Skip to main content

Advertisement

Log in

Role of TSC1 in physiology and diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Since its initial discovery as the gene altered in Tuberous Sclerosis Complex (TSC), an autosomal dominant disorder, the interest in TSC1 (Tuberous Sclerosis Complex 1) has steadily risen. TSC1, an essential component of the pro-survival PI3K/AKT/MTOR signaling pathway, plays an important role in processes like development, cell growth and proliferation, survival, autophagy and cilia development by co-operating with a variety of regulatory molecules. Recent studies have emphasized the tumor suppressive role of TSC1 in several human cancers including liver, lung, bladder, breast, ovarian, and pancreatic cancers. TSC1 perceives inputs from various signaling pathways, including TNF-α/IKK-β, TGF-β-Smad2/3, AKT/Foxo/Bim, Wnt/β-catenin/Notch, and MTOR/Mdm2/p53 axis, thereby regulating cancer cell proliferation, metabolism, migration, invasion, and immune regulation. This review provides a first comprehensive evaluation of TSC1 and illuminates its diverse functions apart from its involvement in TSC genetic disorder. Further, we have summarized the physiological functions of TSC1 in various cellular events and conditions whose dysregulation may lead to several pathological manifestations including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, Kwiatkowski DJ (1997) Identification of the tuberous sclerosis gene on chromosome 9q34. Science 277:805–808

    Article  PubMed  Google Scholar 

  2. Ali M, Girimaji SC, Kumar A (2003) Identification of a core promoter and a novel isoform of the human TSC1 gene transcript and structural comparison with mouse homolog. Gene 320:145–154

    Article  CAS  PubMed  Google Scholar 

  3. Napolioni V, Curatolo P (2008) Genetics and molecular biology of tuberous sclerosis complex. Curr Genom 9:475–487

    Article  CAS  Google Scholar 

  4. De Vries PJ, Howe CJ (2007) The tuberous sclerosis complex proteins- a GRIPP on cognition and neurodevelopment. Trends Mol Med 13:319–326

    Article  PubMed  Google Scholar 

  5. Pymar LS, Platt FM, Askham JM, Morrison EE, Knowles MA (2008) Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Hum Mol Genet 17:2006–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santiago Lima AJ, Hoogeveen-Westerveld M, Nakashima A, Maat-Kievit A, van den Ouweland A, Halley D, Kikkawa U, Nellist M (2014) Identification of regions critical for the integrity of the TSC1-TSC2-TBC1D7 complex. PLoS ONE 9:e93940

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190

    Article  CAS  PubMed  Google Scholar 

  8. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mak BC, Kenerson HL, Aicher LD, Barnes EA, Yeung RS (2005) Aberrant beta-catenin signaling in tuberous sclerosis. Am J Pathol 167:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adhikari D, Zheng W, Shen Y, Gorre N, Hamalainen T, Cooney AJ, Huhtaniemi I, Lan ZJ, Liu K (2010) Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19:397–410

    Article  CAS  PubMed  Google Scholar 

  11. Malhowski AJ, Hira H, Bashiruddin S, Warburton R, Goto J, Robert B, Kwiatkowski DJ, Finlay GA (2011) Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum Mol Genet 20:1290–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu Q, Chen YB, Yang H, Wang WW, Li CC, Wang L, Wang J, Du L, Yin XX (2019) Inactivation of TSC1 promotes epithelial-mesenchymal transition of renal tubular epithelial cells in mouse diabetic nephropathy. Acta Pharmacol Sin 40:1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paluch EK, Aspalter IM, Sixt M (2016) Focal adhesion-independent cell migration. Annu Rev Cell Dev Biol 32:469–490

    Article  CAS  PubMed  Google Scholar 

  14. Pijuan J, Barcelo C, Moreno DF, Maiques O, Siso P, Marti RM, Macia A, Panosa A (2019) In vitro cell migration, invasion and adhesion assays: from cell imaging to data analysis. Front Cell Dev Biol 7:107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lamb RF, Roy C, Diefenbach TJ, Vinters HV, Johnson MW, Jay DG, Hall A (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2:281–287

    Article  CAS  PubMed  Google Scholar 

  16. Ohsawa M, Kobayashi T, Okura H, Igarashi T, Mizuguchi M, Hino O (2013) TSC1 controls distribution of actin fibers through its effect on function of Rho family of small GTPases and regulates cell migration and polarity. PLoS ONE 8:e54503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haddad LA, Smith N, Bowser M, Niida Y, Murthy V, Gonzalez-Agosti C, Ramesh V (2002) The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J Biol Chem 277:44180–44186

