Skip to main content

Advertisement

Log in

The romantic history of signaling pathway discovery in cell death: an updated review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bree RT, Stenson-Cox C, Grealy M, Byrnes L, Gorman AM, Samali A (2002) Cellular longevity: role of apoptosis and replicative senescence. Biogerontology 3(4):195–206. https://doi.org/10.1023/a:1016299812327

    Article  PubMed  CAS  Google Scholar 

  2. Semont A, Mouiseddine M, Francois A, Demarquay C, Mathieu N, Chapel A et al (2010) Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ 17(6):952–961. https://doi.org/10.1038/cdd.2009.187

    Article  PubMed  CAS  Google Scholar 

  3. Pollina EA, Gilliam DT, Landau AT, Lin C, Pajarillo N, Davis CP et al (2023) A NPAS4-NuA4 complex couples synaptic activity to DNA repair. Nature 614(7949):732–741. https://doi.org/10.1038/s41586-023-05711-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Misgeld T, Schwarz TL (2017) Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96(3):651–666. https://doi.org/10.1016/j.neuron.2017.09.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wyllie AH (1987) Cell death. Cytol Cell Physiol. https://doi.org/10.1016/B978-0-08-091882-2.50024-5

    Article  Google Scholar 

  6. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254. https://doi.org/10.1016/s0092-8674(00)80564-4

    Article  PubMed  CAS  Google Scholar 

  7. Bertalanffy FD, Lau C (1962) Cell renewal. In: Jeon KW (ed) International review of cytology. Elsevier, Amsterdam, pp 357–366

    Google Scholar 

  8. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281(5381):1317–1322. https://doi.org/10.1126/science.281.5381.1317

    Article  PubMed  CAS  Google Scholar 

  10. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  11. Loo DT, Rillema JR (1998) Measurement of cell death. Methods Cell Biol 57:251–264. https://doi.org/10.1016/s0091-679x(08)61583-6

    Article  PubMed  CAS  Google Scholar 

  12. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364. https://doi.org/10.1038/s41422-019-0164-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22(1):58–73. https://doi.org/10.1038/cdd.2014.137

    Article  PubMed  CAS  Google Scholar 

  14. Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18(9):2114–2127. https://doi.org/10.1038/s41423-021-00740-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257. https://doi.org/10.1038/bjc.1972.33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88(3):347–354. https://doi.org/10.1016/s0092-8674(00)81873-5

    Article  PubMed  CAS  Google Scholar 

  17. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306. https://doi.org/10.1016/s0074-7696(08)62312-8

    Article  PubMed  CAS  Google Scholar 

  18. Lawen A (2003) Apoptosis-an introduction. BioEssays 25(9):888–896. https://doi.org/10.1002/bies.10329

    Article  PubMed  CAS  Google Scholar 

  19. Ndozangue-Touriguine O, Hamelin J, Breard J (2008) Cytoskeleton and apoptosis. Biochem Pharmacol 76(1):11–18. https://doi.org/10.1016/j.bcp.2008.03.016

    Article  PubMed  CAS  Google Scholar 

  20. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23(16):2881–2890. https://doi.org/10.1038/sj.onc.1207512

    Article  PubMed  CAS  Google Scholar 

  21. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245. https://doi.org/10.1016/S0070-2153(06)78006-1

    Article  PubMed  CAS  Google Scholar 

  22. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243. https://doi.org/10.1038/sj.cdd.4402148

    Article  PubMed  CAS  Google Scholar 

  23. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7(3):253–266. https://doi.org/10.1002/tera.1420070306

    Article  PubMed  CAS  Google Scholar 

  24. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19(1):107–120. https://doi.org/10.1038/cdd.2011.96

    Article  PubMed  CAS  Google Scholar 

  25. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P et al (2005) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 12(Suppl 2):1463–1467. https://doi.org/10.1038/sj.cdd.4401724

    Article  PubMed  CAS  Google Scholar 

  26. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16(1):3–11. https://doi.org/10.1038/cdd.2008.150

    Article  PubMed  CAS  Google Scholar 

  27. Lockshin RA, Zakeri Z (2001) Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2(7):545–550. https://doi.org/10.1038/35080097

