Skip to main content

Advertisement

Log in

Targeting the epigenome of cancer stem cells in pediatric nervous system tumors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Steliarova-Foucher E, Colombet M, Ries LAG et al (2017) International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol 18:719–731. https://doi.org/10.1016/S1470-2045(17)30186-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ma X, Liu Y, Liu Y et al (2018) Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555:371–376. https://doi.org/10.1038/nature25795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gröbner SN, Worst BC, Weischenfeldt J et al (2018) The landscape of genomic alterations across childhood cancers. Nature 555:321–327. https://doi.org/10.1038/nature25480

    Article  CAS  PubMed  Google Scholar 

  4. Downing JR, Wilson RK, Zhang J et al (2012) The pediatric cancer genome project. Nat Genet 44:619–622. https://doi.org/10.1038/ng.2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huether R, Dong L, Chen X et al (2014) The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun. https://doi.org/10.1038/ncomms4630

    Article  PubMed  Google Scholar 

  6. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  Google Scholar 

  7. Qureshi IA, Mehler MF (2011) Epigenetics, nervous system tumors, and cancer stem cells. Cancers 3:3525–3556. https://doi.org/10.3390/cancers3033525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomolonis JA, Agarwal S, Shohet JM (2017) Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res 372:245–262. https://doi.org/10.1007/s00441-017-2747-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu QR, Qian L, Zhou X (2019) Developmental origins and oncogenic pathways in malignant brain tumors. Wiley Interdiscip Rev. https://doi.org/10.1002/wdev.342

    Article  Google Scholar 

  10. Han JW, Yoon Y-S (2012) Epigenetic landscape of pluripotent stem cells. Antioxid Redox Signal 17:205–223. https://doi.org/10.1089/ars.2011.4375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci 100:15178–15183. https://doi.org/10.1073/pnas.2036535100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walton JD, Kattan DR, Thomas SK et al (2004) Characteristics of stem cells from human neuroblastoma cell lines and in tumors. Neoplasia 6:838–845. https://doi.org/10.1593/neo.04310

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thirant C, Bessette B, Varlet P et al (2011) Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS ONE. https://doi.org/10.1371/journal.pone.0016375

    Article  PubMed  PubMed Central  Google Scholar 

  14. Northcott PA, Robinson GW, Kratz CP et al (2019) Medulloblastoma. Nat Rev Dis Primers. https://doi.org/10.1038/s41572-019-0063-6

    Article  PubMed  Google Scholar 

  15. Johnsen JI, Dyberg C, Wickström M (2019) Neuroblastoma—a neural crest derived embryonal malignancy. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2019.00009

    Article  PubMed  PubMed Central  Google Scholar 

  16. Funakoshi Y, Hata N, Kuga D et al (2021) Pediatric glioma: an update of diagnosis, biology, and treatment. Cancers 13:758. https://doi.org/10.3390/cancers13040758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lawlor ER, Thiele CJ (2012) Epigenetic changes in pediatric solid tumors: promising new targets. Clin Cancer Res 18:2768–2779. https://doi.org/10.1158/1078-0432.CCR-11-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franco SS, Szczesna K, Iliou MS et al (2016) In vitro models of cancer stem cells and clinical applications. BMC Cancer. https://doi.org/10.1186/s12885-016-2774-3

    Article  Google Scholar 

  19. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  20. Ross RA, Walton JD, Han D et al (2015) A distinct gene expression signature characterizes human neuroblastoma cancer stem cells. Stem Cell Res 15:419–426. https://doi.org/10.1016/j.scr.2015.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pandian V, Ramraj S, Khan FH et al (2015) Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling. Stem Cell Res Ther. https://doi.org/10.1186/s13287-015-0002-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nightingale KP, O’Neill LP, Turner BM (2006) Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16:125–136. https://doi.org/10.1016/j.gde.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  23. Yang X-J, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–5318. https://doi.org/10.1038/sj.onc.1210599

    Article  CAS  PubMed  Google Scholar 

  24. Liu N, Li S, Wu N, Cho K-S (2017) Acetylation and deacetylation in cancer stem-like cells. Oncotarget 8:89315–89325. https://doi.org/10.18632/oncotarget.19167

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nör C, Sassi FA, Farias CBD et al (2013) The histone deacetylase inhibitor sodium butyrate promotes cell death and differentiation and reduces neurosphere formation in human medulloblastoma cells. Mol Neurobiol 48:533–543. https://doi.org/10.1007/s12035-013-8441-7