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Z, Shrikhande G, Xu J, McKay RM, Burns DK, Johnson JE, Parada LF (2011) Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 25:1595–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Son H, Moon A (2010) Epithelial-mesenchymal transition and cell invasion. Toxicol Res 26:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thien A, Prentzell MT, Holzwarth B, Klasener K, Kuper I, Boehlke C, Sonntag AG, Ruf S, Maerz L, Nitschke R, Grellscheid SN, Reth M, Walz G, Baumeister R, Neumann-Haefelin E, Thedieck K (2015) TSC1 activates TGF-β-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition. Dev Cell 32:617–630

    Article  CAS  PubMed  Google Scholar 

  21. Sherr CJ, Bartek J (2017) Cell cycle-targeted cancer therapies. Annu Rev Cancer Biol 1:41–57

    Article  Google Scholar 

  22. Miloloza A, Rosner M, Nellist M, Halley D, Bernaschek G, Hengstschlager M (2000) The TSC1 gene product hamartin negatively regulates cell proliferation. Hum Mol Genet 9:1721–1727

    Article  CAS  PubMed  Google Scholar 

  23. Benvenuto G, Li S, Brown SJ, Braverman R, Vass WC, Cheadle JP, Halley DJ, Sampson JR, Wienecke R, DeClue JE (2000) The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene 19:6306

    Article  CAS  PubMed  Google Scholar 

  24. Pradhan SA, Rather MI, Tiwari A, Bhat VK, Kumar A (2014) Evidence that TSC2 acts as a transcription factor and binds to and represses the promoter of epiregulin. Nucleic Acids Res 42:6243–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miloloza A, Kubista M, Rosner M, Hengstschlager M (2002) Evidence for separable functions of tuberous sclerosis gene products in mammalian cell cycle regulation. J Neuropathol Exp Neurol 61:154–163

    Article  CAS  PubMed  Google Scholar 

  26. Gao X, Pan D (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15:1383–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Potter CJ, Huang H, Xu T (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth cell proliferation and organ size. Cell 105:357–368

    Article  CAS  PubMed  Google Scholar 

  28. Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105:345–355

    Article  CAS  PubMed  Google Scholar 

  29. Astrinidis A, Senapedis W, Coleman TR, Henske EP (2003) Cell cycle-regulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene by cyclin-dependent kinase 1/cyclin B. J Biol Chem 278:51372–51379

    Article  CAS  PubMed  Google Scholar 

  30. Astrinidis A, Senapedis W, Henske EP (2006) Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner. Hum Mol Genet 15:287–297

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Kong Y, Song L, Luo Q, Liu J, Shao C, Hou X, Liu X (2018) Plk1-mediated phosphorylation of TSC1 enhances the efficacy of rapamycin. Cancer Res 78:2864–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Carcer G (2019) The mitotic cancer target Polo-like kinase 1: oncogene or tumor suppressor? Genes 10:208

    Article  PubMed Central  Google Scholar 

  33. Gradilone SA, Pisarello MJL, LaRusso NF (2017) Primary cilia in tumor biology: the primary cilium as a therapeutic target in cholangiocarcinoma. Curr Drug Targets 18:958–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Higgins M, Obaidi I, McMorrow T (2019) Primary cilia and their role in cancer. Oncol Lett 17:3041–3047

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao M, Zhong Q (2016) Cilia in autophagy and cancer. Cilia 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, Henske EP (2008) The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet 18:151–163

    Article  PubMed  PubMed Central  Google Scholar 

  37. DiBella LM, Park A, Sun Z (2009) Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet 18:595–606

    Article  CAS  PubMed  Google Scholar 

  38. Rosengren T, Larsen LJ, Pedersen LB, Christensen ST, Moller LB (2018) TSC1 and TSC2 regulate cilia length and canonical hedgehog signaling via different mechanisms. Cell Mol Life Sci 75:2663–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chong-Kopera H, Inoki K, Li Y, Zhu T, Garcia-Gonzalo FR, Rosa JL, Guan KL (2006) TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem 281:8313–8316

    Article  CAS  PubMed  Google Scholar 

  40. Jaeger AM, Whitesell L (2019) HSP90: enabler of cancer adaptation. Annu Rev Cancer Biol 3:275–297

    Article  Google Scholar 

  41. Woodford MR, Sager RA, Marris E, Dunn DM, Blanden AR, Murphy RL, Rensing N, Shapiro O, Panaretou B, Prodromou C, Loh SN, Gutmann DH, Bourboulia D, Bratslavsky G, Wong M, Mollapour M (2017) Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients. EMBO J 36:3650–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woodford MR, Hughes M, Sager RA, Backe SJ, Baker-Williams AJ, Bratslavsky MS, Jacob JM, Shapiro O, Wong M, Bratslavsky G, Bourboulia D, Mollapour M (2019) Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity. Oncotarget 10:5824–5834

