Skip to main content

Advertisement

Log in

MicroRNA delivery based on nanoparticles of cardiovascular diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Joseph P, Leong D, McKee M et al (2017) Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res 121:677–694. https://doi.org/10.1161/CIRCRESAHA.117.308903

    Article  CAS  PubMed  Google Scholar 

  2. Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M et al (2019) Stem cell therapy: a novel approach for myocardial infarction. J Cell Physiol 234:16904–16912. https://doi.org/10.1002/jcp.28381

    Article  CAS  PubMed  Google Scholar 

  3. Suarez S, Almutairi A, Christman KL (2015) Micro- and nanoparticles for treating cardiovascular disease. Biomater Sci 3:564–580. https://doi.org/10.1039/C4BM00441H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krum H, Teerlink JR (2011) Medical therapy for chronic heart failure. Lancet 378:713–721. https://doi.org/10.1016/s0140-6736(11)61038-6

    Article  CAS  PubMed  Google Scholar 

  5. Tetreault N, De Guire V (2013) miRNAs: their discovery, biogenesis and mechanism of action. J Clin Biochem 46:842–845. https://doi.org/10.1016/j.clinbiochem.2013.02.009

    Article  CAS  Google Scholar 

  6. Mirna M, Paar V, Rezar R et al (2019) MicroRNAs in inflammatory heart diseases and sepsis-induced cardiac dysfunction: a potential scope for the future? Cells 8:1352. https://doi.org/10.3390/cells8111352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hemida M, Ye X, Zhang H et al (2013) MicroRNA-203 enhances coxsackievirus B3 replication through targeting zinc finger protein-148. Cell Mol Life Sci 70:277–291. https://doi.org/10.1007/s00018-012-1104-4

    Article  CAS  PubMed  Google Scholar 

  8. Bao J, Lin L (2014) MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-κB pathway during acute viral myocarditis. Eur Rev Med Pharmacol Sci 18:2349–2356

    PubMed  Google Scholar 

  9. Chen Y, Ye X (2019) MicroRNA 3113–5p is a novel marker for early cardiac ischemia/reperfusion injury. Diagn Pathol 14:121. https://doi.org/10.1186/s13000-019-0894-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao S, Yang G, Liu P et al (2015) miR-590-3p Is a novel MicroRNA in myocarditis by targeting nuclear factor kappa-B in vivo. Cardiology 132:182–188. https://doi.org/10.1159/000433596

    Article  CAS  PubMed  Google Scholar 

  11. Yan C, Quan XJ, Feng YM (2019) Nanomedicine for gene delivery for the treatment of cardiovascular diseases. Curr Gene Ther 19:20–30. https://doi.org/10.2174/1566523218666181003125308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greco S, Gorospe M, Martelli F (2015) Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol 83:142–155. https://doi.org/10.1016/j.yjmcc.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Zhao Y, Zhao X et al (2017) Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules 22:1724. https://doi.org/10.3390/molecules22101724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495. https://doi.org/10.1161/CIRCRESAHA.111.247452

    Article  CAS  PubMed  Google Scholar 

  15. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  16. Wojciechowska A, Osiak A, Kozar-Kamińska K (2017) MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med 26:868–874. https://doi.org/10.17219/acem/62915

    Article  Google Scholar 

  17. Yuan J, Liu H, Gao W et al (2018) MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics 8:2565–2582. https://doi.org/10.7150/thno.22878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diniz GP, Lino CA, Guedes EC et al (2015) Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 angiotensin II receptor. Basic Res Cardiol 110:49. https://doi.org/10.1007/s00395-015-0504-7

    Article  CAS  PubMed  Google Scholar 

  19. Wei L, Yuan M, Zhou R et al (2015) MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a. J Cardiovasc Pharmacol 65:357–363. https://doi.org/10.1097/FJC.0000000000000203

    Article  CAS  PubMed  Google Scholar 

  20. Yang X, Qin Y, Shao S et al (2016) MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int Heart J 57:247–250. https://doi.org/10.1536/ihj.15-293

    Article  CAS  PubMed  Google Scholar 

  21. Garikipati VNS, Verma SK, Jolardarashi D et al (2017) Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovasc Res 113:938–949. https://doi.org/10.1093/cvr/cvx052