    Article  PubMed  CAS  Google Scholar 

  28. Hacker G (2000) The morphology of apoptosis. Cell Tissue Res 301(1):5–17. https://doi.org/10.1007/s004410000193

    Article  PubMed  CAS  Google Scholar 

  29. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(1):1–16. https://doi.org/10.1042/bj3260001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21(1):92–101. https://doi.org/10.1016/j.devcel.2011.06.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nunez G, Benedict MA, Hu Y, Inohara N (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17(25):3237–3245. https://doi.org/10.1038/sj.onc.1202581

    Article  PubMed  Google Scholar 

  32. Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP (2000) Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 59(1):65–85. https://doi.org/10.1016/s0006-2952(99)00310-x

    Article  PubMed  CAS  Google Scholar 

  33. Rossi D, Gaidano G (2003) Messengers of cell death: apoptotic signaling in health and disease. Haematologica 88(2):212–218

    PubMed  CAS  Google Scholar 

  34. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, Gonzalez-Paez GE et al (2016) Proteome-wide covalent ligand discovery in native biological systems. Nature 534(7608):570–574. https://doi.org/10.1038/nature18002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10(1):1689. https://doi.org/10.1038/s41467-019-09397-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pihan P, Carreras-Sureda A, Hetz C (2017) BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 24(9):1478–1487. https://doi.org/10.1038/cdd.2017.82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L (2017) DNA damage in stem cells. Mol Cell 66(3):306–319. https://doi.org/10.1016/j.molcel.2017.04.006

    Article  PubMed  CAS  Google Scholar 

  38. Allavena G, Cuomo F, Baumgartner G, Bele T, Sellgren AY, Oo KS et al (2018) Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation. Autophagy 14(2):252–268. https://doi.org/10.1080/15548627.2017.1405192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu HR, Gao E, Hu A, Tao L, Qu Y, Most P et al (2005) Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation 111(1):90–96. https://doi.org/10.1161/01.cir.0000151613.90994.17

    Article  PubMed  CAS  Google Scholar 

  40. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13(8):1396–1402. https://doi.org/10.1038/sj.cdd.4401963

    Article  PubMed  CAS  Google Scholar 

  41. Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G (2016) Caspases connect cell-death signaling to organismal homeostasis. Immunity 44(2):221–231. https://doi.org/10.1016/j.immuni.2016.01.020

    Article  PubMed  CAS  Google Scholar 

  42. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226(2):380–393. https://doi.org/10.1002/path.3000

    Article  PubMed  CAS  Google Scholar 

  43. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124(4):619–626. https://doi.org/10.1083/jcb.124.4.619

    Article  PubMed  CAS  Google Scholar 

  44. Zhang D, Zhou X, Zhang K, Yu Y, Cui SW, Nie S (2023) Glucomannan from Aloe vera gel maintains intestinal barrier integrity via mitigating anoikis mediated by Nrf2-mitochondria axis. Int J Biol Macromol 235:123803. https://doi.org/10.1016/j.ijbiomac.2023.123803

    Article  PubMed  CAS  Google Scholar 

  45. Li D, Park Y, Hemati H, Liu X (2023) Cell aggregation prevents anoikis and induces CD44 cleavage by maintaining lipid raft integrity to promote triple negative breast cancer metastasis. Res Sq. https://doi.org/10.21203/rs.3.rs-2535728/v1

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhao Z, Li C, Peng Y, Liu R, Li Q (2022) Construction of an original anoikis-related prognostic model closely related to immune infiltration in gastric cancer. Front Genet 13:1087201. https://doi.org/10.3389/fgene.2022.1087201

    Article  PubMed  CAS  Google Scholar 

  47. Bose M, Sanders A, De C, Zhou R, Lala P, Shwartz S et al (2023) Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Transl Res 253:41–56. https://doi.org/10.1016/j.trsl.2022.08.010

    Article  PubMed  CAS  Google Scholar 

  48. Cai C, Peng Y, Shen E, Wan R, Gao L, Gao Y et al (2022) Identification of tumour immune infiltration-associated snoRNAs (TIIsno) for predicting prognosis and immune landscape in patients with colon cancer via a TIIsno score model. EBioMedicine 76:103866. https://doi.org/10.1016/j.ebiom.2022.103866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Weems AD, Welf ES, Driscoll MK, Zhou FY, Mazloom-Farsibaf H, Chang BJ et al (2023) Blebs promote cell survival by assembling oncogenic signalling hubs. Nature 615(7952):517–525. https://doi.org/10.1038/s41586-023-05758-6

