Skip to main content
Log in

Affinization of q-oscillator representations of \(U_q(\mathfrak {gl}_n)\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a category \(\widehat{\mathcal {O}}_{\textrm{osc}}\) of q-oscillator representations of the quantum affine algebra \(U_q({\widehat{\mathfrak {gl}}}_n)\). We show that \(\widehat{\mathcal {O}}_{\textrm{osc}}\) has a family of irreducible representations, which naturally corresponds to finite-dimensional irreducible representations of quantum affine algebra of untwisted affine type A. It is done by constructing a category of q-oscillator representations of the quantum affine superalgebra of type A, which interpolates these two families of irreducible representations. The category \(\widehat{\mathcal {O}}_{\textrm{osc}}\) can be viewed as a quantum affine analogue of the semisimple tensor category generated by unitarizable highest weight representations of \(\mathfrak {gl}_{u+v}\) (\(n=u+v\)) appearing in the \((\mathfrak {gl}_{u+v},\mathfrak {gl}_\ell )\)-duality on a bosonic Fock space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, J., Chari, V., Pressley, A.: An algebraic characterization of the affine canonical basis. Duke Math. J. 99, 455–487 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benkart, G., Kang, S.-J., Kashiwara, M.: Crystal bases for the quantum superalgebra \(U_q(\mathfrak{gl} (m, n))\). J. Am. Math. Soc. 13, 295–331 (2000)

    Article  MATH  Google Scholar 

  3. Boos, H., Göhmann, F., Klümper, A., Nirov, K.S., Razumov, A.V.: Oscillator versus prefundamental representations. J. Math. Phys. 57, 111702 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boos, H., Göhmann, F., Klümper, A., Nirov, K.S., Razumov, A.V.: Oscillator versus prefundamental representations II. Arbitrary higher ranks. J. Math. Phys. 58, 093504 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of GBanff, AB,: CMS Conference Proceedings, Vol 16, pp. 59–78. American Mathematical Society, Providence, RI (1994)

  6. Cheng, S.-J., Kwon, J.-H.: Howe duality and Kostant’s homology formula for infinite dimensional Lie superalgebras. Int. Math. Res. Not. IMRN 2008, rnn085 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, S.-J., Lam, N.: Irreducible characters of general linear superalgebra and super duality. Commun. Math. Phys. 298, 645–672 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cheng, S.-J., Lam, N., Zhang, R.B.: Character formula for infinite-dimensional unitarizable modules of the general linear superalgebra. J. Algebra 273(2), 780–805 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, S.-J., Wang, W.: Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics 144. American Mathematical Soc. (2013)

  10. Date, E., Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A_n^{(1)}\), Internat. J. Modern Phys. A 9, 399–417 (1994)

    Article  ADS  MATH  Google Scholar 

  11. Enright, T., Howe, R., Wallach, N.: Classification of unitary highest weight modules. In: Trombi, P. (ed.) Representation Theory of Reductive Groups, pp. 97–144. Birkhäuser, Boston (1983)

    Chapter  Google Scholar 

  12. Frenkel, E., Hernandez, D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164, 2407–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hernandez, D.: Representations of quantum affinizations and fusion product. Transform. Groups 10, 163–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hernandez, D., Jimbo, M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148, 1593–1623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154, 265–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313, 539–570 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Howe, R., Tan, E.-C., Willenbring, J.: Stable branching rules for classical symmetric pairs. Trans. Am. Math. Soc. 357, 1601–1626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jang, I.-S., Kwon, J.-H., Park, E.: Unipotent quantum coordinate ring and prefundamental representations for types \(A_n^{(1)}\) and \(D_n^{(1)}\). Int. Math. Res. Not. 2, 1119–1172 (2023)

    Article  MATH  Google Scholar 

  19. Jantzen, J.C.: Lectures on Quantum Groups. Graduate Studies in Math, vol. 6. American Mathematical Soc., Providence (1996)

    MATH  Google Scholar 

  20. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras. Invent. math. 211, 591–685 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras, II. Duke. Math. J. 164, 1549–1602 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. Int. J. Modern Phys. A 7(suppl. 1A), 449–484 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kashiwara, M.: On level zero representations of quantum affine algebras. Duke Math. J. 112, 117–175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kashiwara, M., Kim, M.: Laurent phenomenon and simple modules of quiver Hecke algebras. Compos. Math. 155(12), 2263–2295 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kang, S.-J., Kashiwara, M., Kim. M., Oh, S.-j.: Simplicity of heads and socles of tensor products Compos. Math. 151, 377–396 (2015)

  26. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Monoidal categorification and quantum affine algebras. Compos. Math. 156, 1039–1077 (2020)

  27. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Monoidal Categorification and Quantum Affine Algebras II preprint (2021) arXiv:2103.10067

  28. Kashiwara, M., Vergne, M.: On the Segal-Shale-Weil representations and harmonic polynomials. Invent. Math. 44, 1–47 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kuniba, A.: Tetrahedron equation and quantum R matrices for q-oscillator representations mixing particles and holes. SIGMA Symmetry Integrability Geom. Methods Appl. 14, 067 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Kuniba, A., Okado, M.: Tetrahedron equation and quantum R matrices for infinite-dimensional modules of \(U_q(A^{(1)}_1)\) and \(U_q(A^{(2)}_2)\). J. Phys. A 46, 485203 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Kuniba, A., Okado, M., Sergeev, S.: Tetrahedron equation and generalized quantum groups. J. Phys. A 48, 304001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kwon, J.-H.: Rational semistandard tableaux and character formula for the Lie superalgebra \({\widehat{\mathfrak{gl} }}_{\infty |\infty }\). Adv. Math. 217, 713–739 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kwon, J.-H., Lee, S.-M.: Super duality for quantum affine algebras of type \(A\). Int. Math. Res. Not. 23, 18446–18525 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kwon, J.-H., Okado, M.: Higher level \(q\)-oscillator representations for \(U_q(C^{(1)}_n)\), \(U_q(C^{(2)}(n+1))\) and \(U_q(B^{(1)}(0, n))\). Comm. Math. Phys. 385, 1041–1082 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Kwon, J.-H., Yu, J.: \(R\)-matrix for generalized quantum groups of type \(A\). J. Algebra 566, 309–341 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mukhin, E., Young, C.A.S.: Affinization of category \({\cal{O} }\) for quantum groups. Trans. Am. Math. Soc. 366, 4815–4847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sagan, B.E., Stanley, R.: Robinson-Schensted algorithms for skew tableaux. J. Combin. Theory Ser. A 55, 161–193 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yamane, H.: Quantized enveloping algebras associated to simple Lie superalgebras and universal R-matrices. Publ. Res. Inst. Math. Sci. 30, 15–84 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yamane, H.: On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras. Publ. Res. Inst. Math. Sci. 35, 321–390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Okado for his interest in this work and letting us know the reference [29] and the referees for very careful reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin-Myung Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C1084833 and 2020R1A5A1016126).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, JH., Lee, SM. Affinization of q-oscillator representations of \(U_q(\mathfrak {gl}_n)\). Lett Math Phys 113, 58 (2023). https://doi.org/10.1007/s11005-023-01675-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01675-x

Keywords

Mathematics Subject Classification

Navigation