    Article  PubMed  PubMed Central  Google Scholar 

  43. Santana-Codina N, Mancias JD, Kimmelman AC (2017) The role of autophagy in cancer. Annu Rev Cancer Biol 1:19–39

    Article  PubMed  PubMed Central  Google Scholar 

  44. Papadakis M, Hadley G, Xilouri M, Hoyte LC, Nagel S, McMenamin MM, Tsaknakis G, Watt SM, Drakesmith CW, Chen R, Wood MJ, Zhao Z, Kessler B, Vekrellis K, Buchan AM (2013) Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat Med 19:351–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Di Nardo A, Wertz MH, Kwiatkowski E, Tsai PT, Leech JD, Greene-Colozzi E, Goto J, Dilsiz P, Talos DM, Clish CB, Kwiatkowski DJ, Sahin M (2014) Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum Mol Genet 23:3865–3874

    Article  PubMed  PubMed Central  Google Scholar 

  46. Castets P, Ruegg MA (2013) MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. Autophagy 9:1435–1437

    Article  CAS  PubMed  Google Scholar 

  47. Qi R, Zhang X, Xie Y, Jiang S, Liu Y, Liu X, Xie W, Jia X, Bade R, Shi R, Li S, Ren C, Gong K, Zhang C, Shao G (2019) 5-Aza-2’-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway. Biomed Pharmacother 118:109219

    Article  CAS  PubMed  Google Scholar 

  48. Benhamron S, Tirosh B (2011) Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation and loss of marginal zone B cells. Eur J Immunol 41:2390–2396

    Article  CAS  PubMed  Google Scholar 

  49. Ci X, Kuraoka M, Wang H, Carico Z, Hopper K, Shin J, Deng X, Qiu Y, Unniraman S, Kelsoe G, Zhong XP (2015) TSC1 promotes B cell maturation but is dispensable for germinal center formation. PLoS ONE 10:e0127527

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shin J, Pan H, Zhong XP (2012) Regulation of mast cell survival and function by tuberous sclerosis complex 1. Blood 119:3306–3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan H, O’Brien TF, Zhang P, Zhong XP (2012) The role of tuberous sclerosis complex 1 in regulating innate immunity. J Immunol 188:3658–3666

    Article  CAS  PubMed  Google Scholar 

  52. Zhu L, Yang T, Li L, Sun L, Hou Y, Hu X, Zhang L, Tian H, Zhao Q, Peng J, Zhang H, Wang R, Yang Z, Zhang L, Zhao Y (2014) TSC1 controls macrophage polarization to prevent inflammatory disease. Nat Comm 5:4696

    Article  CAS  Google Scholar 

  53. Fang C, Yu J, Luo Y, Chen S, Wang W, Zhao C, Sun Z, Wu W, Guo W, Han Z, Hu X, Liao F, Feng X (2015) Tsc1 is a critical regulator of macrophage survival and function. Cell Physiol Biochem 36:1406–1418

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Huang G, Zeng H, Yang K, Lamb RF, Chi H (2013) Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proc Natl Acad Sci USA 110:E4894–E4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo Y, Li W, Yu G, Yu J, Han L, Xue T, Sun Z, Chen S, Fang C, Zhao C, Niu Q, Yang F, Han Z, Cheng T, Zeng Y, Liao F, Xu G, Feng X (2017) Tsc1 expression by dendritic cells is required to preserve T-cell homeostasis and response. Cell Death Dis 8:e2553

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pan H, O’Brien TF, Wright G, Yang J, Shin J, Wright KL, Zhong XP (2013) Critical role of the tumor suppressor TSC1 for dendritic cell to activate CD4 T cells by promoting MHC class II expression via IRF4 and CIITA. J Immunol 191:699–707

    Article  CAS  PubMed  Google Scholar 

  57. Luo Y, Liu J, Sun X, Feng T, Fang L, Chen S, Fang C, Feng X, Huang H (2018) Tsc1-dependent transcriptional programming of dendritic cell homeostasis and function. Exp Cell Res 363:73–83

    Article  CAS  PubMed  Google Scholar 

  58. Shi L, Chen X, Zang A, Li T, Hu Y, Ma S, Lu M, Yin H, Wang H, Zhang X, Zhang B, Leng Q, Yang J, Xiao H (2019) TSC1/mTOR-controlled metabolic-epigenetic cross talk underpins DC control of CD8+ T-cell homeostasis. PLoS Biol 17:e3000420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu Q, Liu Y, Chen C, Ikenoue T, Qiao Y, Li CS, Guan KL, Liu Y, Zheng P (2011) The tuberous sclerosis complex -mTOR pathway maintains the quiescence and survival of naive T-cells. J Immunol 187:1106–1112

