Skip to main content

Advertisement

Log in

The potential role of miR-124-3p in tumorigenesis and other related diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of single‐stranded noncoding and endogenous RNA molecules with a length of 18–25 nucleotides. Previous work has shown that miR-124-3p leads to malignant progression of cancer including cell apoptosis, migration, invasion, drug resistance, and also recovers neural function, affects adipogenic differentiation, facilitates wound healing through control of various target genes. miR-124-3p has been mainly previously characterized as a tumor suppressor regulating tumorigenesis and progression in several cancers, such as hepatocellular carcinoma (HCC), gastric cancer (GC), bladder cancer, ovarian cancer (OC), and leukemia, as a tumor promotor in breast cancer (BC), and it has been also widely studied in a variety of neurological diseases, like Parkinson’s disease (PD), dementia and Alzheimer’s disease (AD), and cardiovascular diseases, ulcerative colitis (UC), acute respiratory distress syndrome (ARDS). To lay the groundwork for future therapeutic strategies, in this review we mainly focus on the most recent years of literature on the functions of miR-124-3p in related major cancers, as well as its downstream target genes. Although current work as yet provides an incomplete picture, miR-124-3p is still worthy of more attention as a practical and effective clinical biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bader AG, Brown D, Stoudemire J, Lammers P (2011) Developing therapeutic microRNAs for cancer. Gene Ther 18(12):1121–1126. https://doi.org/10.1038/gt.2011.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Melo SA, Kalluri R (2012) Molecular pathways: microRNAs as cancer therapeutics. Clin Cancer Res 18(16):4234–4239. https://doi.org/10.1158/1078-0432.CCR-11-2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dornan D, Settleman J (2010) Cancer: miRNA addiction: depending on life’s little things. Curr Biol 20(18):R812–R813. https://doi.org/10.1016/j.cub.2010.08.040

    Article  CAS  PubMed  Google Scholar 

  4. Daugaard I, Hansen TB (2017) Biogenesis and function of ago-associated RNAs. Trends Genet 33(3):208–219. https://doi.org/10.1016/j.tig.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  5. Li YJ, Li XF, Yang EH, Shi M (2019) Reaserch advances on the role of PI3K/AKT signaling pathway and miRNA in acute T-cell lymphocytic leukemia–review. Zhongguo Shi Yan Xue Ye Xue Zazhi 27(4):1344–1347. https://doi.org/10.19746/j.cnki.issn.1009-2137.2019.04.059

    Article  Google Scholar 

  6. Wallace JA, O’Connell RM (2017) MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood 130(11):1290–1301. https://doi.org/10.1182/blood-2016-10-697698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghafouri-Fard S, Shoorei H, Taheri M (2020) miRNA profile in ovarian cancer. Exp Mol Pathol 113:104381. https://doi.org/10.1016/j.yexmp.2020.104381

    Article  CAS  PubMed  Google Scholar 

  8. Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Makarova J (2018) The biological and diagnostic role of miRNA’s in hepatocellular carcinoma. Front Biosci 23:1701–1720. https://doi.org/10.2741/4668

    Article  CAS  Google Scholar 

  9. Hao NB, He YF, Li XQ, Wang K, Wang RL (2017) The role of miRNA and lncRNA in gastric cancer. Oncotarget 8(46):81572–81582. https://doi.org/10.18632/oncotarget.19197

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shin VY, Chu KM (2014) MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 20(30):10432–10439. https://doi.org/10.3748/wjg.v20.i30.10432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGuire A, Brown JA, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metast Rev 34(1):145–155. https://doi.org/10.1007/s10555-015-9551-7

    Article  CAS  Google Scholar 

  12. Qadir MI, Faheem A (2017) miRNA: a diagnostic and therapeutic tool for pancreatic cancer. Crit Rev Eukaryot Gene Expr 27(3):197–204. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019494

