Skip to main content
Log in

Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9 / tissue inhibitor of metalloproteinase 1

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To study the effect of curcumin on fibroblasts in rats with cardiac fibrosis.

Methods

The rats were randomly divided into 4 groups (n=12 in each group): the normal control, isoproterenol (ISO), ISO combined with low-dose curcumin (ISO+Cur-L), and ISO combined with high-dose curcumin (ISO+Cur-H) groups. ISO+Cur-L and ISO+Cur-H groups were treated with curcumin (150 or 300 mg•kg-1•day-1) for 28 days. The primary culture of rat cardiac fibroblast was processed by trypsin digestion method in vitro. The 3rd to 5th generation were used for experiment. Western blot method was used to test the expression of collagen type I/III, α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to test the proliferation of fibroblast.

Result

Curcumin significantly decreased interstitial and perivascular myocardial collagen deposition and cardiac weight index with reducing protein expression of collagen type I/III in hearts (P<0.05). In addition, curcumin directly inhibited angiotensin (Ang) II-induced fibroblast proliferation and collagen type I/III expression in cardiac fibroblasts (P<0.05). Curcumin also inhibited fibrosis by inhibiting myofibroblast differentiation, decreased TGF-β1, MMP-9 and TIMP-1 expression (P<0.05) but had no effects on Smad3 in Ang II incubated cardiac fibroblasts.

Conclusions

Curcumin reduces cardiac fibrosis in rats and Ang II-induced fibroblast proliferation by inhibiting myofibroblast differentiation, decreasing collagen synthesis and accelerating collagen degradation through reduction of TGF-β1, MMPs/TIMPs. The present findings also provided novel insights into the role of curcumin as an antifibrotic agent for the treatment of cardiac fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohn JN, Ferrari R, Sharpe N. Cardiac remodelingconcepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000;35:569–582.

    Article  CAS  PubMed  Google Scholar 

  2. Dobaczewski M, Frangogiannis NG. Chemokines and cardiac fibrosis. Front Biosci (Schol ed) 2009;1:391–405.

    Article  Google Scholar 

  3. Biernacka A, Frangogiannis NG. Aging and cardiac fibrosis. Aging Dis 2011;2:158–173.

    PubMed  PubMed Central  Google Scholar 

  4. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010;225:631–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysio 1997;20:397–413.

    Article  CAS  Google Scholar 

  6. Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 2010;122:2727–2235.

    Article  PubMed  Google Scholar 

  7. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol 2007;170:1807–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 2004;63:423–432.

    Article  CAS  PubMed  Google Scholar 

  9. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 2000;46:214–224.

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen DT, Ding C, Wilson E, Marcus GM, Olgin JE. Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm 2010;7:1438–1445.

    Article  PubMed  Google Scholar 

  11. Noorafshan A, Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr Pharm Des 2013;19:2032–2046.

    CAS  PubMed  Google Scholar 

  12. Zhang Z, Guo Y, Zhang S, Zhang Y, Wang Y, Ni W, et al. Curcumin modulates cannabinoid receptors in liver fibrosis in vivo and inhibits extracellular matrix expression in hepatic stellate cells by suppressing cannabinoid receptor type-1 in vitro. Eur J Pharmacol 2013;721:133–140.

    Article  CAS  PubMed  Google Scholar 

  13. Pan Y, Wang Y, Cai L, Cai Y, Hu J, Yu C, et al. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol 2012;166:1169–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bai J, Zhang N, Hua Y, Wang B, Ling L, Ferro A, et al. Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS One 2013;8:e72120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei LH, Huang XR, Zhang Y, Li YQ, Chen HY, Heuchel R, et al. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension. PloS One 2013;8:e70195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang NP, Wang ZF, Tootle S, Philip T, Zhao ZQ. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol 2012;167:1550–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Shao ZH, Xie JT, Wang CZ, Ramachandran S, Yin JJ, et al. The effects of ginsenoside Rb1 on JNK in oxidative injury in cardiomyocytes. Arch Pharm Res 2012;35:1259–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng H, Liu W, Ai X. Protective effect of curcumin on myocardial ischemia reperfusion injury in rats. China J Chin Mater Med (Chin) 2005;28:920–922.

    Google Scholar 

  19. Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, et al. Curcumin inhibits plateletderived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 2006;26:85–90.

    Article  PubMed  Google Scholar 

  20. Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K, et al. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res 2013;57:1649–1659.

    Article  CAS  PubMed  Google Scholar 

  21. Ma S, Yang D, Wang K, Tang B, Li D, Yang Y. Cryptotanshinone attenuates isoprenaline-induced cardiac fibrosis in mice associated with upregulation and activation of matrix metalloproteinase-2. Mol Med Rep 2012;6:145–150.

    CAS  PubMed  Google Scholar 

  22. Jaiswal A, Kumar S, Seth S, Dinda AK, Maulik SK. Effect of U50,488H, a j-opioid receptor agonist on myocardial. a-and b-myosin heavy chain expression and oxidative stress associated with isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochemi 2010;345:231–240.

    Article  CAS  Google Scholar 

  23. Swaney JS, Roth DM, Olson ER, Naugle JE, Meszaros JG, Insel PA. Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc Natl Acad Sci U S A 2005;102:437–442.

    Article  CAS  PubMed  Google Scholar 

  24. Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by angiotensin II. Methods Find Exp Clin Pharmacol 2000;22:709–723.

    Article  CAS  PubMed  Google Scholar 

  25. Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, et al. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPARalpha. Arterioscler Thromb Vasc Biol 2008;28:863–870.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Shao Y, Huang Y, Yao T, Lu LM. 17Beta-estradiol inhibits angiotensin II-induced collagen synthesis of cultured rat cardiac fibroblasts via modulating angiotensin II receptors. Eur J Pharmacol 2007;567:186–192.

    Article  CAS  PubMed  Google Scholar 

  27. Xu X, Ding F, Pang J, Gao X, Xu RK, Hao W, et al. Chronic administration of hexarelin attenuates cardiac fibrosis in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2012;303:H703–H711.

    Article  CAS  PubMed  Google Scholar 

  28. Gay-Jordi G, Guash E, Benito B, Brugada J, Nattel S, Mont L, et al. Losartan prevents heart fibrosis induced by longterm intensive exercise in an animal model. PLoS One 2013;8:e55427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu Q, Peng Y, Meng Q, Cui H, Wang X. Effects of salviandic acid B (SA-B) on activity of basement membranetype collagenase and impact of regulatory factors in rats with cardiac hypertrophy. China J Chin Meter Med (Chin) 2011;36:2388–2392.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-hua Ding  (丁春华).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Ma, Sy. & Ding, Ch. Curcumin reduces cardiac fibrosis by inhibiting myofibroblast differentiation and decreasing transforming growth factor β1 and matrix metalloproteinase 9 / tissue inhibitor of metalloproteinase 1. Chin. J. Integr. Med. 23, 362–369 (2017). https://doi.org/10.1007/s11655-015-2159-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2159-5

Keywords

Navigation