Skip to main content
Log in

Cardiac fibrosis and curcumin: a novel perspective on this natural medicine

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

According to WHO statistics, cardiovascular disease are the leading causes of death in the world. One of the main factors which is causing heart failure, systolic and diastolic dysfunction, and arrythmias is a condition named cardiac fibrosis. This condition is defined by the accumulation of fibroblast-produced ECM in myocardium layer of the heart.

Objective

Accordingly, the current review aims to depict the role of curcumin in the regulation of different signaling pathways that are involved in cardiac fibrosis.

Results

A great number of cellular and molecular mechanisms such as oxidative stress, inflammation, and mechanical stress are acknowledged to be involved in cardiac fibrosis. Despite the available therapeutic procedures which are designed to target these mechanisms in order to prevent cardiac fibrosis, still, effective therapeutic methods are needed. Curcumin is a natural Chinese medicine which currently has been declared to have therapeutic properties such as anti-oxidant and immunomodulatory activities. In this review, we have gathered several experimental studies in order to represent diverse impacts of this turmeric derivative on pathogenic factors of cardiac fibrosis.

Conclusion

Curcumin might open new avenues in the field of cardiovascular treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

MAPK:

Mitogen-activated protein kinase

NF-κB:

Nuclear factor-κB

MMPs:

Matrix metalloproteinases

ECM:

Extracellular matrix

Ang:

Angiotensin

AT1:

Angiotensin receptor 1

AT2:

Angiotensin receptor 2

ACE:

Angiotensin convertase enzyme

DAMP:

Damage-associated molecular patterns

TNF:

Tumor necrosis factor

PAD4:

Peptidylarginine deiminase

IL:

Interleukin, Th, T helper

MI:

Myocardial infarction

TGF-β:

Transforming growth factor β

LAP:

Latency-associated peptide

LTBP:

Latent TGF-β-Binding Protein

LLC:

Large Latent Complex

CSK:

Cytoskeleton

ROS:

Reactive oxygen species

SR-MAPKs:

Stress responsive-mitogen-activated protein kinases

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

References

  1. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574. https://doi.org/10.1007/s00018-013-1349-6

    Article  CAS  PubMed  Google Scholar 

  2. Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ (2018) Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci 14(12):1645–1657. https://doi.org/10.7150/ijbs.28103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pellman J, Zhang J, Sheikh F (2016) Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems. J Mol Cell Cardiol 94:22–31. https://doi.org/10.1016/j.yjmcc.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nguyen MN, Kiriazis H, Gao XM, Du XJ (2017) Cardiac fibrosis and arrhythmogenesis. Compr Physiol 7(3):1009–1049. https://doi.org/10.1002/cphy.c160046

    Article  PubMed  Google Scholar 

  5. Frangogiannis NG (2019) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 65:70–99. https://doi.org/10.1016/j.mam.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Park S, Nguyen NB, Pezhouman A, Ardehali R (2019) Cardiac fibrosis: potential therapeutic targets. Transl Res 209:121–137. https://doi.org/10.1016/j.trsl.2019.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117(3):568–575. https://doi.org/10.1172/JCI31044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Borer JS, Truter S, Herrold EM, Falcone DJ, Pena M, Carter JN, Dumlao TF, Lee JA, Supino PG (2002) Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation 105(15):1837–1842. https://doi.org/10.1161/01.cir.0000014419.71706.85

    Article  CAS  PubMed  Google Scholar 

  9. Ashrafian H, McKenna WJ, Watkins H (2011) Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res 109(1):86–96. https://doi.org/10.1161/CIRCRESAHA.111.242974

    Article  CAS  PubMed  Google Scholar 

  10. Kania G, Blyszczuk P, Eriksson U (2009) Mechanisms of cardiac fibrosis in inflammatory heart disease. Trends Cardiovasc Med 19(8):247–252. https://doi.org/10.1016/j.tcm.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Sola J (2020) The effects of ethanol on the heart: alcoholic cardiomyopathy. Nutrients. https://doi.org/10.3390/nu12020572

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bharati S, Lev M (1995) Cardiac conduction system involvement in sudden death of obese young people. Am Heart J 129(2):273–281. https://doi.org/10.1016/0002-8703(95)90008-x