    Article  CAS  PubMed  Google Scholar 

  60. Yang K, Neale G, Green DR, He W, Chi H (2011) Tuberous sclerosis complex 1 (Tsc1) enforces quiescence of naive T-cells to promote immune homeostasis and function. Nat Immunol 12:888–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. O’Brien TF, Gorentla BK, Xie D, Srivatsan S, McLeod IX, He YW, Zhong XP (2011) Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol 41:3361–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Zhang H, Li L, Xiao Y, Rao E, Miao Z, Chen H, Sun L, Li H, Liu G, Zhao Y (2012) TSC1/2 signaling complex is essential for peripheral naïve CD8+ T-cell survival and homeostasis in mice. PLoS ONE 7:e30592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie DL, Wu J, Lou YL, Zhong XP (2012) Tumor suppressor TSC1 is critical for T-cell anergy. Proc Natl Acad Sci USA 109:14152–14157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park Y, Jin HS, Lopez J, Elly C, Kim G, Murai M, Kronenberg M, Liu YC (2013) TSC1 regulates the balance between effector and regulatory T-cells. J Clin Invest 123:5165–5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shin J, Wang S, Deng W, Wu J, Gao J, Zhong XP (2014) Mechanistic target of rapamycin complex 1 is critical for invariant natural killer T-cell development and effector function. Proc Natl Acad Sci USA 111:E776–E783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu J, Yang J, Yang K, Wang H, Gorentla B, Shin J, Qiu Y, Que LG, Foster WM, Xia Z, Chi H, Zhong XP (2014) iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions. J Clin Invest 124:1685–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu J, Shin J, Xie D, Wang H, Gao J, Zhong XP (2014) TSC1 promotes iNKT cell anergy and inhibits iNKT cell-mediated anti-tumor immunity. J Immunol 192:2643–2650

    Article  CAS  PubMed  Google Scholar 

  68. Yang M, Chen S, Du J, He J, Wang Y, Li Z, Liu G, Peng W, Zeng X, Li D, Xu P, Guo W, Chang Z, Wang S, Tian Z, Dong Z (2016) NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation. Nat Commun 7:12730

    Article  PubMed  PubMed Central  Google Scholar 

  69. Krishna S, Yang J, Wang H, Qiu Y, Zhong XP (2014) Role of tumor suppressor TSC1 in regulating antigen-specific primary and memory CD8 T cell responses to bacterial infection. Infect Immun 82:3045–3057

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shrestha S, Yang K, Wei J, Karmaus PW, Neale G, Chi H (2014) Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs. Proc Natl Acad Sci USA 111:14858–14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tanaka Y, Park JH, Tanwar PS, Kaneko-Tarui T, Mittal S, Lee HJ, Teixeira JM (2012) Deletion of tuberous sclerosis 1 in somatic cells of the murine reproductive tract causes female infertility. Endocrinology 153:404–416

    Article  CAS  PubMed  Google Scholar 

  72. Daikoku T, Yoshie M, Xie H, Sun X, Cha J, Ellenson LH, Dey SK (2013) Conditional deletion of Tsc1 in the female reproductive tract impedes normal oviductal and uterine function by enhancing mTORC1 signaling in mice. Mol Hum Reprod 19:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang L, Wang ZB, Jiang ZZ, Hu MW, Lin F, Zhang QH, Luo YB, Hou Y, Zhao Y, Fan HY, Schatten H, Sun QY (2013) Specific disruption of Tsc1 in ovarian granulosa cells promotes ovulation and causes progressive accumulation of corpora lutea. PLoS ONE 8:e54052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR, Gout I, Downes CP, Lamb RF (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance and cell survival deficiencies. Curr Biol 14:1650–1656

    Article  CAS  PubMed  Google Scholar 

  76. Lee DF, Kuo HP, Chen CT, Wei Y, Chou CK, Hung JY, Yen CJ, Hung MC (2008) IKKβ suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22:633–638

    CAS  PubMed  Google Scholar 

  77. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, Sun HL, Li LY, Ping B, Huang WC, He X, Hung JY, Lai CC, Ding Q, Su JL, Yang JY, Sahin AA, Hortobagyi GN, Tsai FJ, Tsai CH, Hung MC (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130:440–455

    Article  CAS  PubMed  Google Scholar 

  78. Mori H, Inoki K, Opland D, Munzberg H, Villanueva EC, Faouzi M, Ikenoue T, Kwiatkowski DJ, MacDougald OA, Myers MG Jr, Guan KL (2009) Critical roles for the TSC-mTOR pathway in β-cell function. Am J Physiol Endocrinol Metab 297:E1013–E1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding L, Yin Y, Han L, Li Y, Zhao J, Zhang W (2017) TSC1-mTOR signaling determines the differentiation of islet cells. J Endocrinol 232:59–70