    Article  CAS  PubMed  Google Scholar 

  26. Jaeger MDC, Ghisleni EC, Cardoso PS et al (2020) HDAC and MAPK/ERK inhibitors cooperate to reduce viability and stemness in medulloblastoma. J Mol Neurosci 70:981–992. https://doi.org/10.1007/s12031-020-01505-y

    Article  CAS  Google Scholar 

  27. Yuan J, Luceño NL, Sander B, Golas MM (2017) Synergistic anti-cancer effects of epigenetic drugs on medulloblastoma cells. Cell Oncol 40:263–279. https://doi.org/10.1007/s13402-017-0319-7

    Article  CAS  Google Scholar 

  28. Almeida VR, Vieira IA, Buendia M et al (2016) Combined treatments with a retinoid receptor agonist and epigenetic modulators in human neuroblastoma cells. Mol Neurobiol 54:7610–7619. https://doi.org/10.1007/s12035-016-0250-3

    Article  CAS  PubMed  Google Scholar 

  29. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010:1–18. https://doi.org/10.1155/2010/479364

    Article  CAS  Google Scholar 

  30. Stockhausen M-T, Sjölund J, Manetopoulos C, Axelson H (2005) Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer 92:751–759. https://doi.org/10.1038/sj.bjc.6602309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khalil MA, Hraběta J, Groh T et al (2016) Valproic acid increases CD133 positive cells that show low sensitivity to cytostatics in neuroblastoma. PLoS ONE. https://doi.org/10.1371/journal.pone.0162916

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hahn CK, Ross KN, Warrington IM et al (2008) Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Natl Acad Sci 105:9751–9756. https://doi.org/10.1073/pnas.0710413105

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng X, Naiditch J, Czurylo M et al (2013) Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics. Cell Death Dis. https://doi.org/10.1038/cddis.2013.264

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tsui, M. K. H (2009) Histone deacetylase inhibitor MS-275 inhibits neuroblastoma cell growth by inducing cell cycle arrest, apoptosis, differentiation and by targeting its tumor stem cell population. Thesis, University of Toronto

  35. Mokhtari RB, Baluch N, Tsui MKH et al (2017) Acetazolamide potentiates the anti-tumor potential of HDACi, MS-275, in neuroblastoma. BMC Cancer. https://doi.org/10.1186/s12885-017-3126-7

    Article  Google Scholar 

  36. Wegener D, Deubzer HE, Oehme I et al (2008) HKI 46F08, a novel potent histone deacetylase inhibitor, exhibits antitumoral activity against embryonic childhood cancer cells. Anticancer Drugs 19:849–857. https://doi.org/10.1097/cad.0b013e32830efbeb

    Article  CAS  PubMed  Google Scholar 

  37. Oehme I, Deubzer HE, Wegener D et al (2008) Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15:91–99. https://doi.org/10.1158/1078-0432.CCR-08-0684

    Article  Google Scholar 

  38. Rettig I, Koeneke E, Trippel F et al (2015) Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis. https://doi.org/10.1038/cddis.2015.24

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frumm SM, Fan ZP, Ross KN et al (2013) Selective HDAC1/HDAC2 Inhibitors Induce neuroblastoma differentiation. Chem Biol 20:713–725. https://doi.org/10.1016/j.chembiol.2013.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anastas JN, Zee BM, Kalin JH et al (2019) Re-programing chromatin with a bifunctional LSD1/HDAC inhibitor induces therapeutic differentiation in DIPG. Cancer Cell. https://doi.org/10.1016/j.ccell.2019.09.005

    Article  PubMed  Google Scholar 

  41. Meel MH, Gooijer MCD, Metselaar DS et al (2020) Combined therapy of AXL and HDAC inhibition reverses mesenchymal transition in diffuse intrinsic pontine glioma. Clin Cancer Res 26:3319–3332. https://doi.org/10.1158/1078-0432.CCR-19-3538

    Article  CAS  PubMed  Google Scholar 

  42. Grasso CS, Tang Y, Truffaux N et al (2015) Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 21:555–559. https://doi.org/10.1038/nm.3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pötschke R, Gielen G, Pietsch T et al (2019) Musashi1 enhances chemotherapy resistance of pediatric glioblastoma cells in vitro. Pediatr Res 87:669–676. https://doi.org/10.1038/s41390-019-0628-9