    Article  CAS  PubMed  Google Scholar 

  22. Gu GL, Xu XL, Sun XT et al (2015) Cardioprotective effect of MicroRNA-21 in murine myocardial infarction. Cardiovasc Ther 33:109–117. https://doi.org/10.1111/1755-5922.12118

    Article  CAS  PubMed  Google Scholar 

  23. Liu B, Wang B, Zhang X et al (2021) Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 13:eabd0914. https://doi.org/10.1126/scitranslmed.abd0914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou S, Jin J, Wang J et al (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39:1073–1084. https://doi.org/10.1038/aps.2018.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vegter EL, van der Meer P, de Windt LJ et al (2016) MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 18:457–468. https://doi.org/10.1002/ejhf.495

    Article  CAS  PubMed  Google Scholar 

  26. Sun T, Dong YH, Du W et al (2017) The role of MicroRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci 18:745. https://doi.org/10.3390/ijms18040745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boon RA, Dimmeler S (2015) MicroRNAs in myocardial infarction. Nat Rev Cardiol 12:135–142. https://doi.org/10.1038/nrcardio.2014.207

    Article  CAS  PubMed  Google Scholar 

  28. Kumarswamy R, Lyon AR, Volkmann I et al (2012) SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J 33:1067–1075. https://doi.org/10.1093/eurheartj/ehs043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang B, Lin H, Xiao J et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491. https://doi.org/10.1038/nm1569

    Article  CAS  PubMed  Google Scholar 

  30. Qipshidze Kelm N, Piell KM, Wang E et al (2018) MicroRNAs as predictive biomarkers for myocardial injury in aged mice following myocardial infarction. J Cell Physiol 233:5214–5221. https://doi.org/10.1002/jcp.26283

    Article  CAS  PubMed  Google Scholar 

  31. Hullinger TG, Montgomery RL, Seto AG et al (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110:71–81. https://doi.org/10.1161/CIRCRESAHA.111.244442

    Article  CAS  PubMed  Google Scholar 

  32. Zou M, Wang F, Gao R et al (2016) Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced fibrogenesis in human cardiac fibroblasts. Sci Rep 6:24747. https://doi.org/10.1038/srep24747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thum T, Gross C, Fiedler J et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984. https://doi.org/10.1038/nature07511

    Article  CAS  PubMed  Google Scholar 

  34. Cardin S, Guasch E, Luo X et al (2012) Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol 5:1027–1035. https://doi.org/10.1161/CIRCEP.112.973214

    Article  CAS  PubMed  Google Scholar 

  35. Gupta SK, Foinquinos A, Thum S et al (2016) Preclinical development of a MicroRNA-based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol 68:1557–1571. https://doi.org/10.1016/j.jacc.2016.07.739

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Huang W, Xu R et al (2012) MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 16:2150–2160. https://doi.org/10.1111/j.1582-4934.2012.01523.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qian L, Van Laake LW, Huang Y et al (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208:549–560. https://doi.org/10.1084/jem.20101547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fiedler J, Jazbutyte V, Kirchmaier BC et al (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:720–730. https://doi.org/10.1161/CIRCULATIONAHA.111.039008

    Article  CAS  PubMed  Google Scholar 

  39. Meloni M, Marchetti M, Garner K et al (2013) Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther 21:1390–1402. https://doi.org/10.1038/mt.2013.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Rooij E, Sutherland LB, Thatcher JE et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105:13027–13032. https://doi.org/10.1073/pnas.0805038105

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ye Y, Hu Z, Lin Y et al (2010) Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 87:535–544. https://doi.org/10.1093/cvr/cvq053

    Article  CAS  PubMed  Google Scholar 

  42. Chi F, Feng L, Li Y et al (2020) MiR-30b-5p promotes myocardial cell apoptosis in rats with myocardial infarction through regulating Wnt/β-catenin signaling pathway. Minerva Med. https://doi.org/10.23736/s0026-4806.20.06565-9

    Article  PubMed  Google Scholar 

  43. Bonauer A, Carmona G, Iwasaki M et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713. https://doi.org/10.1126/science.1174381