    Article  PubMed  CAS  Google Scholar 

  50. Terasima T, Ohara H (1968) Chromosome aberration and mitotic death in x-irradiated HeLa cells. Mutat Res 5(1):195–197. https://doi.org/10.1016/0027-5107(68)90094-8

    Article  PubMed  CAS  Google Scholar 

  51. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392. https://doi.org/10.1038/nrm3115

    Article  PubMed  CAS  Google Scholar 

  52. Huun J, Lonning PE, Knappskog S (2017) Effects of concomitant inactivation of p53 and pRb on response to doxorubicin treatment in breast cancer cell lines. Cell Death Discov 3:17026. https://doi.org/10.1038/cddiscovery.2017.26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. https://doi.org/10.1038/nchembio711

    Article  PubMed  CAS  Google Scholar 

  54. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. https://doi.org/10.1038/nchembio.83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K et al (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18(1):100. https://doi.org/10.1186/s12943-019-1029-8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moriwaki K, Chan FKM, Miyoshi E (2021) Sweet modification and regulation of death receptor signalling pathway. J Biochem 169(6):643–652. https://doi.org/10.1093/jb/mvab034

    Article  PubMed  CAS  Google Scholar 

  57. Borghi A, Verstrepen L, Beyaert R (2016) TRAF2 multitasking in TNF receptor-induced signaling to NF-kappaB, MAP kinases and cell death. Biochem Pharmacol 116:1–10. https://doi.org/10.1016/j.bcp.2016.03.009

    Article  PubMed  CAS  Google Scholar 

  58. Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X et al (2021) Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol 9:789948. https://doi.org/10.3389/fcell.2021.789948

    Article  PubMed  Google Scholar 

  59. Zhang Y, Chen X, Gueydan C, Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28(1):9–21. https://doi.org/10.1038/cr.2017.133

    Article  PubMed  CAS  Google Scholar 

  60. Round-table conference (1969) The surgical therapy of the metastases of the central nervous system. Minerva Neurochir 13(3):265–287

    Google Scholar 

  61. Nadaud B, Depaepe L, Zaharia D, Balme B (2014) Chondrodermatitis nodularis helicis. Ann Dermatol Venereol 141(4):306–307. https://doi.org/10.1016/j.annder.2014.02.001

    Article  PubMed  CAS  Google Scholar 

  62. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147. https://doi.org/10.1038/nrm3737

    Article  PubMed  CAS  Google Scholar 

  63. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367. https://doi.org/10.1038/nature09852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jorgensen I, Rayamajhi M, Miao EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17(3):151–164. https://doi.org/10.1038/nri.2016.147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Baik JY, Liu Z, Jiao D, Kwon HJ, Yan J, Kadigamuwa C et al (2021) ZBP1 not RIPK1 mediates tumor necroptosis in breast cancer. Nat Commun 12(1):2666. https://doi.org/10.1038/s41467-021-23004-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Park HH, Kim HR, Park SY, Hwang SM, Hong SM, Park S et al (2021) RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer 20(1):107. https://doi.org/10.1186/s12943-021-01399-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang T, Yin C, Fedorov A, Qiao L, Bao H, Beknazarov N et al (2022) ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606(7914):594–602. https://doi.org/10.1038/s41586-022-04753-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wu NY, Huang HS, Chao TH, Chou HM, Fang C, Qin CZ et al (2017) Progesterone prevents high-grade serous ovarian cancer by inducing necroptosis of p53-defective fallopian tube epithelial cells. Cell Rep 18(11):2557–2565. https://doi.org/10.1016/j.celrep.2017.02.049

    Article  PubMed  CAS  Google Scholar 

  69. Chen S, Lv X, Hu B, Shao Z, Wang B, Ma K et al (2017) RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis 22(5):626–638. https://doi.org/10.1007/s10495-017-1358-2

    Article  PubMed  CAS  Google Scholar 

  70. Deng XX, Li SS, Sun FY (2019) Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis 10(4):807–817. https://doi.org/10.14336/AD.2018.0728

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kamiya M, Mizoguchi F, Kawahata K, Wang D, Nishibori M, Day J et al (2022) Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies. Nat Commun 13(1):166. https://doi.org/10.1038/s41467-021-27875-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J et al (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13(1):110. https://doi.org/10.1186/s13045-020-00946-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1):19–33. https://doi.org/10.1038/s41583-018-0093-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Klempner LB, Preobrazhenskaia TM, Sotnikov VM (1975) Combined lung cancer and systemic scleroderma. Arkh Patol 37(6):55–61