    Article  CAS  PubMed  Google Scholar 

  44. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. https://doi.org/10.1016/j.cell.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  45. Wainwright EN, Scaffidi P (2017) Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity. Trends in Cancer 3:372–386. https://doi.org/10.1016/j.trecan.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wen Y, Cai J, Hou Y et al (2017) Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 8:37974–37990. https://doi.org/10.18632/oncotarget.16467

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miele E, Valente S, Alfano V et al (2017) The histone methyltransferase EZH2 as a druggable target in SHH medulloblastoma cancer stem cells. Oncotarget 8:68557–68570. https://doi.org/10.18632/oncotarget.19782

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alimova I, Venkataraman S, Harris P et al (2012) Targeting the enhancer of zeste homologue 2 in medulloblastoma. Int J Cancer 131:1800–1809. https://doi.org/10.1002/ijc.27455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu H, Sun Q, Sun Y et al (2017) MELK and EZH2 cooperate to regulate medulloblastoma cancer stem-like cell proliferation and differentiation. Mol Cancer Res 15:1275–1286. https://doi.org/10.1158/1541-7786.MCR-17-0105

    Article  CAS  PubMed  Google Scholar 

  50. Wang C, Liu Z, Woo C-W et al (2011) EZH2 mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Can Res 72:315–324. https://doi.org/10.1158/0008-5472.CAN-11-0961

    Article  Google Scholar 

  51. Schulte JH, Lim S, Schramm A et al (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Can Res 69:2065–2071. https://doi.org/10.1158/0008-5472.CAN-08-1735

    Article  CAS  Google Scholar 

  52. Yang J, Altahan AM, Hu D et al (2015) The role of histone demethylase KDM4B in myc signaling in neuroblastoma. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv080

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kuo Y-T, Liu Y-L, Adebayo BO et al (2015) JARID1B expression plays a critical role in chemoresistance and stem cell-like phenotype of neuroblastoma cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0125343

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lochmann TL, Powell KM, Ham J et al (2018) Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aao4680

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schwartzentruber J, Korshunov A, Liu X-Y et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  56. Hashizume R, Andor N, Ihara Y et al (2014) Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20:1394–1396. https://doi.org/10.1038/nm.3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861. https://doi.org/10.1126/science.1232245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bender S, Tang Y, Lindroth AM et al (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672. https://doi.org/10.1016/j.ccr.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  59. Mohammad F, Weissmann S, Leblanc B et al (2017) EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 23:483–492. https://doi.org/10.1038/nm.4293

    Article  CAS  PubMed  Google Scholar 

  60. Jin B, Ernst J, Tiedemann RL et al (2012) Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells. Cell Rep 2:1411–1424. https://doi.org/10.1016/j.celrep.2012.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pfeifer G (2018) Defining driver DNA methylation changes in human cancer. Int J Mol Sci 19:1166. https://doi.org/10.3390/ijms19041166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pechalrieu D, Etievant C, Arimondo PB (2017) DNA methyltransferase inhibitors in cancer: from pharmacology to translational studies. Biochem Pharmacol 129:1–13. https://doi.org/10.1016/j.bcp.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  63. Valente S, Liu Y, Schnekenburger M et al (2014) Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem 57:701–713. https://doi.org/10.1021/jm4012627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Castresana (2010) Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncol Rep. https://doi.org/10.3892/or_00000993

    Article  PubMed  Google Scholar 

  65. Ikegaki N, Shimada H, Fox AM et al (2013) Transient treatment with epigenetic modifiers yields stable neuroblastoma stem cells resembling aggressive large-cell neuroblastomas. Proc Natl Acad Sci 110:6097–6102. https://doi.org/10.1073/pnas.1118262110

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mackay A, Burford A, Carvalho D et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  PubMed  PubMed Central  Google Scholar 

  67. Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica 129:669–678. https://doi.org/10.1007/s00401-015-1405-4

    Article  CAS  PubMed  Google Scholar 

  68. Korshunov A, Schrimpf D, Ryzhova M et al (2017) H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134:507–516. https://doi.org/10.1007/s00401-017-1710-1

    Article  CAS  PubMed  Google Scholar 

  69. Nair SS, Kumar R (2012) Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol 6:611–619. https://doi.org/10.1016/j.molonc.2012.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Robinson MH, Maximov V, Lallani S et al (2019) Upregulation of the chromatin remodeler HELLS is mediated by YAP1 in Sonic Hedgehog medulloblastoma. Sci Rep. https://doi.org/10.1038/s41598-019-50088-1