    Article  CAS  PubMed  Google Scholar 

  80. Xiang X, Lan H, Tang H, Yuan F, Xu Y, Zhao J, Li Y, Zhang W (2015) Tuberous sclerosis complex 1-mechanistic target of rapamycin complex 1 signaling determines brown-to-white adipocyte phenotypic switch. Diabetes 64:519–528

    Article  CAS  PubMed  Google Scholar 

  81. Magdalon J, Chimin P, Belchior T, Neves RX, Vieira-Lara MA, Andrade ML, Farias TS, Bolsoni-Lopes A, Paschoal VA, Yamashita AS, Kowaltowski AJ, Festuccia WT (2016) Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice. Biochim Biophys Acta 1861:430–438

    Article  CAS  PubMed  Google Scholar 

  82. Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 1:15004

    Article  PubMed  PubMed Central  Google Scholar 

  83. Suh SS, Yoo JY, Nuovo GJ, Jeon YJ, Kim S, Lee TJ, Kim T, Bakacs A, Alder H, Kaur B, Aqeilan RI, Pichiorri F, Croce CM (2012) MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci USA 109:5316–5321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Song L, Su M, Wang S, Zou Y, Wang X, Wang Y, Cui H, Zhao P, Hui R, Wang J (2014) MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med 18:2266–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Du J, Liu S, He J, Liu X, Qu Y, Yan W, Fan J, Li R, Xi H, Fu W, Zhang C, Yang J, Hou J (2015) MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget 6:14993–15007

    Article  PubMed  PubMed Central  Google Scholar 

  86. Riquelme I, Tapia O, Leal P, Sandoval A, Varga MG, Letelier P, Buchegger K, Bizama C, Espinoza JA, Peek RM, Araya JC, Roa JC (2016) MiR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3K/AKT/mTOR pathway. Cell Oncol (Dordr) 39:23–33

    Article  CAS  Google Scholar 

  87. Streleckiene G, Inciuraite R, Juzenas S, Salteniene V, Steponaitiene R, Gyvyte U, Kiudelis G, Leja M, Ruzgys P, Satkauskas S, Kupcinskiene E, Franke S, Thon C, Link A, Kupcinskas J, Skieceviciene J (2020) Mir-20b and mir-451a are involved in gastric carcinogenesis through the PI3K/AKT/mTOR signaling pathway: data from gastric cancer patients, cell lines and Ins-Gas mouse model. Int J Mol Sci 21:877

    Article  CAS  PubMed Central  Google Scholar 

  88. Dombkowski AA, Batista CE, Cukovic D, Carruthers NJ, Ranganathan R, Shukla U, Stemmer PM, Chugani HT, Chugani DC (2016) Cortical tubers: windows into dysregulation of epilepsy risk and synaptic signaling genes by microRNAs. Cereb Cortex 26:1059–1071

    Article  PubMed  Google Scholar 

  89. Li CY, Chen YP, Chen XP, Wei QQ, Cao B, Shang HF (2017) Downregulation of microRNA-193b-3p promotes autophagy and cell survival by targeting TSC1/mTOR signaling in NSC-34 cells. Front Mol Neurosci 10:160

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang Y, Zhang X, Tang W, Lin Z, Xu L, Dong R, Li Y, Li J, Zhang Z, Li X, Zhao L, Wei JJ, Shao C, Kong B, Liu Z (2017) MiR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-kappaB in high-grade serous ovarian carcinoma. Cell Death Differ 24:2089–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rezaei N, Talebi F, Ghorbani S, Rezaei A, Esmaeili A, Noorbakhsh F, Hakemi MG (2019) MicroRNA-92a drives Th1 responses in the experimental autoimmune encephalomyelitis. Inflammation 42:235–245

    Article  CAS  PubMed  Google Scholar 

  92. Wang N, Liang X, Yu W, Zhou S, Fang M (2018) Differential expression of microRNA-19b promotes proliferation of cancer stem cells by regulating the TSC1/mTOR signaling pathway in multiple myeloma. Cell Physiol Biochem 50:1804–1814

    Article  CAS  PubMed  Google Scholar 

  93. Liu G, Chen FL, Ji F, Fei HD, Xie Y, Wang SG (2018) MicroRNA-19a protects osteoblasts from dexamethasone via targeting TSC1. Oncotarget 9:2017–2027

    Article  PubMed  Google Scholar 

  94. Yuan X, Deng X, Zhou X, Zhang A, Xing Y, Zhang Z, Zhang H, Li J (2018) MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells. Vitro Cell Dev Biol Anim 54:715–724

    Article  CAS  Google Scholar 

  95. Shi Y, Li F, Wang S, Wang C, Xie Y, Zhou J, Li X, Wang B (2020) MiR-196b-5p controls adipocyte differentiation and lipogenesis through regulating mTORC1 and TGF-β signaling. FASEB J 34:9207–9222