    PubMed  CAS  Google Scholar 

  75. Frank D, Vince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 26(1):99–114. https://doi.org/10.1038/s41418-018-0212-6

    Article  PubMed  Google Scholar 

  76. Bousselin M (1786) Observations on necrosis. Lond Med J 7(3):263–279

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Espitia O, Agard C (2021) Scalp necrosis in giant cell arteritis. Mayo Clin Proc 96(4):987–988. https://doi.org/10.1016/j.mayocp.2020.11.025

    Article  PubMed  Google Scholar 

  78. Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142. https://doi.org/10.1016/s0378-4274(98)00298-7

    Article  PubMed  Google Scholar 

  79. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642. https://doi.org/10.1146/annurev.physiol.60.1.619

    Article  PubMed  CAS  Google Scholar 

  80. Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O’Rourke K, Li Q et al (2021) NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591(7848):131–136. https://doi.org/10.1038/s41586-021-03218-7

    Article  PubMed  CAS  Google Scholar 

  81. Zapletal E, Vasiljevic T, Busson P, Matijevic GT (2023) Dialog beyond the grave: necrosis in the tumor microenvironment and its contribution to tumor growth. Int J Mol Sci. https://doi.org/10.3390/ijms24065278

    Article  PubMed  PubMed Central  Google Scholar 

  82. De DC, Berthet J, Berthet L, Appelmans F (1951) Permeability of mitochondria. Nature 167(4245):389–390. https://doi.org/10.1038/167389a0

    Article  Google Scholar 

  83. Lemasters JJ, Qian T, Elmore SP, Trost LC, Nishimura Y, Herman B et al (1998) Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. BioFactors 8(3–4):283–285. https://doi.org/10.1002/biof.5520080316

    Article  PubMed  CAS  Google Scholar 

  84. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y et al (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366(1–2):177–196. https://doi.org/10.1016/s0005-2728(98)00112-1

    Article  PubMed  CAS  Google Scholar 

  85. Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L (2016) Mitochondrial permeability transition: new findings and persisting uncertainties. Trends Cell Biol 26(9):655–667. https://doi.org/10.1016/j.tcb.2016.04.006

    Article  PubMed  CAS  Google Scholar 

  86. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L et al (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34(12):1475–1486. https://doi.org/10.1038/onc.2014.96

    Article  PubMed  CAS  Google Scholar 

  87. Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S et al (2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA 109(17):6566–6571. https://doi.org/10.1073/pnas.1201608109

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W et al (2016) CaMKII induces permeability transition through Drp1 phosphorylation during chronic beta-AR stimulation. Nat Commun 7:13189. https://doi.org/10.1038/ncomms13189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548. https://doi.org/10.1016/j.cell.2012.05.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Miller DR, Thorburn A (2021) Autophagy and organelle homeostasis in cancer. Dev Cell 56(7):906–918. https://doi.org/10.1016/j.devcel.2021.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L et al (2020) Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Sci. https://doi.org/10.3390/ijms21072576

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liu W, Xu L, Wang X, Zhang D, Sun G, Wang M et al (2021) PRDX1 activates autophagy via the PTEN-AKT signaling pathway to protect against cisplatin-induced spiral ganglion neuron damage. Autophagy 17(12):4159–4181. https://doi.org/10.1080/15548627.2021.1905466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wang S, Livingston MJ, Su Y, Dong Z (2015) Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 11(4):607–616. https://doi.org/10.1080/15548627.2015.1023983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103:699–707. https://doi.org/10.1016/j.biopha.2018.04.072

    Article  PubMed  CAS  Google Scholar 

  95. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L et al (2013) Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA 110(51):20364–20371. https://doi.org/10.1073/pnas.1319661110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Nah J, Zablocki D, Sadoshima J (2020) Autosis: a new target to prevent cell death. JACC Basic Transl Sci 5(8):857–869. https://doi.org/10.1016/j.jacbts.2020.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fernandez AF, Liu Y, Ginet V, Shi M, Nah J, Zou Z et al (2020) Interaction between the autophagy protein beclin 1 and Na+, K+-ATPase during starvation, exercise, and ischemia. JCI Insight. https://doi.org/10.1172/jci.insight.133282

    Article  PubMed  PubMed Central  Google Scholar 

  99. Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261(16):7123–7126

    Article  PubMed  CAS  Google Scholar 

  100. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358(6382):167–169. https://doi.org/10.1038/358167a0