    Article  PubMed  PubMed Central  Google Scholar 

  71. Xi S, Geiman TM, Briones V et al (2009) Lsh participates in DNA methylation and silencing of stem cell genes. Stem Cells 27:2691–2702. https://doi.org/10.1002/stem.183

    Article  CAS  PubMed  Google Scholar 

  72. Barbieri E, Preter KD, Capasso M et al (2013) Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma. Can Res 74:765–774. https://doi.org/10.1158/0008-5472.CAN-13-1315

    Article  CAS  Google Scholar 

  73. Klein BJ, Wang X, Cui G et al (2016) PHF20 readers link methylation of histone H3K4 and p53 with H4K16 acetylation. Cell Rep 17:1158–1170. https://doi.org/10.1016/j.celrep.2016.09.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Long W, Zhao W, Ning B et al (2018) PHF20 collaborates with PARP1 to promote stemness and aggressiveness of neuroblastoma cells through activation of SOX2 and OCT4. J Mol Cell Biol 10:147–160. https://doi.org/10.1093/jmcb/mjy007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Green AL, Desisto J, Flannery P et al (2019) BPTF regulates growth of adult and pediatric high-grade glioma through the MYC pathway. Oncogene 39:2305–2327. https://doi.org/10.1038/s41388-019-1125-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee S, Vasudevan S (2012) Post-transcriptional Stimulation of Gene Expression by MicroRNAs Advances in Experimental Medicine and Biology. Ten Years of Progress in GW/P Body Res. https://doi.org/10.1007/978-1-4614-5107-5_7

    Article  Google Scholar 

  77. Garg N, Vijayakumar T, Bakhshinyan D et al (2015) MicroRNA regulation of brain tumour initiating cells in central nervous system tumours. Stem Cells Int 2015:1–15. https://doi.org/10.1155/2015/141793

    Article  Google Scholar 

  78. Venkataraman S, Alimova I, Fan R et al (2010) MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS ONE. https://doi.org/10.1371/journal.pone.0010748

    Article  PubMed  PubMed Central  Google Scholar 

  79. Venkataraman S, Birks DK, Balakrishnan I et al (2013) MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem 288:1918–1928. https://doi.org/10.1074/jbc.M112.396762

    Article  CAS  PubMed  Google Scholar 

  80. Garzia L, Andolfo I, Cusanelli E et al (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE. https://doi.org/10.1371/journal.pone.0004998

    Article  PubMed  PubMed Central  Google Scholar 

  81. Andolfo I, Liguori L, Antonellis PD et al (2012) The micro-RNA 199b–5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro Oncol 14:596–612. https://doi.org/10.1093/neuonc/nos002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Antonellis PD, Medaglia C, Cusanelli E et al (2011) MiR-34a targeting of notch ligand delta-Like 1 impairs CD15 /CD133 tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS ONE. https://doi.org/10.1371/journal.pone.0024584

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hemmesi K, Squadrito ML, Mestdagh P et al (2015) miR-135aInhibits cancer stem cell-driven medulloblastoma development by directly repressingArhgef6expression. Stem Cells 33:1377–1389. https://doi.org/10.1002/stem.1958

    Article  CAS  PubMed  Google Scholar 

  84. Catanzaro G, Besharat ZM, Garg N et al (2016) MicroRNAs-proteomic networks characterizing human medulloblastoma-SLCs. Stem Cells Int 2016:1–10. https://doi.org/10.1155/2016/2683042

    Article  CAS  Google Scholar 

  85. Kaid C, Silva PBG, Cortez BA et al (2015) miR-367 promotes proliferation and stem-like traits in medulloblastoma cells. Cancer Sci 106:1188–1195. https://doi.org/10.1111/cas.12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Samaraweera L, Grandinetti KB, Huang R et al (2014) MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity. BMC Cancer. https://doi.org/10.1186/1471-2407-14-309

    Article  PubMed  PubMed Central  Google Scholar 

  87. Foley NH, Bray I, Watters KM et al (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18:1089–1098. https://doi.org/10.1038/cdd.2010.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Beveridge NJ, Tooney PA, Carroll AP et al (2009) Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 21:1837–1845. https://doi.org/10.1016/j.cellsig.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  89. Zhao Z, Ma X, Hsiao T-H et al (2014) A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation. Oncotarget 5:2499–2512. https://doi.org/10.18632/oncotarget.1703