    Article  CAS  PubMed  Google Scholar 

  96. Li T, Liu X, Gong X, Qiukai E, Zhang X, Zhang X (2019) MicroRNA 92b–3p regulates primordial follicle assembly by targeting TSC1 in neonatal mouse ovaries. Cell Cycle 18:824–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee J, Heo J, Kang H (2019) MiR-92b-3p-TSC1 axis is critical for mTOR signaling-mediated vascular smooth muscle cell proliferation induced by hypoxia. Cell Death Differ 26:1782–1795

    Article  CAS  PubMed  Google Scholar 

  98. Wang C, Uemura M, Tomiyama E, Matsushita M, Koh Y, Nakano K, Hayashi Y, Ishizuya Y, Jingushi K, Kato T, Hatano K, Kawashima A, Ujike T, Nagahara A, Fujita K, Imamura R, Tsujikawa K, Nonomura N (2020) MicroRNA-92b-3p is a prognostic oncomiR that targets TSC1 in clear cell renal cell carcinoma. Cancer Sci 111:1146–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sanchez-Mejias A, Kwon J, Chew XH, Siemens A, Sohn HS, Jing G, Zhang B, Yang H, Tay Y (2019) A novel SOCS5/miR-18/miR-25 axis promotes tumorigenesis in liver cancer. Int J Cancer 144:311–321

    Article  CAS  PubMed  Google Scholar 

  100. Wang J, Li X, Zhong M, Wang Y, Zou L, Wang M, Gong X, Wang X, Zhou C, Ma X, Liu M (2020) MiR-301a suppression within fibroblasts limits the progression of fibrosis through the TSC1/mTOR pathway. Mol Ther Nucleic Acids 21:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang Y, Wang H, Ruan J, Zheng W, Yang Z, Pan W (2020) Long non-coding RNA OIP5-AS1 suppresses multiple myeloma progression by sponging miR-27a-3p to activate TSC1 expression. Cancer Cell Int 20:155

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kobayashi T, Minowa O, Sugitani Y, Takai S, Mitani H, Kobayashi E, Noda T, Hino O (2001) A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci USA 98:8762–8767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, El-Hashemite N, Onda H (2002) A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 11:525–534

    Article  CAS  PubMed  Google Scholar 

  104. Kladney RD, Cardiff RD, Kwiatkowski DJ, Chiang GG, Weber JD, Arbeit JM, Lu ZH (2010) Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice. Cancer Res 70:8937–8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E, Bronson RT, Kwiatkowski DJ, Manning BD (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5:ra24

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ding L, Han L, Li Y, Zhao J, He P, Zhang W (2014) Neurogenin 3-directed cre deletion of Tsc1 gene causes pancreatic acinar carcinoma. Neoplasia 16:909–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun S, Chen S, Liu F, Wu H, McHugh J, Bergin IL, Gupta A, Adams D, Guan JL (2015) Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling. Cancer Cell 28:758–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang HM, Diaz V, Walsh ME, Zhang Y (2017) Moderate lifelong overexpression of tuberous sclerosis complex 1 (TSC1) improves health and survival in mice. Sci Rep 7:834

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ognibene M, Vanni C, Segalerba D, Mancini P, Merello E, Torrisi MR, Bosco MC, Varesio L, Eva A (2011) The tumor suppressor hamartin enhances Dbl protein transforming activity through interaction with ezrin. J Biol Chem 286:29973–29983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yen CJ, Lin YJ, Yen CS, Tsai HW, Tsai TF, Chang KY, Huang WC, Lin PW, Chiang CW, Chang TT (2012) Hepatitis B virus X protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS ONE 7:e41931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goktuna SI (2018) IKBKE inhibits TSC1 to activate the mTOR/S6K pathway for oncogenic transformation. Turk J Biol 42:268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Khatri S, Yepiskoposyan H, Gallo CA, Tandon P, Plas DR (2010) FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1. J Biol Chem 285:15960–15965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Plas DR, Thompson CB (2003) Akt activation promotes degradation of tuberin and FOXO3a via the proteosome. J Biol Chem 278:12361–12366

