galectin expression indicates silencing of galectin-12 by promoter methylation in colorectal cancer. Iubmb Life 69(12):962–970

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y et al (2014) Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells. Oncol Rep 32(3):1013–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miura T et al (2020) Methylation of bone morphogenetic protein 2 is associated with poor prognosis in colorectal cancer. Oncol Lett 19(1):229–238

    CAS  PubMed  Google Scholar 

  43. Naini MA et al (2018) O6-methyguanine-DNA methyl transferase (MGMT) promoter methylation in serum DNA of iranian patients with colorectal cancer. Asian Pac J Cancer Prev 19(5):1223

    CAS  PubMed Central  Google Scholar 

  44. Niv Y (2007) Microsatellite instability and MLH1 promoter hypermethylation in colorectal cancer. World J Gastroenterol 13(12):1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawasaki T et al (2008) WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol 21(2):150–158

    Article  CAS  PubMed  Google Scholar 

  46. Kerachian MA et al (2019) Epigenetic inactivation of protocadherin 10 by methylation in colorectal cancer. Acta Med Iran 67(8):472–477

    Google Scholar 

  47. Xu Z et al (2015) Fibulin-1 is downregulated through promoter hypermethylation in colorectal cancer: a CONSORT study. Medicine 94(13):e663. https://doi.org/10.1097/MD.0000000000000663

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen K et al (2011) CADM1/TSLC1 inactivation by promoter hypermethylation is a frequent event in colorectal carcinogenesis and correlates with late stages of the disease. Int J Cancer 128(2):266–273

    Article  CAS  PubMed  Google Scholar 

  49. Yuan S et al (2019) Cadherin-11 is inactivated due to promoter methylation and functions in colorectal cancer as a tumour suppressor. Cancer Manag Res 11:2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neumeyer S et al (2019) Genome-wide D.N.A. methylation differences according to oestrogen receptor beta status in colorectal cancer. Epigenetics 14(5):477–493

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xia T et al (2019) Androgen receptor gene methylation related to colorectal cancer risk. Endocr Connect 8(7):979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shademan M et al (2020) Promoter methylation, transcription, and retrotransposition of LINE-1 in colorectal adenomas and adenocarcinomas. Cancer Cell Int 20(1):1–6

    Article  Google Scholar 

  53. Kato K et al (2009) DNA hypomethylation at the CpG island is involved in aberrant expression of the L1 cell adhesion molecule gene in colorectal cancer. Int J Oncol 35(3):467–476

    CAS  PubMed  Google Scholar 

  54. Dimberg J et al (2012) DNA promoter methylation status and protein expression of interleukin-8 in human colorectal adenocarcinomas. Int J Colorectal Dis 27(6):709–714

    Article  PubMed  Google Scholar 

  55. Ying X et al (2019) Significant association of EED. promoter hypomethylation with colorectal cancer. Oncol Lett 18(2):1564–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Locke WJ et al (2019) DNA methylation cancer biomarkers: translation to the clinic. Front Genet 10:1150. https://doi.org/10.3389/fgene.2019.01150

    Article  PubMed  PubMed Central  Google Scholar 

  57. Freitas M et al (2018) A novel DNA methylation panel accurately detects colorectal cancer independently of molecular pathway. J Trans Med 16(1):45

    Article  CAS  Google Scholar 

  58. Lidgard GP et al (2013) Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia. Clin Gastroenterol Hepatol 11(10):1313–1318

    Article  CAS  PubMed  Google Scholar 

  59. Chang E et al (2010) Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: a preliminary report in Korean patients. Hepato-gastroenterology 57(101):720

    CAS  PubMed  Google Scholar 

  60. Hu H et al (2018) Diagnostic value of WIF1 methylation for colorectal cancer: a meta-analysis. Oncotarget 9(4):5378

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lee BB et al (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 15(19):6185–6191

    Article  CAS  PubMed  Google Scholar 

  62. Jensen S et al (2019) Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer—a clinical biomarker discovery and validation study. Clin Epigenet 11(1):1–14

    Article  CAS  Google Scholar 

  63. Song Y-C et al (2014) Detection of miR-34a and miR-34b/c in stool sample as potential screening biomarkers for noninvasive diagnosis of colorectal cancer. Med Oncol 31(4):894

    Article  PubMed  Google Scholar 

  64. Da Silva T et al (2015) P-192 DNA methylation profile of APC and DKK2 genes as biomarkers in colorectal cancer patients. Ann Oncol 26:iv55

    Article  Google Scholar 

  65. Ahlquist DA et al (2012) Next-generation stool DNA test accurately detects colorectal cancer and large adenomas. Gastroenterology 142(2):248–256

    Article  CAS  PubMed  Google Scholar 

  66. Wu D et al (2016) Detection of colorectal cancer using a simplified SEPT9 gene methylation assay is a reliable method for opportunistic screening. J Mol Diagn 18(4):535–545

    Article  CAS  PubMed  Google Scholar 

  67. Barták BK et al (2017) Colorectal adenoma and cancer detection based on altered methylation pattern of SFRP1, SFRP2, SDC2, and PRIMA1 in plasma samples. Epigenetics 12(9):751–763

    Article  PubMed  PubMed Central  Google Scholar 

  68. Müller HM et al (2004) Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 363(9417):1283–1285

    Article  PubMed  Google Scholar 

  69. Zhang W et al (2007) DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. Dis Colon Rectum 50(10):1618–1627

    Article  PubMed  Google Scholar 

  70. Li W-H et al (2015) Detection of SNCA and FBN1 methylation in the stool as a biomarker for colorectal cancer. Dis Markers 2015:657570. https://doi.org/10.1155/2015/657570

