Skip to main content
Log in

Higher Level q-Oscillator Representations for \(U_q(C_n^{(1)}),U_q(C^{(2)}(n+1))\) and \(U_q(B^{(1)}(0,n))\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce higher level q-oscillator representations for the quantum affine (super)algebras of type \(C_n^{(1)},C^{(2)}(n+1)\) and \(B^{(1)}(0,n)\). These representations are constructed by applying the fusion procedure to the level one q-oscillator representations which were obtained through the studies of the tetrahedron equation. We prove that these higher level q-oscillator representations are irreducible. For type \(C_n^{(1)}\) and \(C^{(2)}(n+1)\), we compute their characters explicitly in terms of Schur polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chari, V., Hernandez, D.: Beyond Kirillov–Reshetikhin modules. Contemp. Math. 506, 49–81 (2010)

    Article  MathSciNet  Google Scholar 

  2. Cheng, S.-J., Kwon, J.-H., Wang, W.: Kostant homology formulas for oscillator modules of Lie superalgebras. Adv. Math. 224, 1548–1588 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cheng, S.-J., Lam, N.: Irreducible characters of general linear superalgebra and super duality. Commun. Math. Phys. 298, 645–672 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cheng, S.-J., Lam, N., Wang, W.: Super duality and irreducible characters of ortho-symplectic Lie superalgebras. Invent. Math. 183, 189–224 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. Clark, S.., Fan, Z.., Li, Y.., Wang, W..: Quantum supergroups III. Twistors. Commun. Math. Phys. 332, 415–436 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae, MathPhys Odyssey 2001, 205–272, Prog. Math. Phys. 23, Birkhäuser Boston, Boston, MA (2002)

  7. Hong, J.: Center and universal R-matrix for quantized Borcherds superalgebras. J. Math. Phys. 40(6), 3123–3145 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jantzen, J.C.: Lectures on Quantum Groups, Amer. Math. Soc. Graduate Studies in Math., vol. 6, Providence (1996)

  9. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  10. Kac, V.G.: Infinite-dimensional algebras, Dedekind’s \(\eta \)-function, classical Möbius function and the very strange formula. Adv. Math. 30, 85–136 (1978)

    Article  MathSciNet  Google Scholar 

  11. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68, 499–607 (1992)

    Article  MathSciNet  Google Scholar 

  12. Kang, S.J., Kashiwara, M., Kim, M.-H., Oh, S.-J.: Simplicity of heads and socles of tensor products. Compos. Math. 151, 377–396 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)

    Article  MathSciNet  Google Scholar 

  14. Kashiwara, M.: On level zero representations of quantum affine algebras. Duke Math. J. 112, 117–175 (2002)

    Article  MathSciNet  Google Scholar 

  15. Kuniba, A., Okado, M.: Tetrahedron equation and quantum \(R\) matrices for \(q\)-oscillator representations of \(U_q(A^{(2)}_{2n})\), \(U_q(C^{(1)}_n)\) and \(U_q(D^{(2)}_{n+1})\). Commun. Math. Phys. 334, 1219–1244 (2015)

    Article  ADS  Google Scholar 

  16. Kuniba, A., Okado, M., Sergeev, S.: Tetrahedron equation and generalized quantum groups. J. Phys. A Math. Theor. 48, 304001 (38p) (2015)

  17. Kuniba, A., Sergeev, S.: Tetrahedron equation and quantum \(R\) matrices for spin representations of \(B^{(1)}_n, D^{(1)}_n\) and \(D^{(2)}_{n+1}\). Commun. Math. Phys. 324, 695–713 (2013)

    Article  ADS  Google Scholar 

  18. Kwon, J.-H.: Littlewood identity and crystal bases. Adv. Math. 230, 699–745 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kwon, J.-H.: Combinatorial extension of stable branching rules for classical groups. Trans. Am. Math. Soc. 370, 6125–6152 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kwon, J.-H., Lee, S.-M.: Super duality for quantum affine algebras of type \(A\), preprint (2020), arXiv:2010.06508