    Article  CAS  PubMed  Google Scholar 

  44. Pan Z, Sun X, Shan H et al (2012) MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:840–850. https://doi.org/10.1161/CIRCULATIONAHA.112.094524

    Article  CAS  PubMed  Google Scholar 

  45. He F, Liu H, Guo J et al (2018) Inhibition of MicroRNA-124 reduces cardiomyocyte apoptosis following myocardial infarction via targeting STAT3. Cell Physiol Biochem 51:186–200. https://doi.org/10.1159/000495173

    Article  CAS  PubMed  Google Scholar 

  46. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284. https://doi.org/10.1016/j.devcel.2008.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aurora AB, Mahmoud AI, Luo X et al (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest 122:1222–1232. https://doi.org/10.1172/JCI59327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang G, Wang R, Ruan Z et al (2020) MicroRNA-132 attenuated cardiac fibrosis in myocardial infarction-induced heart failure rats. Biosci Rep. https://doi.org/10.1042/bsr20201696

  49. Zhang L, Wu Y, Li Y et al (2012) Tanshinone IIA improves miR-133 expression through MAPK ERK1/2 pathway in hypoxic cardiac myocytes. Cell Physiol Biochem 30:843–852. https://doi.org/10.1159/000341462

    Article  CAS  PubMed  Google Scholar 

  50. Zhang XG, Wang LQ, Guan HL (2019) Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur Rev Med Pharmacol Sci 23:5934–5940. https://doi.org/10.26355/eurrev_201907_18338

    Article  PubMed  Google Scholar 

  51. Chen Y, Zhao Y, Chen W et al (2017) MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther 8:268. https://doi.org/10.1186/s13287-017-0722-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng HF, Sun J, Zou ZY et al (2019) MiRNA-488–3p suppresses acute myocardial infarction-induced cardiomyocyte apoptosis via targeting ZNF791. Eur Rev Med Pharmacol Sci 23:4932–4939. https://doi.org/10.26355/eurrev_201906_18083

    Article  PubMed  Google Scholar 

  53. Cheng H, Chang S, Xu R et al (2020) Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res Ther 11:224. https://doi.org/10.1186/s13287-020-01737-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng M, Li Z, Wang D et al (2018) MicroRNA-210 aggravates hypoxia-induced injury in cardiomyocyte H9c2 cells by targeting CXCR4. Biomed Pharmacother 102:981–987. https://doi.org/10.1016/j.biopha.2018.03.151

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Peng B, Han Y (2018) MiR-182 alleviates the development of cyanotic congenital heart disease by suppressing HES1. Eur J Pharmacol 836:18–24. https://doi.org/10.1016/j.ejphar.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  56. Jia S, Qiao X, Ye J et al (2016) Nogo-C regulates cardiomyocyte apoptosis during mouse myocardial infarction. Cell Death Dis 7:e2432. https://doi.org/10.1038/cddis.2016.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X, Xue X, Sun Y et al (2019) MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction. Stem Cell Res Ther 10:323. https://doi.org/10.1186/s13287-019-1413-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Templin C, Volkmann J, Emmert MY et al (2017) Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: role of differential microRNA-378 expression. Arterioscler Thromb Vasc Biol 37:341–349. https://doi.org/10.1161/ATVBAHA.116.308695

    Article  CAS  PubMed  Google Scholar 

  59. Bayoumi AS, Teoh JP, Aonuma T et al (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 113:1603–1614. https://doi.org/10.1093/cvr/cvx132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo J, Liu HB, Sun C et al (2019) MicroRNA-155 promotes myocardial infarction-induced apoptosis by targeting RNA-binding protein QKI. Oxid Med Cell Longev 2019:4579806. https://doi.org/10.1155/2019/4579806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frati G, Forte M, di Nonno F et al (2020) Inhibition of miR-155 attenuates detrimental vascular effects of tobacco cigarette smoking. J Am Heart Assoc 9:e017000. https://doi.org/10.1161/jaha.120.017000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Oliveira G, Freire P, Omoto A et al (2018) Osteoglycin post-transcriptional regulation by miR-155 induces cellular architecture changes in H9c2 cardiomyoblasts. Gene 676:9–15. https://doi.org/10.1016/j.gene.2018.07.020