    Article  PubMed  PubMed Central  Google Scholar 

  90. Das E, Bhattacharyya NP (2014) MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes. FEBS Lett 588:1706–1714. https://doi.org/10.1016/j.febslet.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  91. Zhao Z, Ma X, Sung D et al (2015) microRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest. RNA Biol 12:538–554. https://doi.org/10.1080/15476286.2015.1023495

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen H, Shalom-Feuerstein R, Riley J et al (2010) miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 394:921–927. https://doi.org/10.1016/j.bbrc.2010.03.076

    Article  CAS  PubMed  Google Scholar 

  93. Das S, Bryan K, Buckley PG et al (2012) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene 32:2927–2936. https://doi.org/10.1038/onc.2012.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ren X, Bai X, Zhang X et al (2015) quantitative nuclear proteomics identifies that miR-137-mediated EZH2 Reduction Regulates Resveratrol-induced Apoptosis of Neuroblastoma cells*. Mol Cell Proteom 14:316–328. https://doi.org/10.1074/mcp.M114.041905

    Article  CAS  Google Scholar 

  95. Molenaar JJ, Domingo-Fernández R, Ebus ME et al (2012) LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 44:1199–1206. https://doi.org/10.1038/ng.2436

    Article  CAS  PubMed  Google Scholar 

  96. Chen J, Wang P, Cai R et al (2019) SLC34A2 promotes neuroblastoma cell stemness via enhancement of miR-25/Gsk3β-mediated activation of Wnt/β-catenin signaling. FEBS Open Bio 9:527–537. https://doi.org/10.1002/2211-5463.12594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Besharat ZM, Abballe L, Cicconardi F et al (2018) Foxm1 controls a pro-stemness microRNA network in neural stem cells. Sci Rep. https://doi.org/10.1038/s41598-018-21876-y

    Article  PubMed  PubMed Central  Google Scholar 

  98. Huang S, Yang J-Y (2015) Targeting the hedgehog pathway in pediatric medulloblastoma. Cancers 7:2110–2123. https://doi.org/10.3390/cancers7040880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wickström M, Dyberg C, Shimokawa T et al (2012) Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growthin vitroandin vivo. Int J Cancer 132:1516–1524. https://doi.org/10.1002/ijc.27820

    Article  CAS  PubMed  Google Scholar 

  100. Ames HM, Yuan M, Vizcaíno MA et al (2016) MicroRNA profiling of low-grade glial and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Mod Pathol 30:204–216. https://doi.org/10.1038/modpathol.2016.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jha P, Agrawal R, Pathak P et al (2015) Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs. Int J Cancer 137:2343–2353. https://doi.org/10.1002/ijc.29610

    Article  CAS  PubMed  Google Scholar 

  102. Lucon DR, Rocha CDS, Craveiro RB et al (2013) Downregulation of 14q32 microRNAs in primary human desmoplastic medulloblastoma. Front Oncol. https://doi.org/10.3389/fonc.2013.00254

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gattolliat C-H, Thomas L, Ciafrè SA et al (2011) Expression of miR-487b and miR-410 encoded by 14q32.31 locus is a prognostic marker in neuroblastoma. Br J Cancer 105:1352–1361. https://doi.org/10.1038/bjc.2011.388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cheng Y, He C, Wang M et al (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-019-0095-0

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chang JC (2016) Cancer stem cells. Medicine. https://doi.org/10.1097/2FMD.0000000000004766

    Article  PubMed  PubMed Central  Google Scholar 

  106. Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A (2017) Cancer stem cells: the root of tumor recurrence and metastases. Semin Cancer Biol 44:10–24. https://doi.org/10.1016/j.semcancer.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  107. Su JM, Li X-N, Thompson P et al (2010) Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clin Cancer Res 17:589–597. https://doi.org/10.1158/1078-0432.CCR-10-0738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Su JMF, Murray JC, Mcnall-Knapp RY et al (2020) A phase 2 study of valproic acid and radiation, followed by maintenance valproic acid and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma or high-grade glioma. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28283

    Article  PubMed  Google Scholar 

  109. Masoudi A, Elopre M, Amini E, Nagel ME, Ater JL, Gopalakrishnan V, Wolff JE (2008) Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Res 28:2437–2442

    PubMed  Google Scholar 

  110. Tilburg CMV, Milde T, Witt R et al (2019) Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clin Epigenetics. https://doi.org/10.1186/s13148-019-0775-1