    Article  PubMed  Google Scholar 

  13. Garofalo M, Condorelli G, Croce CM (2008) MicroRNAs in diseases and drug response. Curr Opin Pharmacol 8(5):661–667. https://doi.org/10.1016/j.coph.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  14. Jia X, Wang X, Guo X, Ji J, Lou G, Zhao J, Zhou W, Guo M, Zhang M, Li C, Tai S, Yu S (2019) MicroRNA-124: an emerging therapeutic target in cancer. Cancer Med 8(12):5638–5650. https://doi.org/10.1002/cam4.2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han D, Dong X, Zheng D, Nao J (2019) MiR-124 and the underlying therapeutic promise of neurodegenerative disorders. Front Pharmacol 10:1555. https://doi.org/10.3389/fphar.2019.01555

    Article  CAS  PubMed  Google Scholar 

  16. Angelopoulou E, Paudel YN, Piperi C (2019) miR-124 and Parkinson’s disease: a biomarker with therapeutic potential. Pharmacol Res 150:104515. https://doi.org/10.1016/j.phrs.2019.104515

    Article  CAS  PubMed  Google Scholar 

  17. Bahlakeh G, Gorji A, Soltani H, Ghadiri T (2020) MicroRNA alterations in neuropathologic cognitive disorders with an emphasis on dementia: lessons from animal models. J Cell Physiol 236:806–823. https://doi.org/10.1002/jcp.29908

    Article  CAS  PubMed  Google Scholar 

  18. Ben Gacem R, Ben Abdelkrim O, Ziadi S, Ben Dhiab M, Trimeche M (2014) Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease. Tumour Biol 35(5):4047–4056. https://doi.org/10.1007/s13277-013-1530-4

    Article  CAS  PubMed  Google Scholar 

  19. Wang H (2020) MicroRNAs and apoptosis in colorectal cancer. Int J Mol Sci 21(15):5353. https://doi.org/10.3392/ijms21155353

    Article  CAS  PubMed Central  Google Scholar 

  20. Qi Y, Yao X, Du X (2020) Midazolam inhibits proliferation and accelerates apoptosis of hepatocellular carcinoma cells by elevating microRNA-124-3p and suppressing PIM-1. IUBMB Life 72(3):452–464. https://doi.org/10.1002/iub.2171

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Mao J, Huang Y, Zhang J, Zhong L, Wu Y, Huang H, Yang J, Wei Y, Tang J (2020) Prognostic roles of miR-124-3p and its target ANXA7 and their effects on cell migration and invasion in hepatocellular carcinoma. Int J Clin Exp Pathol 13(3):357–370

    PubMed  PubMed Central  Google Scholar 

  22. Sun CB, Wang HY, Han XQ, Liu YN, Wang MC, Zhang HX, Gu YF, Leng XG (2020) LINC00511 promotes gastric cancer cell growth by acting as a ceRNA. World J Gastrointest Oncol 12(4):394–404. https://doi.org/10.4251/wjgo.v12.i4.394

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu YY, Zhang LY, Du WZ (2019) Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep 39(12):BSR20193045. https://doi.org/10.1042/bsr20193045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang JR, Liu B, Zhou L, Huang YX (2019) MicroRNA-124-3p suppresses cell migration and invasion by targeting ITGA3 signaling in bladder cancer. Cancer Biomark 24(2):159–172. https://doi.org/10.3233/cbm-182000

    Article  CAS  PubMed  Google Scholar 

  25. Fu W, Wu X, Yang Z, Mi H (2019) The effect of miR-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB. Arch Med Sci 15(5):1154–1162. https://doi.org/10.5114/aoms.2018.78743

    Article  CAS  PubMed  Google Scholar 

  26. Min F, Chu G (2020) Long noncoding RNA PCAT-1 knockdown prevents the development of ovarian cancer cells via microRNA-124-3p. J Cell Biochem 121(2):1963–1972. https://doi.org/10.1002/jcb.29431