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Wang Y, Cui J et al (2017) miR199a-3p regulates P53 by targeting CABLES1 in mouse cardiac c-kit cells to promote proliferation and inhibit apoptosis through a negative feedback loop. Stem Cell Res Ther 8:127. https://doi.org/10.1186/s13287-017-0515-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cui S, Liu Z, Tao B et al (2021) miR-145 attenuates cardiac fibrosis through the AKT/GSK-3β/β-catenin signaling pathway by directly targeting SOX9 in fibroblasts. J Cell Biochem 122:209–221. https://doi.org/10.1002/jcb.29843

    Article  CAS  PubMed  Google Scholar 

  65. Liu Z, Tao B, Fan S et al (2020) Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging (Albany NY) 12:11603–11622. https://doi.org/10.18632/aging.103320

    Article  CAS  PubMed  Google Scholar 

  66. Shen Y, Zhang W, Lee L et al (2020) Down-regulated microRNA-195–5p and up-regulated CXCR4 attenuates the heart function injury of heart failure mice via inactivating JAK/STAT pathway. Int Immunopharmacol 82:106225. https://doi.org/10.1016/j.intimp.2020.106225

    Article  CAS  PubMed  Google Scholar 

  67. Xing B, Li Q, Li H et al (2018) miR-140-5p aggravates hypoxia-induced cell injury via regulating MLK3 in H9c2 cells. Biomed Pharmacother 103:1652–1657. https://doi.org/10.1016/j.biopha.2018.04.062

    Article  CAS  PubMed  Google Scholar 

  68. Wang C, Yin S, Wang Q et al (2022) miR-409-3p regulated by GATA2 promotes cardiac fibrosis through targeting Gpd1. Oxid Med Cell Longev 2022:8922246. https://doi.org/10.1155/2022/8922246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu Y, Zhang Y, Ding Y et al (2021) MicroRNA-99b-3p promotes angiotensin II-induced cardiac fibrosis in mice by targeting GSK-3β. Acta Pharmacol Sin 42:715–725. https://doi.org/10.1038/s41401-020-0498-z

    Article  CAS  PubMed  Google Scholar 

  70. Sucharov C, Bristow MR, Port JD (2008) miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 45:185–192. https://doi.org/10.1016/j.yjmcc.2008.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ding J, Li H, Liu W et al (2022) miR-186-5p dysregulation in serum exosomes from patients with AMI aggravates atherosclerosis via targeting LOX-1. Int J Nanomed 17:6301–6316. https://doi.org/10.2147/ijn.S383904

    Article  Google Scholar 

  72. Sánchez-Sánchez R, Reinal I, Peiró-Molina E et al (2022) MicroRNA-4732-3p is dysregulated in breast cancer patients with cardiotoxicity, and its therapeutic delivery protects the heart from doxorubicin-induced oxidative stress in rats. Antioxidants-Basel 11:1955. https://doi.org/10.3390/antiox11101955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ji J, Chen S, Yang Z et al (2023) Delivery of Mir-196c-3p with NIR-II light-triggered gel attenuates cardiomyocyte ferroptosis in cardiac ischemia-reperfusion injury. Nanomedicine 47:102618. https://doi.org/10.1016/j.nano.2022.102618

    Article  CAS  PubMed  Google Scholar 

  74. Samanta S, Balasubramanian S, Rajasingh S et al (2016) MicroRNA: a new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 26:407–419. https://doi.org/10.1016/j.tcm.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He J, Lu Y, Song X et al (2019) Inhibition of microRNA-146a attenuated heart failure in myocardial infarction rats. Biosci Rep. https://doi.org/10.1042/BSR20191732

  76. Zhuang Y, Yang D, Shi S et al (2022) MiR-375-3p promotes cardiac fibrosis by regulating the ferroptosis mediated by GPX4. Comput Intell Neurosci 2022:1–12. https://doi.org/10.1155/2022/9629158

    Article  Google Scholar 

  77. Chen Y, Gao DY, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141. https://doi.org/10.1016/j.addr.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  78. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fernandez-Piñeiro I, Badiola I, Sanchez A (2017) Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv 35:350–360. https://doi.org/10.1016/j.biotechadv.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  80. Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462. https://doi.org/10.1038/nbt1081