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen J et al (2019) DNA methylation biomarkers in stool for early screening of colorectal cancer. J Cancer 10(21):5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hellebrekers DM et al (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 15(12):3990–3997

    Article  CAS  PubMed  Google Scholar 

  73. Jin P et al (2015) Performance of a second-generation methylated SEPT9 test in detecting colorectal neoplasm. J Gastroenterol Hepatol 30(5):830–833

    Article  CAS  PubMed  Google Scholar 

  74. Zhao G et al (2020) Aberrant DNA methylation of SEPT9 and SDC2 in stool specimens as an integrated biomarker for colorectal cancer early detection. Front Genet 11:643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Y et al (2019) Performance of a novel blood-based early colorectal cancer screening assay in remaining serum after the blood biochemical test. Dis Markers 2019:5232780.  https://doi.org/10.1155/2019/5232780

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang Y et al (2017) Methylation of ZNF331 is an independent prognostic marker of colorectal cancer and promotes colorectal cancer growth. Clin Epigenet 9(1):115

    Article  Google Scholar 

  77. Chung H-H et al (2019) A novel prognostic DNA methylation panel for colorectal cancer. Int J Mol Sci 20(19):4672

    Article  CAS  PubMed Central  Google Scholar 

  78. Heitzer E et al (2012) P-0198 identification of prognostic methylation markers in patients with early stage colorectal cancer. Ann Oncol 23:iv87

    Article  Google Scholar 

  79. Wallner M et al (2006) Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res 12(24):7347–7352

    Article  CAS  PubMed  Google Scholar 

  80. Nilsson TK, Löf-Öhlin ZM, Sun X-F (2013) DNA methylation of the p14ARF, RASSF1A and APC1A genes as an independent prognostic factor in colorectal cancer patients. Int J Oncol 42(1):127–133

    Article  CAS  PubMed  Google Scholar 

  81. Barros-Silva D et al (2018) Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes 9(9):429

    Article  PubMed Central  Google Scholar 

  82. Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13(10):679–692

    Article  CAS  PubMed  Google Scholar 

  83. Li P et al (2013) An integrated workflow for DNA methylation analysis. J Genet Genomics 40(5):249–260

    Article  PubMed  Google Scholar 

  84. Trinh BN, Long TI, Laird PW (2001) DNA methylation analysis by MethyLight technology. Methods 25(4):456–462

    Article  CAS  PubMed  Google Scholar 

  85. Nygren AO et al (2005) Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 33(14):e128–e128

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen J-J, Wang A-Q, Chen Q-Q (2017) DNA methylation assay for colorectal carcinoma. Cancer Biol Med 14(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Melka MG et al (2014) The effects of olanzapine on genome-wide DNA methylation in the hippocampus and cerebellum. Clin Epigenet 6(1):1

    Article  Google Scholar 

  88. Swathy B, Banerjee M (2017) Pharmaco-epigenomic response of antipsychotic drugs in theranostics of schizophrenia. Eur Neuropsychopharmacol 27:S404–S405

    Article  Google Scholar 

  89. Guidotti A, Grayson DR (2014) DNA methylation and demethylation as targets for antipsychotic therapy. Dialog Clin Neurosci 16(3):419

    Article  Google Scholar 

  90. Nakamura K et al (2015) DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLoS One 10(3):e0120545

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gailhouste L et al (2018) Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death Dis 9(5):1–12

    Article  CAS  Google Scholar 

  92. Ramakrishnan S et al (2017) Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis 8(12):1–13

    Article  CAS  Google Scholar 

  93. Yaffee P et al (2015) Review of systemic therapies for locally advanced and metastatic rectal cancer. J Gastrointest Oncol 6(2):185

    PubMed  PubMed Central  Google Scholar 

  94. Van der Jeught K et al (2018) Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 24(34):3834

    Article  PubMed  PubMed Central  Google Scholar 

  95. Humeniuk R et al (2009) Epigenetic reversal of acquired resistance to 5-fluorouracil treatment. Mol Cancer Ther 8(5):1045–1054 https://doi.org/10.1158/1535-7163.MCT-08-0717

    Article  Google Scholar 

  96. Baharudin R et al (2017) Identification of predictive DNA methylation biomarkers for chemotherapy response in colorectal cancer. Front Pharmacol 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cha Y et al (2019) Association of CHFR promoter methylation with treatment outcomes of irinotecan-based chemotherapy in metastatic colorectal cancer. Neoplasia 21(1):146–155

    Article  CAS  PubMed  Google Scholar 

  98. Sun X et al (2017) Promoter methylation of RASSF1A indicates prognosis for patients with stage II and III colorectal cancer treated with oxaliplatin-based chemotherapy. Med Sci Monitor 23:5389

    Article  Google Scholar 

  99. He T et al (2017) Methylation of SLFN11 is a marker of poor prognosis and cisplatin resistance in colorectal cancer. Epigenomics 9(6):849–862

    Article  CAS  PubMed  Google Scholar 

  100. Pelosof L et al (2017) GPX3 promoter methylation predicts platinum sensitivity in colorectal cancer. Epigenetics 12(7):540–550

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant (No. 69944) from Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safar Farajnia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Not applicable.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri Moghaddam, F., Farajnia, S., Karbalaei-Mahdi, M. et al. Epigenetic insights in the diagnosis, prognosis, and treatment selection in CRC, an updated review. Mol Biol Rep 49, 10013–10022 (2022). https://doi.org/10.1007/s11033-022-07569-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07569-w

Keywords

Navigation