    Article  CAS  PubMed  Google Scholar 

  27. Deng X, Chen Y, Liu Z, Xu J (2020) MiR-124-3p.1 Sensitizes ovarian cancer cells to mitochondrial apoptosis induced by carboplatin. OncoTargets Ther 13:5375–5386. https://doi.org/10.2147/OTT.S242342

    Article  CAS  Google Scholar 

  28. Yan K, Hou L, Liu T, Jiao W, Ma Q, Fang Z, Zhang S, Song D, Liu J, Gao X, Fan Y (2020) lncRNA OGFRP1 functions as a ceRNA to promote the progression of prostate cancer by regulating SARM1 level via miR-124-3p. Aging 12(10):8880–8892. https://doi.org/10.18632/aging.103007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lv Y, Chen S, Wu J, Lin R, Zhou L, Chen G, Chen H, Ke Y (2019) Upregulation of long non-coding RNA OGFRP1 facilitates endometrial cancer by regulating miR-124-3p/SIRT1 axis and by activating PI3K/AKT/GSK-3β pathway. Artif Cell Nanomed B 47(1):2083–2090. https://doi.org/10.1080/21691401.2019.1617727

    Article  CAS  Google Scholar 

  30. Zhang FJ, Cao WJ, Chang FF, Huang FY, Guo JX (2020) MiR-124-3p enhances the sensitivity of chronic myelogenous leukemia cell K562-R to imatinib by targeting ABCA2. Zhongguo Shi Yan Xue Ye Xue Zazhi 28(3):789–796. https://doi.org/10.19746/j.cnki.issn.1009-2137.2020.03.012

    Article  CAS  Google Scholar 

  31. Luo Y, Yu MH, Yan YR, Zhou Y, Qin SL, Huang YZ, Qin J, Zhong M (2020) Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis. J Cell Mol Med 24(19):11330–11342. https://doi.org/10.1111/jcmm.15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z (2020) LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s disease. J Cell Biochem 121:4838–4848. https://doi.org/10.1002/jcb.29711

    Article  CAS  Google Scholar 

  33. Dong RF, Zhang B, Tai LW, Liu HM, Shi FK, Liu NN (2018) The neuroprotective role of miR-124-3p in a 6-hydroxydopamine-induced cell model of Parkinson’s disease via the regulation of ANAX5. J Cell Biochem 119(1):269–277. https://doi.org/10.1002/jcb.26170

    Article  CAS  PubMed  Google Scholar 

  34. Liang Y, Xie J, Che D, Zhang C, Lin Y, Feng L, Chen J, Chen J, Chen L, Wu Z (2020) MiR-124-3p helps to protect against acute respiratory distress syndrome by targeting p65. Biosci Rep 40(5):BSR20192132. https://doi.org/10.1042/bsr20192132

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu SG, Chang TH, Liu YN, Shih JY (2019) MicroRNA in lung cancer metastasis. Cancers 11(2):265. https://doi.org/10.3390/cancers11020265

    Article  CAS  PubMed Central  Google Scholar 

  36. Petri BJ, Klinge CM (2020) Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metast Rev 39:837–886. https://doi.org/10.1007/s10555-020-09905-7

    Article  CAS  Google Scholar 

  37. Tao J, Xia LZ, Liang L, Chen Y, Wei D, Meng J, Wu S, Wang Z (2020) MiR-124-3p promotes trophoblast cell HTR-8/SVneo pyroptosis by targeting placental growth factor. Placenta 101:176–184. https://doi.org/10.1016/j.placenta.2020.08.011

    Article  CAS  PubMed  Google Scholar 

  38. Lin SL, Lin YH, Chi HC, Lin TK, Chen WJ, Yeh CT, Lin KH (2020) A novel long non-coding RNA-01488 suppressed metastasis and tumorigenesis by inducing miRNAs that reduce vimentin expression and ubiquitination of cyclin E. Cells. https://doi.org/10.3390/cells9061504