  21. Okado, M., Schilling, A.: Existence of Kirillov–Reshetikhin crystals for non-exceptional types. Representation Theory 12, 186–207 (2008)

    Article  MathSciNet  Google Scholar 

  22. Okado, M., Yamane, H.: \(R\)-matrices with gauge parameters and multi-parameter quantized enveloping algebras. In: Kashiwara, M., Miwa, T. (Eds.) Proceedings of the Hayashibara Forum 1990 held in Fujisaki Institute, Okayama, Japan, ’Special Functions’, August 16–20, 1990, ICM-90 Satellite Conference Proceedings, Springer, pp. 289–293 (1991)

  23. Reshetikhin, N.: Multiparameter quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys. 20, 331–335 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zamolodchikov, A.B.: Tetrahedra equations and integrable systems in three-dimensional space. Soviet Phys. JETP 79, 641–664 (1980)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was done while the first author was visiting Osaka City University. He would like to thank Department of Mathematics in OCU for its support and hospitality. The second author would like to thank Atsuo Kuniba for the collaboration [15] on which this work is based. Finally, the authors thank anonymous referee for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hoon Kwon.

Additional information

Communicated by P. Di Francesco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.-H.K. is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C1084833 and 2020R1A5A1016126). M.O. is supported by Grants-in-Aid for Scientific Research No. 19K03426. This work was partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

Appendices

Appendix A. Twistor

In this appendix, we prove Propositions 3.9 and 3.14. We first review the twistor introduced in [5] that relate quantum groups to quantum supergroups. Then we use it to relate the q-oscillator representation of \(U_q(D_{n+1}^{(2)})\) in [15] to a representation of \(U_q(C^{(2)}(n+1))\). An advantage to do so is that in the latter case we can take a classical limit \(q\rightarrow 1\). We also obtain a representation of \(U_q(B^{(1)}(0,n))\) from the q-oscillator representation of \(U_q(A_{2n}^{(2)\dagger })\), where \(A_{2n}^{(2)\dagger }\) is the same Dynkin diagram as \(A_{2n}^{(2)}\) in [9] but the labeling of nodes are opposite.

1.1 The twistor of the covering quantum group

We review the covering quantum group and the twistor map introduced in [5]. Our notations for a Cartan datum is closer to Kac’s book [9]. Let I be the index set of the Dynkin diagram, \(\{\alpha _i\}_{i\in I}\) the set of simple roots, \((a_{ij})_{i,j\in I}\) the Cartan matrix. The symmetric bilinear form \((\cdot ,\cdot )\) on the weight lattice is normalized so that it satisfies \(d_i=(\alpha _i,\alpha _i)/2\in {\mathbb {Z}}\) for any \(i\in I\). It is also assumed that \(a_{ij}\in 2{\mathbb {Z}}\) if \(d_i\equiv 1\) (mod 2) and \(j\in I\). The parity function p(i) taking values in \(\{0,1\}\) is consistent with \(d_i\), namely, \(p(i)\equiv d_i\) (mod 2). We set \(q_i=q^{d_i},\pi _i=\pi ^{d_i}\).

Let \(q,\pi \) be indeterminates and \(\mathbf{i}=\sqrt{-1}\). For a ring R with 1, we set \(R^\pi =R[\pi ]/(\pi ^2-1)\). The covering quantum group \({\mathbf {U}}\) associated to a Cartan datum is the \({\mathbb {Q}}^\pi (q,\mathbf{i})\)-algebra with generators \(E_i,F_i,K_i^{\pm 1},J_i^{\pm 1}\) for \(i\in I\) subject to the following relations:

$$\begin{aligned}&J_iJ_j=J_jJ_i,\quad K_iK_j=K_jK_i,\quad J_iK_j=K_jJ_i,\\&K_iK_i^{-1}=K_i^{-1}K_i=J_iJ_i^{-1}=J_i^{-1}J_i=J_i^2=1,\\&J_iE_j=\pi ^{a_{ij}}E_jJ_i,\quad J_iF_j=\pi ^{-a_{ij}}F_jJ_i,\\&K_iE_j=q^{a_{ij}}E_jK_i,\quad K_iF_j=q^{-a_{ij}}F_jK_i,\\&E_iF_j-\pi ^{p(i)p(j)}F_jE_i=\delta _{ij}\frac{J_iK_i-K_i^{-1}}{\pi _iq_i-q_i^{-1}},\\&\sum _{l=0}^{1-a_{ij}}(-1)^l\pi ^{l(l-1)p(i)/2+lp(i)p(j)} {1-a_{ij}\brack l}_{q_i,\pi _i}E_i^{1-a_{ij}-l}E_jE_i^l=0\quad (i\ne j),\\&\sum _{l=0}^{1-a_{ij}}(-1)^l\pi ^{l(l-1)p(i)/2+lp(i)p(j)} {1-a_{ij}\brack l}_{q_i,\pi _i}F_i^{1-a_{ij}-l}F_jF_i^l=0\quad (i\ne j). \end{aligned}$$

Remark A.1

We changed the notations from [5]. We replaced v with q, \({\mathbf {t}}\) with \(\mathbf{i}\), and \(J_{d_ii}, K_{d_ii}, T_{d_ii}\) with \(J_i, K_i, T_i\).

We extend \(\mathbf{U}\) by introducing the generators \(T_i,\Upsilon _i\) for \(i\in I\). They commute with each other and with \(J_i,K_i\). They also have the commutation relations with \(E_i,F_i\) as

$$\begin{aligned} T_iE_j=\mathbf{i}^{d_ia_{ij}}E_jT_i,\quad T_iF_j=\mathbf{i}^{-d_ia_{ij}}F_jT_i,\quad \Upsilon _iE_j=\mathbf{i}^{\phi _{ij}}E_j\Upsilon _i,\quad \Upsilon _iF_j=\mathbf{i}^{-\phi _{ij}}F_j\Upsilon _i, \end{aligned}$$

where

$$\begin{aligned} \phi _{ij}={\left\{ \begin{array}{ll} d_ia_{ij}&{}\text {if }i>j,\\ d_i&{}\text {if }i=j,\\ -2p(i)p(j)&{}\text {if }i<j. \end{array}\right. } \end{aligned}$$

We denote this extended algebra by \(\widehat{{\mathbf {U}}}\).

Theorem A.2

[5] There is a \({\mathbb {Q}}(\mathbf{i})\)-algebra automorphism \({\widehat{\Psi }}\) on \(\widehat{{\mathbf {U}}}\) such that

$$\begin{aligned}&E_i\mapsto \mathbf{i}^{-d_i}\Upsilon _i^{-1}T_iE_i,&\quad&F_i\mapsto F_i\Upsilon _i,&\quad&K_i\mapsto T_i^{-1}K_i,\\&J_i\mapsto T_i^2J_i,&\quad&T_i\mapsto T_i,&\quad&\Upsilon _i\mapsto \Upsilon _i,\\&q\mapsto \mathbf{i}^{-1}q,&\quad&\pi \mapsto -\pi . \end{aligned}$$

1.2 Image of the twistor \({\widehat{\Psi }}\)

We apply the twistor \({\widehat{\Psi }}\) given in the previous subsection for the Cartan datum corresponding to \(B_n\), namely, \(I=\{1,2,\ldots ,n\}\) and the Cartan matrix is given by

$$\begin{aligned} (a_{ij})= \begin{pmatrix} 2&{}-1&{}\\ -1&{}2&{}-1\\ &{}-1&{} \\ &{}&{}&{}\ddots \\ &{}&{}&{}&{}&{}-1\\ &{}&{}&{}&{}-1&{}2&{}-1\\ &{}&{}&{}&{}&{}-2&{}2 \end{pmatrix} \end{aligned}$$