    Article  CAS  PubMed  Google Scholar 

  13. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47(4):693–700. https://doi.org/10.1016/j.jacc.2005.09.050

    Article  CAS  PubMed  Google Scholar 

  14. Espeland T, Lunde IG, Amundsen BH, Gullestad L, Aakhus S (2018) Myocardial fibrosis. Tidsskr Nor Laegeforen. https://doi.org/10.4045/tidsskr.17.1027

  15. Lopez B, Gonzalez A, Ravassa S, Beaumont J, Moreno MU, San Jose G, Querejeta R, Diez J (2015) Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol 65(22):2449–2456. https://doi.org/10.1016/j.jacc.2015.04.026

    Article  CAS  PubMed  Google Scholar 

  16. Herum KM, Lunde IG, McCulloch AD, Christensen G (2017) The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med. https://doi.org/10.3390/jcm6050053

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M (2016) Curcumin and health. Molecules 21(3):264. https://doi.org/10.3390/molecules21030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim Y, Clifton P (2018) Curcumin, cardiometabolic health and dementia. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15102093

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1/A):363–398

    CAS  PubMed  Google Scholar 

  20. Jain SK, Rains J, Jones K (2006) Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels. Free Radic Biol Med 41(1):92–96. https://doi.org/10.1016/j.freeradbiomed.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  21. Lijnen P, Petrov V (2000) Induction of cardiac fibrosis by aldosterone. J Mol Cell Cardiol 32(6):865–879. https://doi.org/10.1006/jmcc.2000.1129

    Article  CAS  PubMed  Google Scholar 

  22. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170(6):1807–1816. https://doi.org/10.2353/ajpath.2007.070112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moore-Morris T, Cattaneo P, Puceat M, Evans SM (2016) Origins of cardiac fibroblasts. J Mol Cell Cardiol 91:1–5. https://doi.org/10.1016/j.yjmcc.2015.12.031

    Article  CAS  PubMed  Google Scholar 

  24. Hawiger J, Zienkiewicz J (2019) Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand J Immunol 90(6):e12812. https://doi.org/10.1111/sji.12812

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110(1):159–173. https://doi.org/10.1161/CIRCRESAHA.111.243162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104

    Article  CAS  Google Scholar 

  27. Marone G, Lichtenstein LM, Galli FJ (2000) Mast cells and basophils. Academic Press, London

    Google Scholar 

  28. Barron L, Wynn TA (2011) Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol 300(5):G723-728. https://doi.org/10.1152/ajpgi.00414.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210. https://doi.org/10.1002/path.2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hulsmans M, Sager HB, Roh JD, Valero-Muñoz M, Houstis NE, Iwamoto Y, Sun Y, Wilson RM, Wojtkiewicz G, Tricot B (2018) Cardiac macrophages promote diastolic dysfunction. J Exp Med 215(2):423–440

    Article  CAS  Google Scholar 

  31. Falkenham A, de Antueno R, Rosin N, Betsch D, Lee TD, Duncan R, Légaré J-F (2015) Nonclassical resident macrophages are important determinants in the development of myocardial fibrosis. Am J Pathol 185(4):927–942

    Article  CAS  Google Scholar 

  32. Zhang W, Chancey AL, Tzeng HP, Zhou Z, Lavine KJ, Gao F, Sivasubramanian N, Barger PM, Mann DL (2011) The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation 124(19):2106–2116. https://doi.org/10.1161/CIRCULATIONAHA.111.052399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao CH, Akazawa H, Tamagawa M, Ito K, Yasuda N, Kudo Y, Yamamoto R, Ozasa Y, Fujimoto M, Wang P, Nakauchi H, Nakaya H, Komuro I (2010) Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J Clin Invest 120(1):242–253. https://doi.org/10.1172/JCI39942

    Article  CAS  PubMed  Google Scholar 

  34. Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJ, Njoku DB, Rose NR (2004) Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am J Pathol 165(6):1883–1894. https://doi.org/10.1016/s0002-9440(10)63241-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanellakis P, Ditiatkovski M, Kostolias G, Bobik A (2012) A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc Res 95(1):77–85. https://doi.org/10.1093/cvr/cvs142