    Article  CAS  PubMed  Google Scholar 

  81. van Mil A, Grundmann S, Goumans MJ et al (2012) MicroRNA-214 inhibits angiogenesis by targeting quaking and reducing angiogenic growth factor release. Cardiovasc Res 93:655–665. https://doi.org/10.1093/cvr/cvs003

    Article  CAS  PubMed  Google Scholar 

  82. Kwekkeboom RF, Lei Z, Doevendans PA et al (2014) Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond) 127:351–365. https://doi.org/10.1042/CS20140005

    Article  CAS  PubMed  Google Scholar 

  83. Kim J, Cao L, Shvartsman D et al (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11:694–700. https://doi.org/10.1021/nl103812a

    Article  CAS  PubMed  Google Scholar 

  84. Ruiz-Esparza GU, Segura-Ibarra V, Cordero-Reyes AM et al (2016) A specifically designed nanoconstruct associates, internalizes, traffics in cardiovascular cells, and accumulates in failing myocardium: a new strategy for heart failure diagnostics and therapeutics. Eur J Heart Fail 18:169–178. https://doi.org/10.1002/ejhf.463

    Article  PubMed  Google Scholar 

  85. Chang MY, Yang YJ, Chang CH et al (2013) Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. J Control Release 170:287–294. https://doi.org/10.1016/j.jconrel.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  86. Takahama H, Minamino T, Asanuma H et al (2009) Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats. J Am Coll Cardiol 53:709–717. https://doi.org/10.1016/j.jacc.2008.11.014

    Article  CAS  PubMed  Google Scholar 

  87. Qiao Y, Zhu B, Tian A et al (2017) PEG-coated gold nanoparticles attenuate beta-adrenergic receptor-mediated cardiac hypertrophy. Int J Nanomed 12:4709–4719. https://doi.org/10.2147/IJN.S130951

    Article  CAS  Google Scholar 

  88. Jia C, Chen H, Wei M et al (2017) Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. Int J Nanomed 12:4963–4979. https://doi.org/10.2147/IJN.S138400

    Article  CAS  Google Scholar 

  89. Santos HA, Hirvonen J (2012) Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine 7:1281–1284. https://doi.org/10.2217/nnm.12.106

    Article  CAS  PubMed  Google Scholar 

  90. Tolli MA, Ferreira MP, Kinnunen SM et al (2014) In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials 35:8394–8405. https://doi.org/10.1016/j.biomaterials.2014.05.078

    Article  CAS  PubMed  Google Scholar 

  91. Ma S, Tian XY, Zhang Y et al (2016) E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep 6:22910. https://doi.org/10.1038/srep22910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nguyen MA, Wyatt H, Susser L et al (2019) Delivery of MicroRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano 13:6491–6505. https://doi.org/10.1021/acsnano.8b09679

    Article  CAS  PubMed  Google Scholar 

  93. Hong T, Wei Y, Xue X et al (2020) A novel anti-coagulative nanocomplex in delivering miRNA-1 inhibitor against microvascular obstruction of myocardial infarction. Adv Healthc Mater 9:e1901783. https://doi.org/10.1002/adhm.201901783

    Article  CAS  PubMed  Google Scholar 

  94. Yang J, Brown ME, Zhang H et al (2017) High-throughput screening identifies microRNAs that target Nox2 and improve function after acute myocardial infarction. Am J Physiol Heart Circ Physiol 312:H1002–H1012. https://doi.org/10.1152/ajpheart.00685.2016

    Article  PubMed  PubMed Central  Google Scholar 

  95. Antunes JC, Benarroch L, Moraes FC et al (2019) Core–shell polymer-based nanoparticles deliver miR-155-5p to endothelial cells. Mol Ther Nucleic Acids 17:210–222. https://doi.org/10.1016/j.omtn.2019.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bejerano T, Etzion S, Elyagon S et al (2018) Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett 18:5885–5891. https://doi.org/10.1021/acs.nanolett.8b02578