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cui RJ, Fan JL, Lin YC, Pan YJ, Liu C, Wan JH, Wang W, Jiang ZY, Zheng XL, Tang JB, Yu XG (2019) miR-124-3p availability is antagonized by LncRNA-MALAT1 for Slug-induced tumor metastasis in hepatocellular carcinoma. Cancer Med 8(14):6358–6369. https://doi.org/10.1002/cam4.2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang HG, Tang XL, Huang XS, Zhou L, Hao YG, Zheng YF (2020) Long noncoding RNA LINC00511 promoted cell proliferation and invasion via regulating miR-124-3p/EZH2 pathway in gastric cancer. Eur Rev Med Pharmacol 24(8):4232–4245. https://doi.org/10.26355/eurrev_202004_21003

    Article  Google Scholar 

  41. Li Y, Yan J, Wang Y, Wang C, Zhang C, Li G (2020) LINC00240 promotes gastric cancer cell proliferation, migration and EMT via the miR-124-3p/DNMT3B axis. Cell Biochem Funct 38:1079–1088. https://doi.org/10.1002/cbf.3551

    Article  CAS  PubMed  Google Scholar 

  42. Xiong L, Tang Y, Tang J, Liu Z, Wang X (2020) Downregulation of lncRNA HOTTIP suppresses the proliferation, migration, and invasion of oral tongue squamous cell carcinoma by regulation of HMGA2-mediated Wnt/beta-catenin pathway. Cancer Biother Radiopharm. https://doi.org/10.1089/cbr.2019.3017

    Article  PubMed  Google Scholar 

  43. Liu C, Zhang H, Liu H (2019) Long noncoding RNA UCA1 accelerates nasopharyngeal carcinoma cell progression by modulating miR-124-3p/ITGB1 axis. OncoTargets Ther 12:8455–8466. https://doi.org/10.2147/ott.S215819

    Article  CAS  Google Scholar 

  44. Zheng K, Zhang TK (2020) LncRNA LINC00963 promotes proliferation and migration through the miR-124-3p/FZD4 pathway in colorectal cancer. Eur Rev Med Pharmacol 24(14):7634–7644. https://doi.org/10.26355/eurrev_202007_22264

    Article  CAS  Google Scholar 

  45. Chen ZY, Wang XY, Yang YM, Wu MH, Yang L, Jiang DT, Cai H, Peng Y (2020) LncRNA SNHG16 promotes colorectal cancer cell proliferation, migration, and epithelial-mesenchymal transition through miR-124-3p/MCP-1. Gene Ther. https://doi.org/10.1038/s41434-020-0176-2

    Article  PubMed  Google Scholar 

  46. Guo QR, Wang H, Yan YD, Liu Y, Su CY, Chen HB, Yan YY, Adhikari R, Wu Q, Zhang JY (2020) The role of exosomal microRNA in cancer drug resistance. Front Oncol 10:1–12. https://doi.org/10.3389/fonc.2020.00472(Article472)

    Article  Google Scholar 

  47. Chatterjee N, Bivona TG (2019) Polytherapy and targeted cancer drug resistance. Trends Cancer 5(3):170–182. https://doi.org/10.1016/j.trecan.2019.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zahedipour F, Jamialahmadi K, Karimi G (2020) The role of noncoding RNAs and sirtuins in cancer drug resistance. Eur J Pharmacol 877:173094. https://doi.org/10.1016/j.ejphar.2020.173094

    Article  CAS  PubMed  Google Scholar 

  49. Du T, Shi Y, Xu S, Wan X, Sun H, Liu B (2020) Long non-coding RNAs in drug resistance of breast cancer. OncoTargets Ther 13:7075–7087. https://doi.org/10.2147/OTT.S255226

