Skip to main content
Log in

Combined Treatments with a Retinoid Receptor Agonist and Epigenetic Modulators in Human Neuroblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroblastoma (NB) is the most common extracranial solid childhood tumor accounting for around 15% of pediatric cancer deaths and most probably originates from a failure in the development of embryonic neural crest cells. Retinoids can inhibit the proliferation and stimulate differentiation of NB cells. In addition, epigenetic events involving changes in chromatin structure and DNA methylation can mediate the effects of retinoids; hence, the scope of this study is to investigate the use of retinoids and epigenetic drugs in NB cell lines. Here, we demonstrate that the combination of retinoid all trans-retinoic acid (ATRA) with inhibitors of either histone deacetylases (HDACs) or DNA methyltransferase is more effective in impairing the proliferation of human SH-SY5Y and SK-N-BE(2) NB cells than any drug given alone. Treatments also induced differential changes on the messenger RNA (mRNA) expression of retinoid receptor subtypes and reduced the protein content of c-Myc, the neuronal markers NeuN and β-3 tubulin, and the oncoprotein Bmi1. These results suggest that the combination of retinoids with epigenetic modulators is more effective in reducing NB growth than treatment with single drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216

    Article  CAS  PubMed  Google Scholar 

  2. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  CAS  PubMed  Google Scholar 

  3. Ratner N, Brodeur GM, Dale RC, Schor NF (2016). The "neuro" of neuroblastoma: neuroblastoma as a neurodevelopmental disorder. Ann Neurol 4: doi: 10.1002/ana.24659.

  4. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  CAS  PubMed  Google Scholar 

  5. Thiele CJ, Reynolds CP, Israel MA (1985) Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313:404–446

    Article  CAS  PubMed  Google Scholar 

  6. Nagai J, Yazawa T, Okudela K, Kigasawa H, Kitamura H, Osaka H (2004) Retinoic acid induces neuroblastoma cell death by inhibiting proteasomal degradation of retinoic acid receptor alpha. Cancer Res 64:7910–7917

    Article  CAS  PubMed  Google Scholar 

  7. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H et al (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s cancer group. N Engl J Med 341:1165–1173

    Article  CAS  PubMed  Google Scholar 

  8. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, Gerbing RB, London WB et al (2009) Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol 27:1007–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Urvalek AM, Gudas LJ (2014) Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J Biol Chem 289:19519–19530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gudas LJ (2013) Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol 24:701–705

    Article  CAS  PubMed  Google Scholar 

  11. Angrisano T, Sacchetti S, Natale F, Cerrato A, Pero R, Keller S, Peluso S, Perillo B et al (2011) Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells. Nucleic Acids Res 39:1993–2006

    Article  CAS  PubMed  Google Scholar 

  12. Cheung BB (2015) Combination therapies improve the anticancer activities of retinoids in neuroblastoma. World J Clin Oncol 6:212–215

    Article  PubMed  PubMed Central  Google Scholar 

  13. Epping MT, Wang L, Plumb JA, Lieb M, Gronemeyer H, Brown R, Bernards R (2007) A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors. Proc Natl Acad Sci U S A 104:17777–17782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coffey DC, Kutko MC, Glick RD, Butler LM, Heller G, Rifkind RA, Marks PA, Richon VM et al (2001) The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res 61:3591–3594

    CAS  PubMed  Google Scholar 

  15. De los Santos M, Zambrano A, Aranda A (2007) Combined effects of retinoic acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol Cancer Ther 2007 6(4):1425–1432

    Article  CAS  Google Scholar 

  16. De los Santos M, Zambrano A, Sánchez-Pacheco A, Aranda A (2007) Histone deacetylase inhibitors regulate retinoic acid receptor beta expression in neuroblastoma cells by both transcriptional and posttranscriptional mechanisms. Mol Endocrinol 21:2416–2426

    Article  CAS  PubMed  Google Scholar 

  17. Hahn CK, Ross KN, Warrington IM, Mazitschek R, Kanegai CM, Wright RD, Kung AL, Golub TR et al (2008) Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Natl Acad Sci U S A 105:9751–9756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang XX, Robinson ME, Riceberg JS, Kim DY, Kung B, Titus TB, Hayashi S, Flake AW et al (2004) Favorable neuroblastoma genes and molecular therapeutics of neuroblastoma. Clin Cancer Res 10:5837–5844

    Article  CAS  PubMed  Google Scholar 

  19. Hoebeeck J, Michels E, Pattyn F, Combaret V, Vermeulen J, Yigit N, Hoyoux C, Laureys G et al (2009) Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. Cancer Lett 273:336–346