    Article  PubMed  CAS  Google Scholar 

  101. D’Souza CA, Heitman J (2001) Dismantling the Cryptococcus coat. Trends Microbiol 9(3):112–113. https://doi.org/10.1016/s0966-842x(00)01945-4

    Article  PubMed  Google Scholar 

  102. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. https://doi.org/10.1038/nrmicro2070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265(1):130–142. https://doi.org/10.1111/imr.12287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Chen X, He WT, Hu L, Li J, Fang Y, Wang X et al (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26(9):1007–1020. https://doi.org/10.1038/cr.2016.100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tajima T, Yoshifuji A, Matsui A, Itoh T, Uchiyama K, Kanda T et al (2019) beta-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int 95(5):1120–1137. https://doi.org/10.1016/j.kint.2018.11.034

    Article  PubMed  CAS  Google Scholar 

  106. Xu YJ, Zheng L, Hu YW, Wang Q (2018) Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta 476:28–37. https://doi.org/10.1016/j.cca.2017.11.005

    Article  PubMed  CAS  Google Scholar 

  107. Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T et al (2022) Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 19(9):971–992. https://doi.org/10.1038/s41423-022-00905-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128. https://doi.org/10.1038/s41392-021-00507-5

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yang F, Bettadapura SN, Smeltzer MS, Zhu H, Wang S (2022) Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin 43(10):2462–2473. https://doi.org/10.1038/s41401-022-00887-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J et al (2020) FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol 21(7):736–745. https://doi.org/10.1038/s41590-020-0669-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  PubMed  CAS  Google Scholar 

  112. Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296. https://doi.org/10.1016/s1535-6108(03)00050-3

    Article  PubMed  CAS  Google Scholar 

  113. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–125. https://doi.org/10.1038/s41422-020-00441-1

    Article  PubMed  CAS  Google Scholar 

  115. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X (2018) Emerging strategies of cancer therapy based on ferroptosis. Adv Mater 30(12):e1704007. https://doi.org/10.1002/adma.201704007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081. https://doi.org/10.1080/15548627.2020.1810918

    Article  PubMed  CAS  Google Scholar 

  117. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K et al (2022) Essential metals in health and disease. Chem Biol Interact 367:110173. https://doi.org/10.1016/j.cbi.2022.110173

    Article  PubMed  CAS  Google Scholar 

  119. Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J et al (2022) Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond) 42(2):88–116. https://doi.org/10.1002/cac2.12250

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261. https://doi.org/10.1126/science.abf0529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529–539. https://doi.org/10.2174/1568026013394831

    Article  PubMed  CAS  Google Scholar 

  122. Ba LA, Doering M, Burkholz T, Jacob C (2009) Metal trafficking: from maintaining the metal homeostasis to future drug design. Metallomics 1(4):292–311. https://doi.org/10.1039/b904533c

    Article  PubMed  CAS  Google Scholar 

  123. Krzywoszynska K, Witkowska D, Swiatek-Kozlowska J, Szebesczyk A, Kozlowski H (2020) General aspects of metal ions as signaling agents in health and disease. Biomolecules. https://doi.org/10.3390/biom10101417

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M et al (2023) Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol 25(3):404–414. https://doi.org/10.1038/s41556-023-01091-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12(8):599–620. https://doi.org/10.1007/s13238-020-00789-5

    Article  PubMed  CAS  Google Scholar 

  126. Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E (2020) PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol 8:564601. https://doi.org/10.3389/fcell.2020.564601

    Article  PubMed  PubMed Central  Google Scholar 

  127. David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci (Landmark Ed) 14(3):1116–1128. https://doi.org/10.2741/3297

    Article  PubMed  CAS  Google Scholar 

  128. Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann NY Acad Sci 1147:233–241. https://doi.org/10.1196/annals.1427.014

    Article  PubMed  CAS  Google Scholar 

  129. Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W et al (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24(48):10963–10973. https://doi.org/10.1523/JNEUROSCI.3461-04.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA et al (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):20. https://doi.org/10.1126/scisignal.2000902

    Article  CAS  Google Scholar 

  131. Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM et al (2016) A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. https://doi.org/10.1126/science.aad6872

    Article  PubMed  PubMed Central  Google Scholar 

  132. Curtin NJ, Szabo C (2013) Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 34(6):1217–1256. https://doi.org/10.1016/j.mam.2013.01.006