    Article  CAS  PubMed  Google Scholar 

  36. Levick SP, Widiapradja A (2018) Mast cells: key contributors to cardiac fibrosis. Int J Mol Sci. https://doi.org/10.3390/ijms19010231

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shiota N, Jin D, Takai S, Kawamura T, Koyama M, Nakamura N, Miyazaki M (1997) Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension. FEBS Lett 406(3):301–304. https://doi.org/10.1016/s0014-5793(97)00295-0

    Article  CAS  PubMed  Google Scholar 

  38. Levick SP, McLarty JL, Murray DB, Freeman RM, Carver WE, Brower GL (2009) Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension 53(6):1041–1047. https://doi.org/10.1161/HYPERTENSIONAHA.108.123158

    Article  CAS  PubMed  Google Scholar 

  39. Matsuda N, Jesmin S, Takahashi Y, Hatta E, Kobayashi M, Matsuyama K, Kawakami N, Sakuma I, Gando S, Fukui H, Hattori Y, Levi R (2004) Histamine H1 and H2 receptor gene and protein levels are differentially expressed in the hearts of rodents and humans. J Pharmacol Exp Ther 309(2):786–795. https://doi.org/10.1124/jpet.103.063065

    Article  CAS  PubMed  Google Scholar 

  40. Silver RB, Reid AC, Mackins CJ, Askwith T, Schaefer U, Herzlinger D, Levi R (2004) Mast cells: a unique source of renin. Proc Natl Acad Sci USA 101(37):13607–13612. https://doi.org/10.1073/pnas.0403208101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nevers T, Salvador AM, Velazquez F, Ngwenyama N, Carrillo-Salinas FJ, Aronovitz M, Blanton RM, Alcaide P (2017) Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med 214(11):3311–3329

    Article  CAS  Google Scholar 

  42. Duerrschmid C, Trial J, Wang Y, Entman ML, Haudek SB (2015) Tumor necrosis factor: a mechanistic link between angiotensin-II-induced cardiac inflammation and fibrosis. Circ Heart Fail 8(2):352–361

    Article  CAS  Google Scholar 

  43. Wells JM, Gaggar A, Blalock JE (2015) MMP generated matrikines. Matrix Biol 44–46:122–129. https://doi.org/10.1016/j.matbio.2015.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindsey ML, Iyer RP, Jung M, DeLeon-Pennell KY, Ma Y (2016) Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol 91:134–140. https://doi.org/10.1016/j.yjmcc.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  45. Lindner D, Zietsch C, Becher PM, Schulze K, Schultheiss HP, Tschope C, Westermann D (2012) Differential expression of matrix metalloproteases in human fibroblasts with different origins. Biochem Res Int 2012:875742. https://doi.org/10.1155/2012/875742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tao ZY, Cavasin MA, Yang F, Liu YH, Yang XP (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74(12):1561–1572. https://doi.org/10.1016/j.lfs.2003.09.042

    Article  CAS  PubMed  Google Scholar 

  47. DeLeon-Pennell KY, Meschiari CA, Jung M, Lindsey ML (2017) Matrix metalloproteinases in myocardial infarction and heart failure. Prog Mol Biol Transl Sci 147:75–100. https://doi.org/10.1016/bs.pmbts.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Putten S, Shafieyan Y, Hinz B (2016) Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol 93:133–142. https://doi.org/10.1016/j.yjmcc.2015.11.025

    Article  CAS  PubMed  Google Scholar 

  49. Vander Ark A, Cao J, Li X (2018) TGF-beta receptors: in and beyond TGF-beta signaling. Cell Signal 52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  50. Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin DB (2005) Latent TGF-beta binding proteins. Int J Biochem Cell Biol 37(1):38–41. https://doi.org/10.1016/j.biocel.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  51. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors 29(5):196–202. https://doi.org/10.3109/08977194.2011.595714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116(Pt 2):217–224. https://doi.org/10.1242/jcs.00229

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Alexander PB, Wang XF (2017) TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022145

    Article  PubMed  PubMed Central  Google Scholar 

  54. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584. https://doi.org/10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  55. Seay U, Sedding D, Krick S, Hecker M, Seeger W, Eickelberg O (2005) Transforming growth factor-beta-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. J Pharmacol Exp Ther 315(3):1005–1012. https://doi.org/10.1124/jpet.105.091249