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hummel TR, Wagner L, Ahern C et al (2013) A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a children’s oncology group phase 1 consortium study. Pediatr Blood Cancer 60:1452–1457. https://doi.org/10.1002/pbc.24541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dubois SG, Groshen S, Park JR et al (2015) Phase I study of vorinostat as a radiation sensitizer with 131I-metaiodobenzylguanidine (131I-MIBG) for patients with relapsed or refractory neuroblastoma. Clin Cancer Res 21:2715–2721. https://doi.org/10.1158/1078-0432.CCR-14-3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. National Cancer Institute (NCI) (2016) A phase 1 study of entinostat, an oral histone deacetylase inhibitor, in pediatric patients with recurrent or refractory solid tumors, including CNS tumors and lymphoma. Identifier NCT02780804. Retrieved from https://clinicaltrials.gov/ct2/show/NCT02780804

  114. University Hospital Heidelberg (2019) Exploratory multinational phase I/II combination study of nivolumab and entinostat in children and adolescents with refractory high-risk malignancies. Identifier NCT03838042. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03838042

  115. National Cancer Institute (NCI) (2010) A randomized phase II/III study of vorinostat and local irradiation OR temozolomide and local irradiation OR bevacizumab and local irradiation followed by maintenance bevacizumab and temozolomide in children with newly diagnosed high-grade gliomas. Identifier NCT01236560. Retrieved from https://clinicaltrials.gov/ct2/show/NCT01236560

  116. Dana-Farber, Cancer Institute (2020) Phase 1 trial of marizomib alone and in combination with panobinostat for children with diffuse intrinsic pontine glioma. Identifier NCT04341311. Retrieved from https://clinicaltrials.gov/ct2/show/NCT04341311

  117. The Hospital for Sick Children (2017) Phase I/Ib trial of combined 5'azacitidine and carboplatin for recurrent/refractory pediatric brain and solid tumors. Identifier NCT03206021. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03206021

  118. Ganesan A, Arimondo PB, Rots MG et al (2019) The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics. https://doi.org/10.1186/s13148-019-0776-0

    Article  PubMed  PubMed Central  Google Scholar 

  119. Italiano A et al (2018) Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol 19:649–659. https://doi.org/10.1016/S1470-2045(18)30145-1

    Article  CAS  PubMed  Google Scholar 

  120. Janssen Research & Development, LLC (2018) A Phase 1, first-in-human, open-label study of the safety, pharmacokinetics, and pharmacodynamics of JNJ-64619178, an inhibitor of protein arginine methyltransferase 5 (PRMT5) in subjects with advanced cancers. Identifier NCT03573310. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03573310

  121. Dartmouth-Hitchcock Medical Center (2013) Evaluating the expression levels of microRNA-10b in patients with gliomas. Identifier NCT01849952. Retrieved from https://clinicaltrials.gov/ct2/show/NCT01849952

  122. Fouladi M et al (2010) Pediatric phase I trial and pharmacokinetic study of vorinostat: a children’s oncology group phase I consortium report. J Clin Oncol 28:3623–3629. https://doi.org/10.1200/JCO.2009.25.9119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Muscal JA et al (2013) A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a children’s oncology group phase I consortium study (ADVL0916). Pediatr Blood Cancer 60:390–395. https://doi.org/10.1002/pbc.24271

    Article  CAS  PubMed  Google Scholar 

  124. M.D. Anderson Cancer Center (2015) Vorinostat and temsirolimus with or without radiation therapy in treating younger patients with newly diagnosed or progressive diffuse intrinsic pontine glioma. Identifier NCT02420613. Retrieved from https://clinicaltrials.gov/ct2/show/NCT02420613

  125. New Approaches to Neuroblastoma Therapy Consortium (2017) MIBG with dinutuximab +/− vorinostat. Identifier NCT03332667. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03332667

  126. Jubilant DraxImage Inc. (2018) A study of therapeutic iobenguane (131-I) and vorinostat for recurrent or progressive high-risk neuroblastoma subjects (OPTIMUM). Identifier NCT03561259. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03561259

  127. Pinto N et al (2018) Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: a new approaches to neuroblastoma therapy (NANT) trial. Pediatr Blood Cancer 65:e27023. https://doi.org/10.1002/pbc.27023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. New York Medical College (2020) Vorinostat in combination with chemotherapy in relapsed/refractory solid tumors and CNS malignancies (NYMC195). Identifier NCT04308330. Retrieved from https://clinicaltrials.gov/ct2/show/NCT04308330