Through it, we are to regard the q-oscillator representation \(\mathcal {W}=\bigoplus _{\mathbf{m}}{\mathbb {Q}}(q^{\frac{1}{2}})|\mathbf{m}\rangle \) of \(U_q(B_n)\), the subalgebra of \(U_q(D_{n+1}^{(2)})\) generated by \(e_i,f_i,k_i\) for \(i\in I\setminus \{0\}\), given in [15, Proposition 1] as a representation of \(U_q(osp_{1|2n})\). Although we normalized the symmetric bilinear form on the weight lattice so that \((\alpha _i,\alpha _i)\in 2{\mathbb {Z}}\) for any \(i\in I\) in the previous subsection, we renormalize it so that \((\alpha _n,\alpha _n)=1\) to adjust it to the notations in [15]. The generators \(T_i,\Upsilon _i\) are represented on \(\mathcal {W}\) as

$$\begin{aligned} T_i|\mathbf{m}\rangle ={\left\{ \begin{array}{ll} \mathbf{i}^{2(m_{i+1}-m_i)}|\mathbf{m}\rangle &{}(1\le i<n)\\ \mathbf{i}^{-2m_n}|\mathbf{m}\rangle &{}(i=n) \end{array}\right. },\quad \Upsilon _i|\mathbf{m}\rangle ={\left\{ \begin{array}{ll} \mathbf{i}^{-2m_i}|\mathbf{m}\rangle &{}(1\le i<n)\\ \mathbf{i}^{|\mathbf{m}|-2m_n}|\mathbf{m}\rangle &{}(i=n) \end{array}\right. }. \end{aligned}$$

Let \(u_i\) (\(i\in I\), \(u=e,f,k\)) be the generators of \(U_q(B_n)\) (\(\pi =1\)) and \({\bar{u}}_i={\widehat{\Psi }}(u_i)\) be the image (\(\pi =-1\)) of the twistor \({\widehat{\Psi }}\). Then \({\bar{u}}_i\) satisfy the relations for \(U_{{\bar{q}}}(osp_{1|2n})\) where \({\bar{q}}^{\frac{1}{2}}=\mathbf{i}^{-1}q^{\frac{1}{2}}\). On the space \(\mathcal {W}\), they act as follows:

$$\begin{aligned} {\bar{e}}_i|\mathbf{m}\rangle&=\mathbf{i}^{2m_{i+1}}[m_i]|\mathbf{m}-\mathbf{e}_i+\mathbf{e}_{i+1}\rangle ,\\ {\bar{f}}_i|\mathbf{m}\rangle&=\mathbf{i}^{-2m_i}[m_{i+1}]|\mathbf{m}+\mathbf{e}_i-\mathbf{e}_{i+1}\rangle ,\\ {\bar{k}}_i|\mathbf{m}\rangle&=\mathbf{i}^{2m_i-2m_{i+1}}q^{-m_i+m_{i+1}}|\mathbf{m}\rangle ,\\ {\bar{e}}_n|\mathbf{m}\rangle&=\kappa \, \mathbf{i}^{1-|\mathbf{m}|}[m_n]|\mathbf{m}-\mathbf{e}_n\rangle ,\\ {\bar{f}}_n|\mathbf{m}\rangle&=\mathbf{i}^{|\mathbf{m}|-2m_n}|\mathbf{m}+\mathbf{e}_n\rangle ,\\ {\bar{k}}_n|\mathbf{m}\rangle&=\mathbf{i}^{2m_n+1}q^{-m_n-\frac{1}{2}}|\mathbf{m}\rangle , \end{aligned}$$

where \(1\le i<n\), \(\kappa =(q+1)/(q-1)\).