    Article  CAS  PubMed  Google Scholar 

  114. Song M, Bode AM, Dong Z, Lee MH (2019) AKT as a therapeutic target for cancer. Cancer Res 79:1019–1031

    Article  CAS  PubMed  Google Scholar 

  115. Wu L, Yi B, Wei S, Rao D, He Y, Naik G, Bae S, Liu XM, Yang WH, Sonpavde G, Liu R, Wang L (2019) Loss of FOXP3 and TSC1 accelerates prostate cancer progression through synergistic transcriptional and posttranslational regulation of c-MYC. Cancer Res 79:1413–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xie Y, Zhao Y, Shi L, Li W, Chen K, Li M, Chen X, Zhang H, Li T, Matsuzawa-Ishimoto Y, Yao X, Shao D, Ke Z, Li J, Chen Y, Zhang X, Cui J, Cui S, Leng Q, Cadwell K, Li X, Wei H, Zhang H, Li H, Xiao H (2020) Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J Clin Invest 130:2111–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tran TA, Kinch L, Peña-Llopis S, Kockel L, Grishin N, Jiang H, Brugarolas J (2013) Platelet-derived growth factor/vascular endothelial growth factor receptor inactivation by sunitinib results in Tsc1/Tsc2-dependent inhibition of TORC1. Mol Cell Biol 33:3762–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mehta MS, Vazquez A, Kulkarni DA, Kerrigan JE, Atwal G, Metsugi S, Toppmeyer DL, Levine AJ, Hirshfield KM (2011) Polymorphic variants in TSC1 and TSC2 and their association with breast cancer phenotypes. Breast Cancer Res Treat 125:861–868

    Article  CAS  PubMed  Google Scholar 

  119. Chen Y, Wei H, Liu F, Guan JL (2014) Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling. J Biol Chem 289:1164–1173

    Article  CAS  PubMed  Google Scholar 

  120. Lin HP, Lin CY, Huo C, Jan YJ, Tseng JC, Jiang SS, Kuo YY, Chen SC, Wang CT, Chan TM, Liou JY, Wang J, Chang WS, Chang CH, Kung HJ, Chuu CP (2015) AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2. Oncotarget 6:27097–27112

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chakraborty S, Mohiyuddin SMA, Gopinath KS, Kumar A (2008) Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma. BMC Cancer 8:163

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kwiatkowski DJ, Choueiri TK, Fay AP, Rini B, Thorner AR, de Velasco G, Tyburczy ME, Hamieh L, Albiges L, Agarwal N, Ho TH, Song J, Pignon JC, Barrios PM, Michaelson MD, Allen EV, Krajewski KM, Porta C, Pal S, Bellmunt J, McDermott DF, Heng DYC, Gray KP, Signoretti S (2016) Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin Cancer Res 22:2445–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Knowles MA, Habuchi T, Kennedy W, Cuthbert-Heavens D (2003) Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res 63:7652–7656

    CAS  PubMed  Google Scholar 

  124. Guo Y, Chekaluk Y, Zhang J, Du J, Gray NS, Wu CL, Kwiatkowski DJ (2013) TSC1 involvement in bladder cancer: diverse effects and therapeutic implications. J Pathol 230:17–27

    Article  CAS  PubMed  Google Scholar 

  125. Ho DWH, Chan LK, Chiu YT, Xu IMJ, Poon RTP, Cheung TT, Tang CN, Tang VWL, Lo ILO, Lam PWY, Yau DTW, Li MX, Wong CM, Ng IOL (2017) TSC1/2 mutations define a molecular subset of HCC with aggressive behavior and treatment implication. Gut 66:1496–1506

    Article  CAS  PubMed  Google Scholar 

  126. Liang MC, Ma J, Chen L, Kozlowski P, Qin W, Li D, Shimamura T, Thomas RK, Hayes ND, Meyerson M, Kwiatkowski DJ, Wong KK (2010) TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity. Oncogene 29:1588–1597

    Article  CAS  PubMed  Google Scholar 

  127. Jiang WG, Sampson J, Martin TA, Lee-Jones L, Watkins G, Douglas-Jones A, Mokbel K, Mansel RE (2005) Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 41:1628–1636

    Article  CAS  PubMed  Google Scholar 

  128. Byeon SJ, Han N, Choi J, Kim MA, Kim WH (2014) Prognostic implication of TSC1 and mTOR expression in gastric carcinoma. J Surg Oncol 109:812–817

    Article  CAS  PubMed  Google Scholar 

  129. Lee SJ, Kang BW, Chae YS, Kim HJ, Park SY, Park JS, Choi GS, Jeon HS, Lee WK, Kim JG (2014) Genetic variations in STK11, PRKAA1, and TSC1 associated with prognosis for patients with colorectal cancer. Ann Surg Oncol 21:S634–S639

    Article  PubMed  Google Scholar 

  130. Ma M, Dai J, Xu T, Yu S, Yu H, Tang H, Yan J, Wu X, Yu J, Chi Z, Si L, Cui C, Sheng X, Kong Y, Guo J (2018) Analysis of TSC1 mutation spectrum in mucosal melanoma. J Cancer Res Clin Oncol 144:257–267