    Article  PubMed  CAS  Google Scholar 

  133. Pilie PG, Gay CM, Byers LA, O’Connor MJ, Yap TA (2019) PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res 25(13):3759–3771. https://doi.org/10.1158/1078-0432.CCR-18-0968

    Article  PubMed  CAS  Google Scholar 

  134. Zeng C, Zeng B, Dong C, Liu J, Xing F (2020) Rho-ROCK signaling mediates entotic cell death in tumor. Cell Death Discov 6:4. https://doi.org/10.1038/s41420-020-0238-7

    Article  PubMed  PubMed Central  Google Scholar 

  135. Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW et al (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131(5):966–979. https://doi.org/10.1016/j.cell.2007.10.040

    Article  PubMed  CAS  Google Scholar 

  136. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216

    Article  PubMed  CAS  Google Scholar 

  137. Krajcovic M, Johnson NB, Sun Q, Normand G, Hoover N, Yao E et al (2011) A non-genetic route to aneuploidy in human cancers. Nat Cell Biol 13(3):324–330. https://doi.org/10.1038/ncb2174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Krajcovic M, Overholtzer M (2012) Mechanisms of ploidy increase in human cancers: a new role for cell cannibalism. Cancer Res 72(7):1596–1601. https://doi.org/10.1158/0008-5472.CAN-11-3127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12):1691–1701. https://doi.org/10.1084/jem.20050915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ahmed A, Tait SWG (2020) Targeting immunogenic cell death in cancer. Mol Oncol 14(12):2994–3006. https://doi.org/10.1002/1878-0261.12851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P et al (2020) Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 11(11):1013. https://doi.org/10.1038/s41419-020-03221-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Radogna F, Diederich M (2018) Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy. Biochem Pharmacol 153:12–23. https://doi.org/10.1016/j.bcp.2018.02.006

    Article  PubMed  CAS  Google Scholar 

  143. Franko J, Pomfy M, Prosbova T (2000) Apoptosis and cell death (mechanisms, pharmacology and promise for the future). Acta Medica (Hradec Kralove) 43(2):63–68

    Article  PubMed  CAS  Google Scholar 

  144. Wang F, Gomez-Sintes R, Boya P (2018) Lysosomal membrane permeabilization and cell death. Traffic 19(12):918–931. https://doi.org/10.1111/tra.12613

    Article  PubMed  CAS  Google Scholar 

  145. Aits S, Jaattela M (2013) Lysosomal cell death at a glance. J Cell Sci 126(Pt 9):1905–1912. https://doi.org/10.1242/jcs.091181

    Article  PubMed  CAS  Google Scholar 

  146. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953. https://doi.org/10.1038/nm.1855

    Article  PubMed  CAS  Google Scholar 

  147. Wartha F, Henriques-Normark B (2008) ETosis: a novel cell death pathway. Sci Signal 1(21):pe25. https://doi.org/10.1126/stke.121pe25

    Article  PubMed  Google Scholar 

  148. Morshed M, Hlushchuk R, Simon D, Walls AF, Obata-Ninomiya K, Karasuyama H et al (2014) NADPH oxidase-independent formation of extracellular DNA traps by basophils. J Immunol 192(11):5314–5323. https://doi.org/10.4049/jimmunol.1303418

    Article  PubMed  CAS  Google Scholar 

  149. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

    Article  PubMed  CAS  Google Scholar 

  150. Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D et al (2018) JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154(5):1480–1493. https://doi.org/10.1053/j.gastro.2017.12.004

    Article  PubMed  CAS  Google Scholar 

  151. Chen F, Zhu S, Kang R, Tang D, Liu J (2023) ATP6V0D1 promotes alkaliptosis by blocking STAT3-mediated lysosomal pH homeostasis. Cell Rep 42(1):111911. https://doi.org/10.1016/j.celrep.2022.111911

    Article  PubMed  CAS  Google Scholar 

  152. Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G (2020) Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 11:42. https://doi.org/10.3389/fphar.2020.00042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P et al (2018) Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 19(2):130–140. https://doi.org/10.1038/s41590-017-0013-y

    Article  PubMed  CAS  Google Scholar 

  154. Kang P, Chen J, Zhang W, Guo N, Yi X, Cui T et al (2022) Oxeiptosis: a novel pathway of melanocytes death in response to oxidative stress in vitiligo. Cell Death Discov 8(1):70. https://doi.org/10.1038/s41420-022-00863-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1):3–15