    Article  CAS  Google Scholar 

  50. Liu YX, Wang L, Liu WJ, Zhang HT, Xue JH, Zhang ZW, Gao CJ (2016) MiR-124-3p/B4GALT1 axis plays an important role in SOCS3-regulated growth and chemo-sensitivity of CML. J Hematol Oncol 9(1):69. https://doi.org/10.1186/s13045-016-0300-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Z, Dai J, Yan J, Zhang Y, Yin Z (2019) Targeting EZH2 as a novel therapeutic strategy for sorafenib-resistant thyroid carcinoma. J Cell Mol Med 23(7):4770–4778. https://doi.org/10.1111/jcmm.14365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiao CY, Qiao TY, Jin H, Liu LL, Zheng MD, Wang ZL (2020) LncRNA KCNQ1OT1 contributes to the cisplatin resistance of tongue cancer through the KCNQ1OT1/miR-124-3p/TRIM14 axis. Eur Rev Med Pharmacol 24(1):200–212. https://doi.org/10.26355/eurrev_202001_19912

    Article  Google Scholar 

  53. Hu D, Li M, Su J, Miao K, Qiu X (2019) Dual-targeting of miR-124-3p and ABCC4 promotes sensitivity to adriamycin in breast cancer cells. Genet Test Mol Biomark 23(3):156–165. https://doi.org/10.1089/gtmb.2018.0259

    Article  CAS  Google Scholar 

  54. Zhou Y, Deng J, Chu X, Zhao Y, Guo Y (2019) Role of post-transcriptional control of calpain by miR-124-3p in the development of Alzheimer’s disease. J Alzheimers Dis 67(2):571–581. https://doi.org/10.3233/JAD-181053

    Article  CAS  PubMed  Google Scholar 

  55. Juzwik CA, Drake SS, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE (2019) microRNA dysregulation in neurodegenerative diseases: a systematic review. Prog Neurobiol 182:101664. https://doi.org/10.1016/j.pneurobio.2019.101664

    Article  CAS  PubMed  Google Scholar 

  56. Liu K, Zhang X, Wei W, Liu X, Tian Y, Han H, Zhang L, Wu W, Chen J (2019) Myostatin/SMAD4 signaling-mediated regulation of miR-124-3p represses glucocorticoid receptor expression and inhibits adipocyte differentiation. Am J Physiol Endocrinol Metabol 316(4):E635–E645. https://doi.org/10.1152/ajpendo.00405.2018

    Article  CAS  Google Scholar 

  57. Pan Y, Jing J, Qiao L, Liu J, Zhao J, An L, Li B, Wang W, Liang C, Liu W (2018) miR-124-3p affects the formation of intramuscular fat through alterations in branched chain amino acid consumption in sheep. Biochem Biophys Res Commun 495(2):1769–1774. https://doi.org/10.1016/j.bbrc.2017.12.046

    Article  CAS  PubMed  Google Scholar 

  58. Pan Y, Jing J, Qiao L, Liu J, An L, Li B, Ren D, Liu W (2018) MiRNA-seq reveals that miR-124-3p inhibits adipogenic differentiation of the stromal vascular fraction in sheep via targeting C/EBPalpha. Domest Anim Endocrinol 65:17–23. https://doi.org/10.1016/j.domaniend.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  59. Chen X, Yang R, Wang J, Ruan S, Lin Z, Xin Q, Yang R, Xie J (2020) Porcine acellular dermal matrix accelerates wound healing through miR-124-3p.1 and miR-139-5p. Cytotherapy 229(9):494–502. https://doi.org/10.1016/j.jcyt.2020.04.042

    Article  CAS  Google Scholar 

  60. Jin J, Zhai HF, Jia ZH, Luo XH (2019) Long non-coding RNA HOXA11-AS induces type I collagen synthesis to stimulate keloid formation via sponging miR-124-3p and activation of Smad5 signaling. Am J Physiol Cell Physiol 317(5):C1001–C1010. https://doi.org/10.1152/ajpcell.00319.2018

    Article  CAS  PubMed  Google Scholar 

  61. Feng RM, Zong YN, Cao SM, Xu RH (2019) Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun 39(1):22. https://doi.org/10.1186/s40880-019-0368-6

    Article  Google Scholar 

  62. Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196. https://doi.org/10.1016/j.ejphar.2018.07.034