    Article  CAS  PubMed  Google Scholar 

  131. Chen C, Liu Y, Liu Y, Zheng P (2009) The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle 8:1158–1160

    Article  CAS  PubMed  Google Scholar 

  132. Guijarro MV, Danielson LS, Cañamero M, Nawab A, Abrahan C, Hernando E, Palmer GD (2020) Tsc1 regulates the proliferation capacity of bone-marrow derived mesenchymal stem cells. Cells 9:2072

    Article  CAS  PubMed Central  Google Scholar 

  133. Pelletier CL, Maggi LB Jr, Brady SN, Scheidenhelm DK, Gutmann DH, Weber JD (2007) TSC1 sets the rate of ribosome export and protein synthesis through nucleophosmin translation. Cancer Res 67:1609–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kang YJ, Lu MK, Guan KL (2011) The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 18:133–144

    Article  CAS  PubMed  Google Scholar 

  135. Ozcan U, Ozcan L, Yilmaz E, Duvel K, Sahin M, Manning BD, Hotamisligil GS (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29:541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Meikle L, McMullen JR, Sherwood MC, Lader AS, Walker V, Chan JA, Kwiatkowski DJ (2005) A mouse model of cardiac rhabdomyoma generated by loss of Tsc1 in ventricular myocytes. Hum Mol Genet 14:429–435

    Article  CAS  PubMed  Google Scholar 

  137. Chen Y, Wang F, Li C, Wang L, Zhang H, Yan H (2014) Acquired cardiomyopathy caused by cardiac Tsc1 deficiency. J Genet Genom 41:73–77

    Article  Google Scholar 

  138. Kayyali US, Larsen CG, Bashiruddin S, Lewandowski SL, Trivedi CM, Warburton RR, Parkhitko AA, Morrison TA, Henske EP, Chekaluk Y, Kwiatkowski DJ, Finlay GA (2015) Targeted deletion of Tsc1 causes fatal cardiomyocyte hyperplasia independently of afterload. Cardiovasc Pathol 24:80–93

    Article  CAS  PubMed  Google Scholar 

  139. Qin Z, Zheng H, Zhou L, Ou Y, Huang B, Yan B, Qin Z, Yang C, Su Y, Bai X, Guo J, Lin J (2016) Tsc1 deficiency impairs mammary development in mice by suppression of AKT, nuclear ERα and cell-cycle-driving proteins. Sci Rep 6:19587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li H, Ren Y, Mao K, Hua F, Yang Y, Wei N, Yue C, Li D, Zhang H (2018) FTO is involved in Alzheimer’s disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun 498:234–239

    Article  CAS  PubMed  Google Scholar 

  141. Xu S, Zhang Y, Wang J, Li K, Tan K, Liang K, Shen J, Cai D, Jin D, Li M, Xiao G, Xu J, Jiang Y, Bai X (2018) TSC1 regulates osteoclast podosome organization and bone resorption through mTORC1 and Rac1/Cdc42. Cell Death Differ 25:1549–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu W, Wang Z, Yang J, Wang Y, Li K, Huang B, Yan B, Wang T, Li M, Zou Z, Yang J, Xiao G, Cui ZK, Liu A, Bai X (2019) Osteocyte TSC1 promotes sclerostin secretion to restrain osteogenesis in mice. Open Biol 9:180262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Choi HK, Yuan H, Fang F, Wei X, Liu L, Li Q, Guan JL, Liu F (2018) Tsc1 regulates the balance between osteoblast and adipocyte differentiation through Autophagy/Notch1/β-Catenin cascade. J Bone Miner Res 33:2021–2034

    Article  CAS  PubMed  Google Scholar 

  144. Yang C, Liao J, Lai P, Huang H, Fan S, Chen Y, Bai X (2020) Mesenchymal stem cell-specific and preosteoblast-specific ablation of TSC1 in mice lead to severe and slight spinal dysplasia, respectively. Biomed Res Int 2020:4572687

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Department of Biotechnology, New Delhi (Grant# BT/PR10272/BRB/10/1266/2013) to AK and a junior research fellowship from DBT to KM. We also thank DST-FIST [SR/FST/LS11-036/2014(C)] and UGC-SAP [F.4.13/2018/DRS-III (SAP-II)] for financial support.

Author information

Authors and Affiliations

Authors

Contributions

KM wrote the first draft of the manuscript, and AK supervised the manuscript writing. Both the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Arun Kumar.

Ethics declarations

Conflict of interest

Both authors declare that there are no conflict of interest. No financial affiliation or involvement with any commercial organization with direct financial interest in the subject or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallela, K., Kumar, A. Role of TSC1 in physiology and diseases. Mol Cell Biochem 476, 2269–2282 (2021). https://doi.org/10.1007/s11010-021-04088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04088-3

Keywords

Navigation