    Article  CAS  PubMed  Google Scholar 

  56. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139. https://doi.org/10.1038/cr.2008.328

    Article  CAS  PubMed  Google Scholar 

  57. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48

    Article  CAS  PubMed  Google Scholar 

  58. Furukawa F, Matsuzaki K, Mori S, Tahashi Y, Yoshida K, Sugano Y, Yamagata H, Matsushita M, Seki T, Inagaki Y, Nishizawa M, Fujisawa J, Inoue K (2003) p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 38(4):879–889. https://doi.org/10.1053/jhep.2003.50384

    Article  CAS  PubMed  Google Scholar 

  59. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG, Griggs DW, Prinsen MJ, Maher JJ, Iredale JP, Lacy-Hulbert A, Adams RH, Sheppard D (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19(12):1617–1624. https://doi.org/10.1038/nm.3282

    Article  CAS  PubMed  Google Scholar 

  60. Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323. https://doi.org/10.1083/jcb.200704042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L, Quinn TM, Costell M, Alman BA, Genot E, Hinz B (2014) Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol 207(2):283–297. https://doi.org/10.1083/jcb.201402006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Z, Stuckey DJ, Murdoch CE, Camelliti P, Lip GYH, Griffin M (2018) Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor. Cell Death Dis 9(6):613. https://doi.org/10.1038/s41419-018-0573-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, Barry V, Mikels-Vigdal A, Karpinski S, Kornyeyev D, Adamkewicz J, Feng X, Zhou Q, Shang C, Kumar P, Phan D, Kasner M, Lopez B, Diez J, Wright KC, Kovacs RL, Chen PS, Quertermous T, Smith V, Yao L, Tschope C, Chang CP (2016) Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun 7:13710. https://doi.org/10.1038/ncomms13710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Turner NA (2016) Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol 94:189–200. https://doi.org/10.1016/j.yjmcc.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  65. Patel S (2018) Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation. Curr Allergy Asthma Rep 18(11):63. https://doi.org/10.1007/s11882-018-0817-3

    Article  CAS  PubMed  Google Scholar 

  66. Engebretsen KV, Lunde IG, Strand ME, Waehre A, Sjaastad I, Marstein HS, Skrbic B, Dahl CP, Askevold ET, Christensen G, Bjornstad JL, Tonnessen T (2013) Lumican is increased in experimental and clinical heart failure, and its production by cardiac fibroblasts is induced by mechanical and proinflammatory stimuli. FEBS J 280(10):2382–2398. https://doi.org/10.1111/febs.12235

    Article  CAS  PubMed  Google Scholar 

  67. Engebretsen KV, Waehre A, Bjornstad JL, Skrbic B, Sjaastad I, Behmen D, Marstein HS, Yndestad A, Aukrust P, Christensen G, Tonnessen T (2013) Decorin, lumican, and their GAG chain-synthesizing enzymes are regulated in myocardial remodeling and reverse remodeling in the mouse. J Appl Physiol 114(8):988–997. https://doi.org/10.1152/japplphysiol.00793.2012

    Article  CAS  PubMed  Google Scholar 

  68. Mansouri R, Hay E, Marie PJ, Modrowski D (2015) Role of syndecan-2 in osteoblast biology and pathology. Bonekey Rep 4:666. https://doi.org/10.1038/bonekey.2015.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Elfenbein A, Simons M (2013) Syndecan-4 signaling at a glance. J Cell Sci 126(Pt 17):3799–3804. https://doi.org/10.1242/jcs.124636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Finsen AV, Lunde IG, Sjaastad I, Ostli EK, Lyngra M, Jarstadmarken HO, Hasic A, Nygard S, Wilcox-Adelman SA, Goetinck PF, Lyberg T, Skrbic B, Florholmen G, Tonnessen T, Louch WE, Djurovic S, Carlson CR, Christensen G (2011) Syndecan-4 is essential for development of concentric myocardial hypertrophy via stretch-induced activation of the calcineurin-NFAT pathway. PLoS ONE 6(12):e28302. https://doi.org/10.1371/journal.pone.0028302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gopal S, Sogaard P, Multhaupt HA, Pataki C, Okina E, Xian X, Pedersen ME, Stevens T, Griesbeck O, Park PW, Pocock R, Couchman JR (2015) Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 210(7):1199–1211. https://doi.org/10.1083/jcb.201501060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26. https://doi.org/10.1038/nrcardio.2012.158