  129. Leary SES et al (2022) Vorinostat and isotretinoin with chemotherapy in young children with embryonal brain tumors: a report from the pediatric brain tumor consortium (PBTC-026). Neuro Oncol 24:1178–1190. https://doi.org/10.1093/neuonc/noab293

    Article  CAS  PubMed  Google Scholar 

  130. Witt O et al (2012) Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma or leukemia. Klin Padiatr 224:398–403. https://doi.org/10.1186/s13148-019-0775-1

    Article  CAS  PubMed  Google Scholar 

  131. Peters KB et al (2018) Phase I/II trial of vorinostat, bevacizumab, and daily temozolomide for recurrent malignant gliomas. J Neurooncol 137:349–356. https://doi.org/10.1007/s11060-017-2724-1

    Article  CAS  PubMed  Google Scholar 

  132. Su JM et al (2022) Phase I/II trial of vorinostat and radiation and maintenance vorinostat in children with diffuse intrinsic pontine glioma: a children’s oncology group report. Neuro Oncol 24:655–664. https://doi.org/10.1093/neuonc/noab188

    Article  CAS  PubMed  Google Scholar 

  133. Wake Forest University Health Sciences (2015) Pediatric precision laboratory advanced neuroblastoma therapy (PEDS-PLAN). Identifier NCT02559778. Retrieved from https://clinicaltrials.gov/ct2/show/NCT02559778

  134. DuBois SG et al (2021) Randomized phase II trial of MIBG versus MIBG, vincristine, and irinotecan versus MIBG and vorinostat for patients with relapsed or refractory neuroblastoma: a report from NANT consortium. J Clin Oncol 39:3506–3514. https://doi.org/10.1200/JCO.21.00703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wolff JE et al (2008) Valproic acid was well tolerated in heavily pretreated pediatric patients with high-grade glioma. J Neurooncol 90:309–314. https://doi.org/10.1007/s11060-008-9662-x

    Article  CAS  PubMed  Google Scholar 

  136. Felix FH, Trompieri NM, de Araujo OL, da Trindade KM, Fontenele JB (2011) Potential role for valproate in the treatment of high–risk brain tumors of childhood-results from a retrospective observational cohort study. Pediatr Hematol Oncol 28:556–570. https://doi.org/10.3109/08880018.2011.563774

    Article  CAS  PubMed  Google Scholar 

  137. Wolff JE et al (2012) Treatment of recurrent diffuse intrinsic pontine glioma: the MD anderson cancer center experience. J Neurooncol 106:391–397. https://doi.org/10.1007/s11060-011-0677-3

    Article  CAS  PubMed  Google Scholar 

  138. Su JM et al (2020) A phase 2 study of valproic acid and radiation, followed by maintenance valproic acid and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma or high-grade glioma. Pediatr Blood Cancer 67:e28283. https://doi.org/10.1002/pbc.28283

    Article  PubMed  Google Scholar 

  139. University of California, San Francisco (2021) Combination therapy for the treatment of diffuse midline gliomas. Identifier NCT05009992. Retrieved from https://clinicaltrials.gov/ct2/show/NCT05009992

  140. University of Göttingen (2017) International Cooperative Phase III Trial of the HIT-HGG Study Group (HIT-HGG-2013) (HIT-HGG-2013). Identifier NCT03243461. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03243461

  141. Bukowinski A et al (2021) A phase 1 study of entinostat in children and adolescents with recurrent or refractory solid tumors, including CNS tumors: trial ADVL1513, pediatric early phase-clinical trial network (PEP-CTN). Pediatr Blood Cancer 68:e28892. https://doi.org/10.1002/pbc.28892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Tilburg CM et al (2020) INFORM2 NivEnt: the first trial of the INFORM2 biomarker driven phase I/II trial series: the combination of nivolumab and entinostat in children and adolescents with refractory high-risk malignancies. BMC Cancer 20:523. https://doi.org/10.1186/s12885-020-07008-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pediatric Brain Tumor Consortium (2016) Trial of panobinostat in children with diffuse intrinsic pontine glioma (PBTC-047). Identifier NCT02717455. Retrieved from https://clinicaltrials.gov/ct2/show/NCT02717455

  144. The University of Texas Health Science Center, Houston (2020) infusion of panobinostat (MTX110) into the fourth ventricle in children and adults with recurrent medulloblastoma. Identifier NCT04315064. Retrieved from https://clinicaltrials.gov/ct2/show/NCT04315064