By introducing the actions of \({\bar{e}}_0,{\bar{f}}_0,{\bar{k}}_0\), we want to make \(\mathcal {W}\) a representation of the quantum affine superalgebra associated to \(C^{(2)}(n+1)\) or \(B^{(1)}(0,n)\). For the former, we set

$$\begin{aligned} {\bar{e}}_0|\mathbf{m}\rangle&=x\,\mathbf{i}^{2m_1-|\mathbf{m}|}|\mathbf{m}+\mathbf{e}_1\rangle ,\\ {\bar{f}}_0|\mathbf{m}\rangle&=x^{-1}\kappa \,\mathbf{i}^{|\mathbf{m}|+1}[m_1]|\mathbf{m}-\mathbf{e}_1\rangle ,\\ {\bar{k}}_0|\mathbf{m}\rangle&=\mathbf{i}^{-2m_1-1}q^{m_1+\frac{1}{2}}|\mathbf{m}\rangle , \end{aligned}$$

and for the latter

$$\begin{aligned} {\bar{e}}_0|\mathbf{m}\rangle&=x(-1)^{|\mathbf{m}|}|\mathbf{m}+2\mathbf{e}_1\rangle ,\\ {\bar{f}}_0|\mathbf{m}\rangle&=x^{-1}(-1)^{|\mathbf{m}|}\frac{[m_1][m_1-1]}{[2]^2}|\mathbf{m}-2\mathbf{e}_1\rangle ,\\ {\bar{k}}_0|\mathbf{m}\rangle&=-q^{2m_1+1}|\mathbf{m}\rangle , \end{aligned}$$

where x is the so-called spectral parameter. We also note that the quantum parameter is still \({\bar{q}}^{\frac{1}{2}}=\mathbf{i}^{-1}q^{\frac{1}{2}}\).

To obtain the representation for the quantum parameter q, we need to we switch \(q^{\frac{1}{2}}\) to \(\mathbf{i}q^{\frac{1}{2}}\) (\({\bar{q}}^{\frac{1}{2}}\) to \(q^{\frac{1}{2}}\)). Also, the relations in Section A.1 and those in Section 2.3 are different. For the node i that is signified as \(\bullet \) in the Dynkin diagram, there is a relation

$$\begin{aligned} e_if_i+f_ie_i=\frac{k_i-k_i^{-1}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}} \end{aligned}$$

in Section 2.3 rather than

$$\begin{aligned} e_if_i+f_ie_i=\frac{k_i-k_i^{-1}}{-q^{\frac{1}{2}}-q^{-\frac{1}{2}}} \end{aligned}$$

in Section A.1. The former relation is realized by deleting \(\kappa \) from the action of \({\bar{e}}_i\) or \({\bar{f}}_i\) in the formulas of the q-oscillator representation above. By doing so, we obtain