    Article  CAS  PubMed  Google Scholar 

  73. Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, Hsueh WA (2000) Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 101(10):1130–1137. https://doi.org/10.1161/01.cir.101.10.1130

    Article  CAS  PubMed  Google Scholar 

  74. Kim JA, Berliner JA, Nadler JL (1996) Angiotensin II increases monocyte binding to endothelial cells. Biochem Biophys Res Commun 226(3):862–868. https://doi.org/10.1006/bbrc.1996.1441

    Article  CAS  PubMed  Google Scholar 

  75. Maulik SK, Kumar S (2012) Oxidative stress and cardiac hypertrophy: a review. Toxicol Mech Methods 22(5):359–366. https://doi.org/10.3109/15376516.2012.666650

    Article  CAS  PubMed  Google Scholar 

  76. Klaunig JE (2018) Oxidative stress and cancer. Curr Pharm Des 24(40):4771–4778. https://doi.org/10.2174/1381612825666190215121712

    Article  CAS  PubMed  Google Scholar 

  77. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A (1998) Elevated levels of 8-iso-prostaglandin F2α in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97(16):1536–1539

    Article  CAS  Google Scholar 

  78. Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148(1):291

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40(4):477–484. https://doi.org/10.1161/01.hyp.0000032031.30374.32

    Article  CAS  PubMed  Google Scholar 

  80. Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y (2008) Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem 317(1–2):43–50. https://doi.org/10.1007/s11010-008-9803-8

    Article  CAS  PubMed  Google Scholar 

  81. Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R (2006) Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J Hypertens 24(4):757–766

    Article  CAS  Google Scholar 

  82. Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9(1):43–51

    Article  CAS  Google Scholar 

  83. Singh K, Balligand J-L, Fischer TA, Smith TW, Kelly RA (1996) Regulation of cytokine-inducible nitric oxide synthase in cardiac myocytes and microvascular endothelial cells role of extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) and STAT1α. J Biol Chem 271(2):1111–1117

    Article  CAS  Google Scholar 

  84. Sugden PH, Clerk A (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83(4):345–352

    Article  CAS  Google Scholar 

  85. Xiao J, Sheng X, Zhang X, Guo M, Ji X (2016) Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Des Dev Ther 10:1267

    CAS  Google Scholar 

  86. Wang NP, Wang ZF, Tootle S, Philip T, Zhao ZQ (2012) Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol 167(7):1550–1562

    Article  CAS  Google Scholar 

  87. Ma J, Ma SY, Ding CH (2017) Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor beta1 and matrix metalloproteinase 9/tissue inhibitor of metalloproteinase 1. Chin J Integr Med 23(5):362–369. https://doi.org/10.1007/s11655-015-2159-5

    Article  CAS  PubMed  Google Scholar 

  88. Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins J-F, Kabir G, Zhang Y, Mitchell M, Switzer J (2018) Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res 114(12):1629–1641

    Article  CAS  Google Scholar 

  89. Liu H, Liu A, Shi C, Li B (2016) Curcumin suppresses transforming growth factor-β1-induced cardiac fibroblast differentiation via inhibition of Smad-2 and p38 MAPK signaling pathways. Exp Ther Med 11(3):998–1004

    Article  CAS  Google Scholar 

  90. Zeng C, Zhong P, Zhao Y, Kanchana K, Zhang Y, Khan ZA, Chakrabarti S, Wu L, Wang J, Liang G (2015) Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol 79:1–12

    Article  CAS  Google Scholar 

  91. Soetikno V, Sari FR, Sukumaran V, Lakshmanan AP, Mito S, Harima M, Thandavarayan RA, Suzuki K, Nagata M, Takagi R (2012) Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC–MAPK signaling pathway. Eur J Pharm Sci 47(3):604–614

    Article  CAS  Google Scholar 

  92. Gbr AA, Abdel Baky NA, Mohamed EA, Zaky HS (2021) Cardioprotective effect of pioglitazone and curcumin against diabetic cardiomyopathy in type 1 diabetes mellitus: impact on CaMKII/NF-κB/TGF-β1 and PPAR-γ signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 394(2):349–360. https://doi.org/10.1007/s00210-020-01979-y