    Article  CAS  PubMed  Google Scholar 

  20. Qiu YY, Mirkin BL, Dwivedi RS (2005) Inhibition of DNA methyltransferase reverses cisplatin induced drug resistance in murine neuroblastoma cells. Cancer Detect Prev 29:456–463

    Article  CAS  PubMed  Google Scholar 

  21. Charlet J, Schnekenburger M, Brown KW, Diederich M (2012) DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Biochem Pharmacol 83:858–865

    Article  CAS  PubMed  Google Scholar 

  22. Ostler KR, Yang Q, Looney TJ, Zhang L, Vasanthakumar A, Tian Y, Kocherginsky M, Raimondi SL et al (2012) Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res 72:4714–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stallings RL, Foley NH, Bray IM, Das S, Buckley PG (2011) MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation. Semin Cancer Biol 21:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abujamra AL, Almeida VR, Brunetto AL, Schwartsmann G, Roesler R (2009) A gastrin-releasing peptide receptor antagonist stimulates Neuro2a neuroblastoma cell growth: prevention by a histone deacetylase inhibitor. Cell Biol Int 33:899–903

    Article  CAS  PubMed  Google Scholar 

  25. Nör C, Sassi FA, de Farias CB, Schwartsmann G, Abujamra AL, Lenz G, Brunetto AL, Roesler R (2013) The histone deacetylase inhibitor sodium butyrate promotes cell death and differentiation and reduces neurosphere formation in human medulloblastoma cells. Mol Neurobiol 48:533–543

    Article  PubMed  Google Scholar 

  26. Dos Santos MP, de Farias CB, Roesler R, Brunetto AL, Abujamra AL (2014) In vitro antitumor effect of sodium butyrate and zoledronic acid combined with traditional chemotherapeutic drugs: a paradigm of synergistic molecular targeting in the treatment of Ewing sarcoma. Oncol Rep 31:955–968

    Article  PubMed  Google Scholar 

  27. Menegotto PR, da Costa Lopez PL, Souza BK, de Farias CB, Filippi-Chiela EC, Vieira IA, Schwartsmann G, Lenz G et al (2016) Gastrin-releasing peptide receptor knockdown induces senescence in glioblastoma cells. Mol Neurobiol. doi:10.1007/s12035-016-9696-6

    PubMed  Google Scholar 

  28. Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, Buckley PG, Stallings RL (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70:7874–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang R, Cheung NK, Vider J, Cheung IY, Gerald WL, Tickoo SK, Holland EC, Blasberg RG (2011) MYCN and MYC regulate tumor proliferation and tumorigenesis directly through BMI1 in human neuroblastomas. FASEB J 25:4138–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoebeeck J, Michels E, Menten B, Van Roy N, Eggert A, Schramm A, De Preter K, Yigit N et al (2007) High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors. Int J Cancer 120:533–538

    Article  CAS  PubMed  Google Scholar 

  31. Clagett-Dame M, Verhalen TJ, Biedler JL, Repa JJ (1993) Identification and characterization of all-trans-retinoic acid receptor transcripts and receptor protein in human neuroblastoma cells. Arch Biochem Biophys 300:684–693

    Article  CAS  PubMed  Google Scholar 

  32. Marshall GM, Cheung B, Stacey KP, Norris MD, Haber M (1994) Regulation of retinoic acid receptor alpha expression in human neuroblastoma cell lines and tumor tissue. Anticancer Res 14:437–441

    CAS  PubMed  Google Scholar 

  33. Wuarin L, Chang B, Wada R, Sidell N (1994) Retinoic acid up-regulates nuclear retinoic acid receptor-alpha expression in human neuroblastoma cells. Int J Cancer 56:840–845

    Article  CAS  PubMed  Google Scholar 

  34. Cheung B, Hocker JE, Smith SA, Norris MD, Haber M, Marshall GM (1998) Favorable prognostic significance of high-level retinoic acid receptor beta expression in neuroblastoma mediated by effects on cell cycle regulation. Oncogene 17:751–759

    Article  CAS  PubMed  Google Scholar 

  35. Widschwendter M, Berger J, Hermann M, Müller HM, Amberger A, Zeschnigk M, Widschwendter A, Abendstein B et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 92:826–832

    Article  CAS  PubMed  Google Scholar 

  36. Westermann F, Muth D, Benner A, Bauer T, Henrich KO, Oberthuer A, Brors B, Beissbarth T et al (2008) Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol 9:R150