$$\begin{aligned} {\bar{e}}_0|\mathbf{m}\rangle&= {\left\{ \begin{array}{ll} x\,\mathbf{i}^{2m_1-|\mathbf{m}|}|\mathbf{m}+\mathbf{e}_1\rangle &{}\text {for }U_q(C^{(2)}(n+1))\\ x(-1)^{|\mathbf{m}|}|\mathbf{m}+2\mathbf{e}_1\rangle &{}\text {for }U_q(B^{(1)}(1,n)) \end{array}\right. },\\ {\bar{f}}_0|\mathbf{m}\rangle&= {\left\{ \begin{array}{ll} x^{-1}\mathbf{i}^{|\mathbf{m}|+2m_1+1}[m_1]|\mathbf{m}-\mathbf{e}_1\rangle &{}\text {for }U_q(C^{(2)}(n+1))\\ x^{-1}(-1)^{|\mathbf{m}|+1}\frac{[m_1][m_1-1]}{[2]^2}|\mathbf{m}-2\mathbf{e}_1\rangle &{}\text {for }U_q(B^{(1)}(0,n)) \end{array}\right. },\\ {\bar{k}}_0|\mathbf{m}\rangle&= {\left\{ \begin{array}{ll} q^{m_1+\frac{1}{2}}|\mathbf{m}\rangle &{}\text {for }U_q(C^{(2)}(n+1))\\ q^{2m_1+1}|\mathbf{m}\rangle &{}\text {for }U_q(B^{(1)}(0,n)) \end{array}\right. },\\ {\bar{e}}_i|\mathbf{m}\rangle&=(-1)^{-m_i+m_{i+1}+1}[m_i]|\mathbf{m}-\mathbf{e}_i+\mathbf{e}_{i+1}\rangle ,\\ {\bar{f}}_i|\mathbf{m}\rangle&=(-1)^{-m_i+m_{i+1}+1}[m_{i+1}]|\mathbf{m}+\mathbf{e}_i-\mathbf{e}_{i+1}\rangle ,\\ {\bar{k}}_i|\mathbf{m}\rangle&=q^{-m_i+m_{i+1}}|\mathbf{m}\rangle ,\\ {\bar{e}}_n|\mathbf{m}\rangle&=\mathbf{i}^{1-|\mathbf{m}|+2m_n}[m_n]|\mathbf{m}-\mathbf{e}_n\rangle ,\\ {\bar{f}}_n|\mathbf{m}\rangle&=\mathbf{i}^{|\mathbf{m}|-2m_n}|\mathbf{m}+\mathbf{e}_n\rangle ,\\ {\bar{k}}_n|\mathbf{m}\rangle&=q^{-m_n-\frac{1}{2}}|\mathbf{m}\rangle , \end{aligned}$$

for \(1\le i\le n-1\).

Finally, to obtain the actions of \(U_q(C^{(2)}(n+1))\) and \(U_q(B^{(1)}(0,n))\)) in Propositions 3.9 and 3.14, respectively, we perform the basis change \(|\mathbf{m}\rangle \) to

$$\begin{aligned} \mathbf{i}^{s(\mathbf{m})}q^{-|\mathbf{m}|/2}\prod _{j=1}^n[m_j]!|\mathbf{m}\rangle , \end{aligned}$$

where \(s(\mathbf{m})=-|\mathbf{m}|(|\mathbf{m}|+1)/2-\sum _jm_j^2\). Next we apply the algebra automorphism sending \(e_n\mapsto -e_n,f_n\mapsto -f_n\) and the other generators fixed. For \(U_q(C^{(2)}(n+1))^\sigma \), we also apply \(e_0\mapsto \sigma e_0\), \(f_0\mapsto f_0\sigma \). Accordingly, the coproduct also changes. For \(U_q(B^{(1)}(0,n))\), we alternatively apply \(e_0\mapsto \mathbf{i}[2]e_0,f_0\mapsto \frac{1}{\mathbf{i}[2]}f_0\). This completes the proof.

Appendix B. Quantum R Matrix for \(U_q(A_{2n}^{(2)\dagger })\)

In this appendix, we consider the quantum R matrix for the q-oscillator representation of \(U_q(A_{2n}^{(2)\dagger })\) where \(A_{2n}^{(2)\dagger }\) is the Dynkin diagram whose nodes have the opposite labelings to \(A^{(2)}_{2n}\). This will be used in Appendix C to derive the quantum R matrix for \(U_q(B^{(1)}(0,n))\).

1.1 q-oscillator representation for \(U_q(A^{(2)\dagger }_{2n})\)

By \(A^{(2)\dagger }_{2n}\) we denote the following Dynkin diagram.

Although we did not deal with the q-oscillator representation for \(U_q(A^{(2)\dagger }_{2n})\) in [15], it is easy to guess from other cases given there. On the space \(\mathcal {W}\), the actions are given as follows.

