Skip to main content
Log in

DNA Stool Test for Colorectal Cancer: Hypermethylation of the Secreted Frizzled-Related Protein-1 Gene

  • Original Contributions
  • Published:
Diseases of the Colon & Rectum

Purpose

To investigate a potential mode of noninvasive screening for colorectal cancer, we evaluated the hypermethylation of the secreted frizzled-related protein-1 gene promoter in human stool DNA.

Methods

In stool samples from 36 patients with colorectal neoplasia (7 adenoma, 29 colorectal cancer) and 17 healthy control subjects, isolated DNA was treated with sodium bisulfite and analyzed by methylation-specific polymerase chain reaction with primers specific for methylated or unmethylated promoter sequences of the secreted frizzled-related protein-1 gene.

Results

Hypermethylation of the secreted frizzled-related protein-1 promoter was present in the stool DNA of patients with adenoma and colorectal cancer. A sensitivity of 89 percent and specificity of 86 percent were achieved in the detection of colorectal neoplasia. The difference in hypermethylation status of the secreted frizzled-related protein-1 promoter between the patients with colorectal neoplasia and the control group was statistically highly significant (P < 0.001). Adenoma and early tumor Stage I (International Union Against Cancer) displayed both unmethylated and methylated secreted frizzled-related protein-1 promoter sequences, whereas advanced tumor stages showed only methylated secreted frizzled-related protein-1 (P = 0.05).

Conclusions

The results indicate that this DNA stool test of hypermethylation of the secreted frizzled-related protein-1 promoter is a sensitive and specific method. It has the potential of a clinically useful test for the early detection of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russo MW, Wei JT, Thiny MT, et al. Digestive and liver diseases statistics, 2004. Gastroenterology 2004;126 1448–53.

    Article  PubMed  Google Scholar 

  2. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2004. CA Cancer J Clin 2004;54:8–29.

    PubMed  Google Scholar 

  3. Vernon SW. Participation in colorectal cancer screening: a review. J Natl Cancer Inst 1997;89:1406–22.

    Article  PubMed  CAS  Google Scholar 

  4. Schroy PC 3rd, Heeren TC. Patient perceptions of stool-based DNA testing for colorectal cancer screening. Am J Prev Med 2005;28:208–14.

    Article  PubMed  Google Scholar 

  5. Mandel JS, Church TR, Ederer F, Bond JH. Colorectal cancer mortality: effectiveness of biennial screening for fecal occult blood. J Natl Cancer Inst 1999;91:434–7.

    Article  PubMed  CAS  Google Scholar 

  6. Mandel JS, Church TR, Bond JH, et al. The effect of fecal occult-blood screening on the incidence of colorectal cancer. N Engl J Med 2000;343:1603–77.

    Article  PubMed  CAS  Google Scholar 

  7. Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med 2004;351:2704–14.

    Article  PubMed  CAS  Google Scholar 

  8. Loktionov A, O’Neill IK, Silvester KR, et al. Quantitation of DNA from exfoliated colonocytes isolated from human stool surface as a novel noninvasive screening test for colorectal cancer. Clin Cancer Res 1998;4:337–42.

    PubMed  CAS  Google Scholar 

  9. Boynton KA, Summerhayes IC, Ahlquist DA, Shuber AP. DNA integrity as a potential marker for stool-based detection of colorectal cancer. Clin Chem 2003; 49:1058–65.

    Article  PubMed  CAS  Google Scholar 

  10. Deenadayalu VP, Rex DK. Fecal-based DNA assays: a new, noninvasive approach to colorectal cancer screening. Cleve Clin J Med 2004;71:497–503.

    PubMed  Google Scholar 

  11. Sidransky D, Tokino T, Hamilton SR, et al. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 1992;256:102–5.

    Article  PubMed  CAS  Google Scholar 

  12. Ahlquist DA, Shuber AP. Stool screening for colorectal cancer: evolution from occult blood to molecular markers. Clin Chim Acta 2002;315:157–68.