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hammerling U, Bjelfman C, Påhlman S (1987) Different regulation of N- and c-myc expression during phorbol ester-induced maturation of human SH-SY5Y neuroblastoma cells. Oncogene 2:73–77

    CAS  PubMed  Google Scholar 

  38. Stio M, Celli A, Treves C (2001) Synergistic anti-proliferative effects of vitamin D derivatives and 9-cis retinoic acid in SH-SY5Y human neuroblastoma cells. J Steroid Biochem Mol Biol 77:213–222

    Article  CAS  PubMed  Google Scholar 

  39. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui H, Ma J, Ding J, Li T, Alam G, Ding HF (2006) Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281:34696–34704

    Article  CAS  PubMed  Google Scholar 

  41. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418

    Article  CAS  PubMed  Google Scholar 

  42. Ochiai H, Takenobu H, Nakagawa A, Yamaguchi Y, Kimura M, Ohira M, Okimoto Y, Fujimura Y et al (2010) Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1Bbeta and TSLC1 in neuroblastoma. Oncogene 29:2681–2690

    Article  CAS  PubMed  Google Scholar 

  43. Katsetos CD, Herman MM, Mörk SJ (2003) Class III beta-tubulin in human development and cancer. Cell Motil Cytoskeleton 55:77–96

    Article  CAS  PubMed  Google Scholar 

  44. Hetland TE, Hellesylt E, Flørenes VA, Tropé C, Davidson B, Kærn J (2011) Class III β-tubulin expression in advanced-stage serous ovarian carcinoma effusions is associated with poor survival and primary chemoresistance. Hum Pathol 42:1019–1026

    Article  CAS  PubMed  Google Scholar 

  45. Lebok P, Öztürk M, Heilenkötter U, Jaenicke F, Müller V, Paluchowski P, Geist S, Wilke C et al (2016) High levels of class III β-tubulin expression are associated with aggressive tumor features in breast cancer. Oncol Lett 11:1987–1994

    PubMed  PubMed Central  Google Scholar 

  46. Zhang HL, Ruan L, Zheng LM, Whyte D, Tzeng CM, Zhou XW (2012) Association between class III β-tubulin expression and response to paclitaxel/vinorebine-based chemotherapy for non-small cell lung cancer: a meta-analysis. Lung Cancer 77:9–15

    Article  PubMed  Google Scholar 

  47. Heinen TE, Dos Santos RP, da Rocha A, Dos Santos MP, Lopez PL, Filho MA, Souza BK, Rivero LF et al (2016) Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget 7:34860–34880

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ross RA, Biedler JL, Spengler BA (2003) A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors. Cancer Lett 197:35–39

    Article  CAS  PubMed  Google Scholar 

  49. Walton JD, Kattan DR, Thomas SK, Spengler BA, Guo HF, Biedler JL, Cheung NK, Ross RA (2004) Characteristics of stem cells from human neuroblastoma cell lines and in tumors. Neoplasia 6:838–845

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kamijo T (2012) Role of stemness-related molecules in neuroblastoma. Pediatr Res 71:511–515

    Article  CAS  PubMed  Google Scholar 

  51. Hanada M, Krajewski S, Tanaka S, Cazals-Hatem D, Spengler BA, Ross RA, Biedler JL, Reed JC (1993) Regulation of Bcl-2 oncoprotein levels with differentiation of human neuroblastoma cells. Cancer Res 53:4978–4986

    CAS  PubMed  Google Scholar 

  52. Henrich KO, Bender S, Saadati M, Dreidax D, Gartlgruber M, Shao C, Herrmann C, Wiesenfarth M et al (2016) Integrative genome-scale analysis identifies epigenetic mechanisms of transcriptional deregulation in unfavorable neuroblastomas. Cancer Res 76:5523–5537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Council for Scientific and Technological Development (CNPq; grant numbers 484185/2012-8 and 303276/2013-4 to R.R.); PRONON/Ministry of Health, Brazil (number 25000.162.034/2014-21 to C.B.F); the Rafael Koff Acordi Research Fund, Children’s Cancer Institute (ICI); and the Clinical Hospital institutional research fund (FIPE/HCPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Roesler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, V.R., Vieira, I.A., Buendia, M. et al. Combined Treatments with a Retinoid Receptor Agonist and Epigenetic Modulators in Human Neuroblastoma Cells. Mol Neurobiol 54, 7610–7619 (2017). https://doi.org/10.1007/s12035-016-0250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0250-3

Keywords

Navigation