$$\begin{aligned} e_0|\mathbf{m}\rangle&=x|\mathbf{m}+2\mathbf{e}_1\rangle ,\\ f_0|\mathbf{m}\rangle&=x^{-1}\frac{[m_1][m_1-1]}{[2]^2}|\mathbf{m}-2\mathbf{e}_1\rangle ,\\ k_0|\mathbf{m}\rangle&=-q^{2m_1+1}|\mathbf{m}\rangle ,\\ e_i|\mathbf{m}\rangle&=[m_i]|\mathbf{m}-\mathbf{e}_i+\mathbf{e}_{i+1}\rangle ,\\ f_i|\mathbf{m}\rangle&=[m_{i+1}]|\mathbf{m}+\mathbf{e}_i-\mathbf{e}_{i+1}\rangle ,\\ k_i|\mathbf{m}\rangle&=q^{-2m_i+2m_{i+1}}|\mathbf{m}\rangle ,\\ e_n|\mathbf{m}\rangle&=\mathbf{i}\kappa [m_n]|\mathbf{m}-\mathbf{e}_n\rangle ,\\ f_n|\mathbf{m}\rangle&=|\mathbf{m}+\mathbf{e}_n\rangle ,\\ k_n|\mathbf{m}\rangle&=\mathbf{i}q^{-m_n-1/2}|\mathbf{m}\rangle , \end{aligned}$$

where \(0<i<n\) and \(\kappa =(q+1)/(q-1)\). Denote this representation map by \(\pi _x\).

Recall that the \(U_q(B_n)\)-highest weight vectors \(\{v_l\mid l\in {\mathbb {Z}}_{\ge 0}\}\) are calculated in [15, Proposition 4]. We take the coproduct (C.1) with \(\pi =1\).

Lemma B.1

For \(x,y\in {\mathbb {Q}}(q)\) we have

  1. (1)

    \((\pi _x\otimes \pi _y)\Delta (f_0f_1^{(2)}\cdots f_{n-1}^{(2)})v_l= -\frac{[l][l-1]}{[2]^2}(q^{2l-2}x^{-1}+q^{-1}y^{-1})v_{l-2}\quad (l\ge 2)\),

  2. (2)

    \((\pi _x\otimes \pi _y)\Delta (e_ne_{n-1}^{(2)}\cdots e_1^{(2)}e_0)v_0= \frac{\mathbf{i}\kappa [2]}{1-q}((y+qx)v_1-q(y+x)\Delta (f_n)v_0)\).

Define the quantum R matrix \({\check{R}}_{KO}(z,q)\) for \(U_q(A^{(2)\dagger }_{2n})\) as in Proposition C.4. The existence of such \({\check{R}}_{KO}(z,q)\) is essentially given in [15, Theorem 13]. Namely, although \(A^{(2)\dagger }_{2n}\) is not listed there, the corresponding gauge transformed quantum R matrix is \(S^{2,1}(z)\) and the proof has been done as the cases (i),(iv) and (v). By using Lemma B.1, we have the following.

Proposition B.2

We have the following spectral decomposition

$$\begin{aligned} {\check{R}}_{KO}(z)=\sum _{l\in 2{\mathbb {Z}}_{+}} \prod _{j=1}^{l/2}\frac{z+q^{4j-1}}{1+q^{4j-1}z}P_l +\sum _{l\in 1+2{\mathbb {Z}}_{+}}\prod _{j=0}^{(l-1)/2}\frac{z+q^{4j+1}}{1+q^{4j+1}z}P_l, \end{aligned}$$

where \(P_l\) is the projector on the subspace generated by the \(U_q(B_n)\)-highest weight vector \(v_l\;(l\ge 0)\).

Appendix C. Quantum R Matrix for \(U_q(C^{(2)}(n+1))\) and \(U_q(B^{(1)}(0,n))\)

In this appendix, we compare the quantum R matrix for the q-oscillator representation for \(U_q(C^{(2)}(n+1))\) with the one for \(U_q(D_{n+1}^{(2)})\) given in [15]. We also compare the quantum R matrix for \(U_q(B^{(1)}(0,n))\) with the one for \(U_q(A^{(2)\dagger }_{2n})\) in Appendix B. We keep the notations in Appendix A.