  145. Cheng-Chia (Fred) Wu (2021) Non-invasive focused ultrasound (FUS) with oral panobinostat in children with progressive diffuse midline glioma (DMG). Identifier NCT04804709. Retrieved from https://clinicaltrials.gov/ct2/show/NCT04804709

  146. Luca Szalontay (2020) CED of MTX110 newly diagnosed diffuse midline gliomas. Identifier NCT04264143. Retrieved from https://clinicaltrials.gov/ct2/show/NCT04264143

  147. National Cancer Institute (NCI) (2017) Targeted therapy directed by genetic testing in treating pediatric patients with relapsed or refractory advanced solid tumors, non-hodgkin lymphomas, or histiocytic disorders (The pediatric MATCH screening trial). Identifier NCT03155620. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03155620

  148. National Cancer Institute (NCI) (2017) Tazemetostat in treating patients with relapsed or refractory advanced solid tumors, non-hodgkin lymphoma, or histiocytic disorders With EZH2, SMARCB1, or SMARCA4 gene mutations (a pediatric MATCH treatment trial). Identifier NCT03213665. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03213665

  149. George RE et al (2010) Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a children’s oncology group study. Pediatr Blood Cancer 55:629–638. https://doi.org/10.1002/pbc.22607

    Article  PubMed  PubMed Central  Google Scholar 

  150. Krishnadas DK et al (2015) A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother 64:1251–1260. https://doi.org/10.1007/s00262-015-1731-3

    Article  CAS  PubMed  Google Scholar 

  151. AbbVie (2017) A Study of the Safety and Pharmacokinetics of Venetoclax in Pediatric and Young Adult Patients With Relapsed or Refractory Malignancies. Identifier NCT03236857. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03236857

  152. Fenaux P et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10:223–232. https://doi.org/10.1016/S1470-2045(09)70003-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kantarjian H et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803. https://doi.org/10.1002/cncr.21792

    Article  CAS  PubMed  Google Scholar 

  154. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252. https://doi.org/10.1634/theoncologist.12-10-1247

    Article  CAS  PubMed  Google Scholar 

  155. Piekarz RL et al (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27:5410–5417. https://doi.org/10.1200/JCO.2008.21.6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. O’Connor OA et al (2015) Belinostat in patients with relapsed or refractory peripheral T-Cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol 33:2492–2499. https://doi.org/10.1200/JCO.2014.59.2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Laubach JP et al (2021) Efficacy and safety of oral panobinostat plus subcutaneous bortezomib and oral dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma (PANORAMA 3): an open-label, randomised, phase 2 study. Lancet Oncol 22:142–154. https://doi.org/10.1016/S1470-2045(20)30680-X

    Article  CAS  PubMed  Google Scholar 

  158. Santos FP, Kantarjian H, Garcia-Manero G, Issa JP, Ravandi F (2010) Decitabine in the treatment of myelodysplastic syndromes. Expert Rev Anticancer Ther 10:9–22. https://doi.org/10.1586/era.09.164

    Article  CAS  PubMed  Google Scholar 

  159. Götze K et al (2010) Azacitidine for treatment of patients with myelodysplastic syndromes (MDS): practical recommendations of the German MDS study group. Ann Hematol 89:841–850. https://doi.org/10.1007/s00277-010-1015-0

    Article  CAS  PubMed  Google Scholar 

  160. Duvic M et al (2009) Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin Lymphoma Myeloma 9:412–416. https://doi.org/10.3816/CLM.2009.n.082

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dra. Marialva Sinigaglia her images expertise.

Funding

This article was supported by Ministry of Health/CNPq/FAPERGS PPSUS (Grant Number 21/2551–0000114-3 to L.G), the Children’s Cancer Institute (ICI), the National Council for Scientific and Technological Development (CNPq, MCTI, Brazil; grant 305647/2019-9 to R.R. and scholarship to N.H.F.), and the William Donald Nash Brain Tumour Research Fellowship, Brain Tumour Foundation of Canada (Canada; C.N.); the Swifty Foundation (Canada; C.N.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Literature search and data analysis were performed by NHF and MCJ. The first draft of the manuscript was written by NHF and all authors revised and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Natália Hogetop Freire.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Disclosure of potential conflicts of interest: The authors declare no competing interests.

Informed consent

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agreed to publish this article.

Research involving human participants and animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire, N.H., Jaeger, M.d., de Farias, C.B. et al. Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Mol Cell Biochem 478, 2241–2255 (2023). https://doi.org/10.1007/s11010-022-04655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04655-2

Keywords

Navigation