    Article  PubMed  CAS  Google Scholar 

  13. Berger BM, Schroy PC 3rd, Rosenberg JL, et al. Colorectal cancer screening using stool DNA analysis in clinical practice: early clinical experience with respect to patient acceptance and colonoscopic follow-up of abnormal tests. Clin Colorectal Cancer 2006;5:338–43.

    PubMed  Google Scholar 

  14. Ahlquist DA, Skoletsky JE, Boynton KA, et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 2000;119:1219–27.

    Article  PubMed  CAS  Google Scholar 

  15. Dong SM, Traverso G, Johnson C, et al. Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst 2001;93:858–65.

    Article  PubMed  CAS  Google Scholar 

  16. Traverso G, Shuber A, Levin B, et al. Detection of APC mutations in fecal DNA from patients with colorectal tumors. N Engl J Med 2002;346:311–20.

    Article  PubMed  CAS  Google Scholar 

  17. Traverso G, Shuber A, Olsson L, et al. Detection of proximal colorectal cancers through analysis of fecal DNA. Lancet 2002;359:403–4.

    Article  PubMed  CAS  Google Scholar 

  18. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415–28.

    Article  PubMed  CAS  Google Scholar 

  19. Jubb AM, Bell SM, Quirke P. Methylation and colorectal cancer. J Pathol 2001;195:111–34.

    Article  PubMed  CAS  Google Scholar 

  20. Bestor TH. Gene silencing. Methylation meets acetylation. Nature 1998;393:311–2.

    Article  PubMed  CAS  Google Scholar 

  21. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983;301:89–92.

    Article  PubMed  CAS  Google Scholar 

  22. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 1985;228:187–90.

    Article  PubMed  CAS  Google Scholar 

  23. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004;4:143–53.

    Article  PubMed  CAS  Google Scholar 

  24. Ahuja N, Mohan AL, Li Q, et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res 1997;57:3370–4.

    PubMed  CAS  Google Scholar 

  25. van Rijnsoever M, Grieu F, Elsaleh H, et al. Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut 2002;51:797–802.

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002;31:141–9.

    Article  PubMed  CAS  Google Scholar 

  27. Moinova HR, Chen WD, Shen L, et al. HLTF gene silencing in human colon cancer. Proc Natl Acad Sci USA 2002;99:4562–7.

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki H, Watkins DN, Jair KW, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004;36:417–22.

    Article  PubMed  CAS  Google Scholar 

  29. Bafico A, Gazit A, Pramila T, et al. Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J Biol Chem 1999;274:16180–7.

    Article  PubMed  CAS  Google Scholar 

  30. Muller T, Bain G, Wang X, Papkoff J. Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Exp Cell Res 2002;280:119–33.

    Article  PubMed  CAS  Google Scholar 

  31. Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 1997;9:683–90.

    Article  PubMed  CAS  Google Scholar 

  32. Wang RY, Gehrke CW, Ehrlich M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 1980;8 4777–90.

    Article  PubMed  CAS  Google Scholar 

  33. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992;89:1827–31.

    Article  PubMed  CAS  Google Scholar 

  34. Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 2000;60:5954–8.

    PubMed  CAS  Google Scholar 

  35. Marsit CJ, Karagas MR, Andrew A, et al. Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer. Cancer Res 2005;65:7081–5.

    Article  PubMed  CAS  Google Scholar 

  36. Muller HM, Oberwalder M, Fiegl H, et al. Methylation changes in fecal DNA: a marker for colorectal cancer screening? Lancet 2004;363:1283–5.

    Article  PubMed  CAS  Google Scholar 

  37. Klaassen CH, Jeunink MA, Prinsen CF, et al. Quantification of human DNA in feces as a diagnostic test for the presence of colorectal cancer. Clin Chem 2003;49 1185–7.