    Article  CAS  PubMed  Google Scholar 

  93. Yu W, Wu J, Cai F, Xiang J, Zha W, Fan D, Guo S, Ming Z, Liu C (2012) Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS ONE 7(12):e52013

    Article  CAS  Google Scholar 

  94. Lin J, Tang Y, Kang Q, Feng Y, Chen A (2012) Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol 166(8):2212–2227. https://doi.org/10.1111/j.1476-5381.2012.01910.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pang X-F, Zhang L-H, Bai F, Wang N-P, Garner RE, McKallip RJ, Zhao Z-Q (2015) Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug Des Dev Ther 9:6043

    CAS  Google Scholar 

  96. Hu J, Shen T, Xie J, Wang S, He Y, Zhu F (2017) Curcumin modulates covalent histone modification and TIMP1 gene activation to protect against vascular injury in a hypertension rat model. Exp Ther Med 14(6):5896–5902

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Meng Z, Yu X-h, Chen J, Li L, Li S (2014) Curcumin attenuates cardiac fibrosis in spontaneously hypertensive rats through PPAR-γ activation. Acta Pharmacol Sin 35(10):1247–1256

    Article  CAS  Google Scholar 

  98. Chung C-C, Kao Y-H, Liou J-P, Chen Y-J (2014) Curcumin suppress cardiac fibroblasts activities by regulating proliferation, migration, and the extracellular matrix. Acta Cardiol Sin 30(5):474

    PubMed  PubMed Central  Google Scholar 

  99. Guo S, Meng X-w, Yang X-s, Liu X-f, Ou-Yang C-h, Liu C (2018) Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharmacol Sin 39(2):195–204

    Article  Google Scholar 

  100. Liu R, Zhang HB, Yang J, Wang JR, Liu JX, Li CL (2018) Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur Rev Med Pharmacol Sci 22(21):7500–7508. https://doi.org/10.26355/eurrev_201811_16291

    Article  CAS  PubMed  Google Scholar 

  101. Rahnavard M, Hassanpour M, Ahmadi M, Heidarzadeh M, Amini H, Javanmard MZ, Nouri M, Rahbarghazi R, Safaie N (2019) Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. J Cell Biochem 120(7):11965–11972

    Article  CAS  Google Scholar 

  102. Bellezza I, Giambanco I, Minelli A, Donato R Nrf2-Keap1 signaling in oxidative and reductive stress. Biochem Biophys Acta 1865(5):721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

    Article  CAS  Google Scholar 

  103. Wu X, Huang L, Zhou X, Liu J (2020) Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice. Biochem Biophys Res Commun 530(1):15–21. https://doi.org/10.1016/j.bbrc.2020.05.053

    Article  CAS  PubMed  Google Scholar 

  104. Singh P, Hanson PS, Morris CM (2017) SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci 18(1):46. https://doi.org/10.1186/s12868-017-0364-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peng T, Lu X, Feng Q (2005) Pivotal role of gp91 phox-containing NADH oxidase in lipopolysaccharide-induced tumor necrosis factor-α expression and myocardial depression. Circulation 111(13):1637–1644

    Article  CAS  Google Scholar 

  106. Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291. https://doi.org/10.1016/j.neuron.2014.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4

    Article  CAS  PubMed  Google Scholar 

  108. Unlu A, Nayir E, Dogukan Kalenderoglu M, Kirca O, Ozdogan M (2016) Curcumin (turmeric) and cancer. J BUON 21(5):1050–1060

    PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JH and ZA contributed in conception, design and drafting of the manuscript. BY, FS, MZ and MAM contributed in data collection and manuscript drafting. All authors approved the final version for submission. JH oversaw the study.

Corresponding authors

Correspondence to Jamal Hallajzadeh or Mahdi Zahedi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadoughi, F., Hallajzadeh, J., Mirsafaei, L. et al. Cardiac fibrosis and curcumin: a novel perspective on this natural medicine. Mol Biol Rep 48, 7597–7608 (2021). https://doi.org/10.1007/s11033-021-06768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06768-1

Keywords

Navigation