    Article  CAS  PubMed  Google Scholar 

  63. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  64. He RQ, Yang X, Liang L, Chen G, Ma J (2018) MicroRNA-124-3p expression and its prospective functional pathways in hepatocellular carcinoma: a quantitative polymerase chain reaction, gene expression omnibus and bioinformatics study. Oncol Lett 15(4):5517–5532. https://doi.org/10.3892/ol.2018.8045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Long HD, Ma YS, Yang HQ, Xue SB, Liu JB, Yu F, Lv ZW, Li JY, Xie RT, Chang ZY, Lu GX, Xie WT, Fu D, Pang LJ (2018) Reduced hsa-miR-124-3p levels are associated with the poor survival of patients with hepatocellular carcinoma. Mol Biol Rep 45(6):2615–2623. https://doi.org/10.1007/s11033-018-4431-1

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Liang Y, Song R, Yang G, Han J, Lan Y, Pan S, Zhu M, Liu Y, Wang Y, Meng F, Cui Y, Wang J, Zhang B, Song X, Lu Z, Zheng T, Liu L (2018) Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer 17(1):90. https://doi.org/10.1186/s12943-018-0838-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhong D, Lyu X, Fu X, Xie P, Liu M, He F, Huang G (2020) Upregulation of miR-124-3p by Liver X receptor inhibits the growth of hepatocellular carcinoma cells via suppressing cyclin D1 and CDK6. Technol Cancer Res Treat 19:1533033820967473. https://doi.org/10.1177/1533033820967473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu X-X, Feng J, Huang X-W, Lu P-Z, Wang Z-X, Dai H-Q, Deng J-H, Ye X-P, Peng T, Hooi SC, Zhou J, Lu G-D (2019) Histone deacetylases up-regulate C/EBPα expression through reduction of miR-124-3p and miR-25 in hepatocellular carcinoma. Biochem Biophys Res Commun 514(3):1009–1016. https://doi.org/10.1016/j.bbrc.2019.05.024

    Article  CAS  PubMed  Google Scholar 

  69. Qi Z, Zhang T, Song L, Fu H, Luo H, Wu J, Zhao S, Zhang T, Guo L, Jin L, Zhang H, Huang G, Ma T, Wu Y, Huang L (2020) PRAS40 hyperexpression promotes hepatocarcinogenesis. EBioMedicine 51:102164. https://doi.org/10.1016/j.ebiom.2019.102604

    Article  Google Scholar 

  70. Zhang L, Chen X, Liu B, Han J (2018) MicroRNA-124-3p directly targets PDCD6 to inhibit metastasis in breast cancer. Oncol Lett 15(1):984–990. https://doi.org/10.3892/ol.2017.7358

    Article  CAS  PubMed  Google Scholar 

  71. Yan G, Li Y, Zhan L, Sun S, Yuan J, Wang T, Yin Y, Dai Z, Zhu Y, Jiang Z, Liu L, Fan Y, Yang F, Hu W (2019) Decreased miR-124-3p promoted breast cancer proliferation and metastasis by targeting MGAT5. Am J Cancer Res 9(3):585–596

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang W, Cui G, Ding M, Yang M, Dai D (2020) MicroRNA-124-3p.1 promotes cell proliferation through Axin1-dependent Wnt signaling pathway and predicts a poor prognosis of triple-negative breast cancer. J Clin Lab Anal 34(7):e23266. https://doi.org/10.1002/jcla.23266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Du Y, Wei N, Hong J, Pan W (2020) Long non-coding RNASNHG17 promotes the progression of breast cancer by sponging miR-124-3p. Cancer Cell Int 20:40. https://doi.org/10.1186/s12935-020-1129-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mobini K, Banakar E, Tamaddon G, Mohammadi-Bardbori A (2020) 6-Formylindolo[3,2-b]carbazole (FICZ) enhances the expression of tumor suppressor miRNAs, miR-22, miR-515-5p, and miR-124-3p in MCF-7 cells. Cell J 22(1):115–120. https://doi.org/10.22074/cellj.2020.6549