    Article  CAS  PubMed  Google Scholar 

  97. Yang H, Qin X, Wang H et al (2019) An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano 13:9880–9894. https://doi.org/10.1021/acsnano.9b03343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Izuhara M, Kuwabara Y, Saito N et al (2017) Prevention of neointimal formation using miRNA-126-containing nanoparticle-conjugated stents in a rabbit model. PLoS ONE 12:e0172798. https://doi.org/10.1371/journal.pone.0172798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mauri L, Hsieh WH, Massaro JM et al (2007) Stent thrombosis in randomized clinical trials of drug-eluting stents. New Engl J Med 356:1020–1029. https://doi.org/10.1056/NEJMoa067731

    Article  CAS  PubMed  Google Scholar 

  100. Wang T, Zhou T, Xu M et al (2022) Platelet membrane-camouflaged nanoparticles carry microRNA inhibitor against myocardial ischaemia-reperfusion injury. J Nanobiotechnol 20:434. https://doi.org/10.1186/s12951-022-01639-8

    Article  CAS  Google Scholar 

  101. Nie J-J, Qiao B, Duan S et al (2018) Unlockable nanocomplexes with self-accelerating nucleic acid release for effective staged gene therapy of cardiovascular diseases. Adv Mater 30:e1801570. https://doi.org/10.1002/adma.201801570

    Article  CAS  PubMed  Google Scholar 

  102. Das S, Bedja D, Campbell N et al (2014) miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS ONE 9:e96820. https://doi.org/10.1371/journal.pone.0096820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Diao J, Wang H, Chang N et al (2015) PEG-PLA nanoparticles facilitate siRNA knockdown in adult zebrafish heart. Dev Biol 406:196–202. https://doi.org/10.1016/j.ydbio.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  104. Deng S, Zhao Q, Zhen L et al (2017) Neonatal heart-enriched miR-708 promotes proliferation and stress resistance of cardiomyocytes in rodents. Theranostics 7:1953–1965. https://doi.org/10.7150/thno.16478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hodgkinson CP, Kang MH, Dal-Pra S et al (2015) MicroRNAs and cardiac regeneration. Circ Res 116:1700–1711. https://doi.org/10.1161/circresaha.116.304377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lesizza P, Prosdocimo G, Martinelli V et al (2017) Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ Res 120:1298–1304. https://doi.org/10.1161/circresaha.116.309589

    Article  CAS  PubMed  Google Scholar 

  107. Mak KY, Rajapaksha IG, Angus PW (2017) The adeno-associated virus—a safe and promising vehicle for liverspecific gene therapy of inherited and non-inherited disorders. Curr Gene Ther 17:4–16. https://doi.org/10.2174/1566523217666170314141931

    Article  CAS  PubMed  Google Scholar 

  108. Corti M, Liberati C, Smith BK et al (2017) Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by pompe disease. Hum Gene Ther Clin Dev 28:208–218. https://doi.org/10.1089/humc.2017.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Valdmanis PN (2017) Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum Gene Ther Clin Dev 28:361–372. https://doi.org/10.1089/hum.2016.171

    Article  CAS  Google Scholar 

  110. Shiozaki AA, Senra T, Morikawa AT et al (2016) Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles. Clinics 71:435–439. https://doi.org/10.6061/clinics/2016(08)05

    Article  PubMed  PubMed Central  Google Scholar 

  111. Van Valk FM, Van Wijk DF, Lobatto ME et al (2015) Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine 11:1039–1046. https://doi.org/10.1016/j.nano.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  112. Allen C (2019) The question of toxicity of nanomaterials and nanoparticles. J Control Release 304:288. https://doi.org/10.1016/j.jconrel.2019.06.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the editors and reviewers for their positive and constructive comments and suggestions on our study.

Funding

This work was supported by Ningbo Medical Science and Technology Program (No. 2022Y04 and 2022Y06).

Author information

Authors and Affiliations

Authors

Contributions

DD contributed to the study conception and design. NW, CC, JR and DD prepared the main manuscript; The authors declare that all data were generated in-house and that no paper mill was used. All authors have read and approved the final article.

Corresponding author

Correspondence to Dandan Dai.

Ethics declarations

Conflict of interest

All authors have no conflict of interest that are directly relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals.

Consent for publication

All the authors listed have made full contributions to the project and can be included in the scope of authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Chen, C., Ren, J. et al. MicroRNA delivery based on nanoparticles of cardiovascular diseases. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04821-0

Keywords

Navigation