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Van Cruchten S, Van Den Broeck W (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 31(4):214–223. https://doi.org/10.1046/j.1439-0264.2002.00398.x

    Article  PubMed  Google Scholar 

  157. Sayk F, Bartels C (2004) Oncosis rather than apoptosis? Ann Thorac Surg 77(1):382. https://doi.org/10.1016/s0003-4975(02)05014-2

    Article  PubMed  Google Scholar 

  158. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705. https://doi.org/10.1146/annurev-physiol-030212-183653

    Article  PubMed  CAS  Google Scholar 

  159. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130. https://doi.org/10.1016/j.cell.2013.10.041

    Article  PubMed  CAS  Google Scholar 

  160. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446. https://doi.org/10.1038/nature13193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189. https://doi.org/10.1038/nature16932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Koenig U, Robenek H, Barresi C, Brandstetter M, Resch GP, Groger M et al (2020) Cell death induced autophagy contributes to terminal differentiation of skin and skin appendages. Autophagy 16(5):932–945. https://doi.org/10.1080/15548627.2019.1646552

    Article  PubMed  CAS  Google Scholar 

  163. Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z et al (2021) Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 17(12):4266–4285. https://doi.org/10.1080/15548627.2021.1911016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J et al (2019) Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis 10(3):193. https://doi.org/10.1038/s41419-019-1441-4

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M (2022) Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 27(7–8):482–508. https://doi.org/10.1007/s10495-022-01735-y

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ketelut-Carneiro N, Fitzgerald KA (2022) Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die. J Mol Biol 434(4):167378. https://doi.org/10.1016/j.jmb.2021.167378

    Article  PubMed  CAS  Google Scholar 

  167. He W, Wang Q, Srinivasan B, Xu J, Padilla MT, Li Z et al (2014) A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene 33(23):3004–3013. https://doi.org/10.1038/onc.2013.256

    Article  PubMed  CAS  Google Scholar 

  168. Liu J, Liu W, Yang H (2019) Balancing apoptosis and autophagy for Parkinson’s disease therapy: targeting BCL-2. ACS Chem Neurosci 10(2):792–802. https://doi.org/10.1021/acschemneuro.8b00356

    Article  PubMed  CAS  Google Scholar 

  169. Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N et al (2021) Cellular models of development of ovarian high-grade serous carcinoma: a review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 54(5):e13029. https://doi.org/10.1111/cpr.13029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Raudenská M, Balvan J, Masařík M (2021) Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis 12(2):192. https://doi.org/10.1038/s41419-021-03474-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Gao W, Wang X, Zhou Y, Wang X, Yu Y (2022) Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 7(1):196. https://doi.org/10.1038/s41392-022-01046-3

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chen X, Kang R, Kroemer G, Tang D (2021) Ferroptosis in infection, inflammation, and immunity. J Exp Med. https://doi.org/10.1084/jem.20210518

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135(7):1311–1323. https://doi.org/10.1016/j.cell.2008.10.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Geng J, Ito Y, Shi L, Amin P, Chu J, Ouchida AT et al (2017) Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat Commun 8(1):359. https://doi.org/10.1038/s41467-017-00406-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L et al (2017) MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. Mol Cell 66(5):698-710.e5. https://doi.org/10.1016/j.molcel.2017.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti T-D (2021) AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597(7876):415–419. https://doi.org/10.1038/s41586-021-03875-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Degen M, Santos JC, Pluhackova K, Cebrero G, Ramos S, Jankevicius G et al (2023) Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618(7967):1065–1071. https://doi.org/10.1038/s41586-023-05991-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Kayagaki N, Stowe IB, Alegre K, Deshpande I, Wu S, Lin Z et al (2023) Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618(7967):1072–1077. https://doi.org/10.1038/s41586-023-06191-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S-HZ, D-CR and H-XT designed the review and the structure of this manuscript. L-YW and X-JL wrote the manuscript draft. Q-QL, YZ, H-LR, J-NS, JZ and JM helped to search reference of this review and contributed to the writing. S-HZ contributed to the revision and finalization of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Hui-Xiang Tian, Ding-Chao Rong or Shao-Hui Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 37 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LY., Liu, XJ., Li, QQ. et al. The romantic history of signaling pathway discovery in cell death: an updated review. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04873-2

Keywords

Navigation