    Article  PubMed  Google Scholar 

  75. Liu F, Hu H, Zhao J, Zhang Z, Ai X, Tang L, Xie L (2018) miR-124-3p acts as a potential marker and suppresses tumor growth in gastric cancer. Biomed Rep 9(2):147–155. https://doi.org/10.3892/br.2018.1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li T, Deng L, He X, Jiang G, Hu F, Ye S, You Y, Duanmu J, Dai H, Huang G, Tang C, Lei X (2019) MST4 predicts poor prognosis and promotes metastasis by facilitating epithelial-mesenchymal transition in gastric cancer. Cancer Manag Res 11:9353–9369. https://doi.org/10.2147/CMAR.S219689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu Q, Zhong H, Jiao L, Wen Y, Zhou Y, Zhou J, Lu X, Song X, Ying B (2020) MiR-124-3p inhibits the migration and invasion of gastric cancer by targeting ITGB3. Pathol Res Pract 216(1):152762. https://doi.org/10.1016/j.prp.2019.152762

    Article  CAS  PubMed  Google Scholar 

  78. Zo RB, Long Z (2018) MiR-124-3p suppresses bladder cancer by targeting DNA methyltransferase 3B. J Cell Physiol 234(1):464–474. https://doi.org/10.1002/jcp.26591

    Article  CAS  PubMed  Google Scholar 

  79. Martin-Gonzalez P, Crispin-Ortuzar M, Rundo L, Delgado-Ortet M, Reinius M, Beer L, Woitek R, Ursprung S, Addley H, Brenton JD, Markowetz F, Sala E (2020) Integrative radiogenomics for virtual biopsy and treatment monitoring in ovarian cancer. Insights Imaging 11(1):94. https://doi.org/10.1186/s13244-020-00895-2

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chai Y, Liu J, Zhang Z, Liu L (2016) HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med 5(7):1588–1598. https://doi.org/10.1002/cam4.710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gov E, Kori M, Arga KY (2017) Multiomics analysis of tumor microenvironment reveals Gata2 and miRNA-124-3p as potential novel biomarkers in ovarian cancer. OMICS 21(10):603–615. https://doi.org/10.1089/omi.2017.0115

    Article  CAS  PubMed  Google Scholar 

  82. Gholipour E, Sarvarian P, Samadi P, Talebi M, Movassaghpour A, Motavalli R, Hojjat-Farsangi M, Yousefi M (2020) Exosome: from leukemia progression to a novel therapeutic approach in leukemia treatment. BioFactors 46:698–715. https://doi.org/10.1002/biof.1669

    Article  CAS  PubMed  Google Scholar 

  83. Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B, Zhang R, Chen Z, Wang K (2018) Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis 9(6):651. https://doi.org/10.1038/s41419-018-0699-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang T, Jin X, Lan J, Wang W (2019) Long non-coding RNA SNHG16 has Tumor suppressing effect in acute lymphoblastic leukemia by inverse interaction on hsa-miR-124-3p. IUBMB Life 71(1):134–142. https://doi.org/10.1002/iub.1947

    Article  CAS  PubMed  Google Scholar 

  85. Sun Y, Zhang L, Zhang S (2020) MicroRNA-124-3p inhibits tumourigenesis by targeting mitogen-activated protein kinase 4 in papillary thyroid carcinoma. Cell Biochem Funct 38(8):1017–1024. https://doi.org/10.1002/cbf.3532

    Article  CAS  PubMed  Google Scholar 

  86. Tang LX, Chen GH, Li H, He P, Zhang Y, Xu XW (2018) Long non-coding RNA OGFRP1 regulates LYPD3 expression by sponging miR-124-3p and promotes non-small cell lung cancer progression. Biochem Biophys Res Commun 505(2):578–585. https://doi.org/10.1016/j.bbrc.2018.09.146