    Article  PubMed  CAS  Google Scholar 

  38. Jubb AM, Quirke P, Oates AJ. DNA methylation, a biomarker for colorectal cancer: implications for screening and pathologic utility. Ann N Y Acad Sci 2003;983:251–67.

    PubMed  CAS  Google Scholar 

  39. Caldwell GM, Jones CE, Taniere P, et al. The Wnt antagonist sFRP1 is downregulated in premalignant large bowel adenomas. Br J Cancer 2006;94:922–7.

    Article  PubMed  CAS  Google Scholar 

  40. Lenhard K, Bommer GT, Asutay S, et al. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin Gastroenterol Hepatol 2005;3:142–9.

    Article  PubMed  CAS  Google Scholar 

  41. Chen WD, Han ZJ, Skoletsky J, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 2005;97 1124–32.

    Article  PubMed  CAS  Google Scholar 

  42. Petko Z, Ghiassi M, Shuber A, et al. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res 2005;11:1203–9.

    PubMed  CAS  Google Scholar 

  43. Kaup S, Grandjean V, Mukherjee R, et al. Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat Res 2006;597:87–97

    PubMed  CAS  Google Scholar 

Invited Commentary

  1. Osborn NK, Ahlquist DA. Stool screening for colorectal cancer: molecular approaches. Gastroenterology 2005;128:192–206.

    Article  PubMed  CAS  Google Scholar 

  2. Smith RA, Cokkinides V, von Eschenbach AC, et al. American Cancer Society guidelines for the early detection of cancer. CA Cancer J Clin 2002;52:8–22.

    Article  PubMed  Google Scholar 

  3. Smith RA, Cokkinides V, Eyre HJ. American Cancer Society guidelines for the early detection of cancer. CA Cancer J Clin 2006;56:11–25.

    PubMed  Google Scholar 

  4. Available at: http://www.cancerscreening.nhs.uk/bowel/index.html. Accessed March 5, 2007

  5. Sidransky D, Tokino T, Hamilton SR, et al. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 1999;256:102–5.

    Article  Google Scholar 

  6. Sidransky D. Molecular screening-how long can we afford to wait? J Natl Cancer Inst 1994;86:955–6.

    Article  PubMed  CAS  Google Scholar 

  7. Ahlquist DA, Skoletsky JE, Boynton KA, et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 2000;119:1219–27.

    Article  PubMed  CAS  Google Scholar 

  8. Available at: http://dnadirect.com/professionals/tests/colon_cancer.jsp. Accessed March 5, 2007.

  9. Zou H, Harrington JJ, Klatt KK, Ahlquist DA. A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening. Cancer Epidemiol Biomarkers Prev 2006;15:1115–9.

    Article  PubMed  CAS  Google Scholar 

  10. Koshiji M, Yonekura Y, Saito T, Yoshioka K. Microsatellite analysis of fecal DNA for colorectal cancer detection. J Surg Oncol 2002;80:34–40.

    Article  PubMed  CAS  Google Scholar 

  11. Müller H, Oberwalder M, Fiegi H, et al. Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 2004;363:1283–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Suzuki (Division of Tumor Biology, The Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins Medical Institutions, Baltimore, MD) for providing primer sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus E. Matzel M.D..

Additional information

Supported by grants of the Funds for Research and Teaching (Elan-Fonds to W. Zhang) and by the Interdisciplinary Centre of Clinical Research (IZKF, Project A1 to M. Stürzl) of the University of Erlangen-Nuremberg, Germany.

About this article

Cite this article

Zhang, W., Bauer, M., Croner, R.S. et al. DNA Stool Test for Colorectal Cancer: Hypermethylation of the Secreted Frizzled-Related Protein-1 Gene. Dis Colon Rectum 50, 1618–1627 (2007). https://doi.org/10.1007/s10350-007-0286-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10350-007-0286-6

Key words

Navigation