    Article  CAS  PubMed  Google Scholar 

  87. Gao C, Shen J, Meng ZX, He XF (2020) Sevoflurane inhibits glioma cells proliferation and metastasis through miRNA-124-3p/ROCK1 axis. Pathol Oncol Res 26(2):947–954. https://doi.org/10.1007/s12253-019-00597-1

    Article  CAS  PubMed  Google Scholar 

  88. Hu D, Zhang Y (2019) Circular RNA HIPK3 promotes glioma progression by binding to miR-124-3p. Gene 690:81–89. https://doi.org/10.1016/j.gene.2018.11.073

    Article  CAS  PubMed  Google Scholar 

  89. Zeng B, Zhang X, Zhao J, Wei Z, Zhu H, Fu M, Zou D, Feng Y, Luo H, Lei Y (2019) The role of DNMT1/hsa-miR-124-3p/BCAT1 pathway in regulating growth and invasion of esophageal squamous cell carcinoma. BMC Cancer 19(1):609. https://doi.org/10.1186/s12885-019-5815-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li H, Fan L, Zhang Y, Cao Y, Liu X (2020) SNHG16 aggravates chronic constriction injury-induced neuropathic pain in rats via binding with miR-124-3p and miR-141-3p to upregulate JAG1. Brain Res Bull 165:228–237. https://doi.org/10.1016/j.brainresbull.2020.09.025

    Article  CAS  PubMed  Google Scholar 

  91. Reyes-Long S, Cortes-Altamirano JL, Clavijio-Cornejo D, Gutiérrez M, Bertolazzi C, Bandala C, Pineda C, Alfaro-Rodríguez A (2020) Nociceptive related microRNAs and their role in rheumatoid arthritis. Mol Biol Rep 47:7265–7272. https://doi.org/10.1007/s11033-020-05700-3

    Article  CAS  PubMed  Google Scholar 

  92. Hu G, Ma L, Dong F, Hu X, Liu S, Sun H (2019) Inhibition of microRNA1243p protects against acute myocardial infarction by suppressing the apoptosis of cardiomyocytes. Mol Med Rep 20(4):3379–3387. https://doi.org/10.3892/mmr.2019.10565

    Article  CAS  PubMed  Google Scholar 

  93. Liang YP, Liu Q, Xu GH, Zhang J, Chen Y, Hua FZ, Deng CQ, Hu YH (2019) The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes. J Bioenerg Biomembr 51(6):381–392. https://doi.org/10.1007/s10863-019-09812-9

    Article  CAS  PubMed  Google Scholar 

  94. Zhai C, Cong H, Hou K, Hu Y, Zhang J, Zhang Y, Zhang Y, Zhang H (2020) Effects of miR-124-3p regulation of the p38MAPK signaling pathway via MEKK3 on apoptosis and proliferation of macrophages in mice with coronary atherosclerosis. Adv Clin Exp Med 29(7):803–812. https://doi.org/10.17219/acem/121926

    Article  PubMed  Google Scholar 

  95. Luo Y, Yu MH, Yan YR, Zhou Y, Qin SL, Huang YZ, Qin J, Zhong M (2020) Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis. J Cell Mol Med 24:11330–11342. https://doi.org/10.1111/jcmm.15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lv L, Shen J, Xu J, Wu X, Zeng C, Lin L, Mao W, Wei T (2020) MiR-124-3p reduces angiotensin II-dependent hypertension by down-regulating EGR1. J Hum Hypertens. https://doi.org/10.1038/s41371-020-0381-x

    Article  PubMed  Google Scholar 

Download references

Funding

National Natural Science Foundation of China, Grant/Award Number: 81672737.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the preparation of this manuscript. LQ, LSQ and YJS were responsible for the literature search and the first draft of this article. SMZ and FTG were responsible for language polishing and further editing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shuqing Liu or Ming-Zhong Sun.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical approval

This Article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent needed for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, S., Yan, J. et al. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol Biol Rep 48, 3579–3591 (2021). https://doi.org/10.1007/s11033-021-06347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06347-4

Keywords

Navigation