1.1 Gauge transformation

We take the following coproduct

$$\begin{aligned} \begin{aligned}&\Delta (k_i)=k_i\otimes k_i,\\&\Delta (e_i)=1\otimes e_i+e_i\otimes \sigma ^{\frac{1-\pi }{2} p(i)}k_i,\\&\Delta (f_i)=f_i\otimes \sigma ^{\frac{1-\pi }{2} p(i)}+k_i^{-1}\otimes f_i,\\ \end{aligned} \end{aligned}$$
(C.1)

for \(i\in I\), where \(\sigma \) satisfies (2.3). We also take the same coproduct (C.1) for \(\overline{u}_i\). Let \(\Gamma \) be an operator acting on \(\mathcal {W}^{\otimes 2}\) by

$$\begin{aligned} \Gamma |\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle =\mathbf{i}^{\sum _{k,l}\varphi _{kl}m_km'_l}|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle , \end{aligned}$$
(C.2)

for \(\mathbf{m}=(m_1,\dots ,m_n)\) and \(\mathbf{m}'=(m'_1,\dots ,m'_n)\). Here we have the constraint \(\varphi _{kl}+\varphi _{lk}=0\). Then by [23] (see also [22]),

$$\begin{aligned} \Delta ^\Gamma (u)=\Gamma ^{-1}\Delta (u)\Gamma \end{aligned}$$

gives another coproduct of \(U_q(B_n)\) acting on \(\mathcal {W}^{\otimes 2}\). Take \(\varphi _{kl}\) to be 1 for \(k<l\). We also set

$$\begin{aligned} K|\mathbf{m}\rangle =\mathbf{i}^{c(\mathbf{m})}|\mathbf{m}\rangle , \end{aligned}$$
(C.3)

where

$$\begin{aligned} c(\mathbf{m})=-\frac{1}{2}\sum _km_k^2+\sum _k\left( k-n-\frac{1}{2}\right) m_k. \end{aligned}$$

Set

$$\begin{aligned} \gamma _i(\mathbf{m})&={\left\{ \begin{array}{ll} -|\mathbf{m}|+m_1&{}(i=0\text { and for }U_q(C^{(2)}(n+1)))\\ -2|\mathbf{m}|+2m_1&{}(i=0\text { and for }U_q(B^{(1)}(0,n)))\\ m_i+m_{i+1}&{}(0<i<n)\\ -|\mathbf{m}|+m_n&{}(i=n) \end{array}\right. },\\ \beta _i(\mathbf{m})&={\left\{ \begin{array}{ll} m_1+n&{}(i=0\text { and }U_q(C^{(2)}(n+1)))\\ 2m_1+2n+1&{}(i=0\text { and }U_q(B^{(1)}(0,n)))\\ -m_i+m_{i+1}&{}(0<i<n)\\ -m_n&{}(i=n) \end{array}\right. }. \end{aligned}$$

Let \(\varvec{\alpha }_0=\mathbf{e}_1\text { for }U_q(C^{(2)}(n+1))),2\mathbf{e}_1\text { for } U_q(B^{(1)}(0,n)))\), \(\varvec{\alpha }_i=-\mathbf{e}_i+\mathbf{e}_{i+1}\) \((0<i<n)\), and \(\varvec{\alpha }_n=-\mathbf{e}_n\).

Lemma C.1

The following formulas hold for \(\mathbf{m}\), \(\mathbf{m}'\), and \(i\in I\):

  1. (1)

    \(\Gamma ^{-1}(1\otimes e_i)\Gamma \, |\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle =\mathbf{i}^{-\gamma _i(\mathbf{m})}|\mathbf{m}\rangle \otimes e_i|\mathbf{m}'\rangle \),

  2. (2)

    \(\Gamma ^{-1}(e_i\otimes 1)\Gamma \,|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle =\mathbf{i}^{\gamma _i(\mathbf{m}')}e_i|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle \),

  3. (3)

    \(\Gamma ^{-1}(1\otimes f_i)\Gamma \,|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle =\mathbf{i}^{\gamma _i(\mathbf{m}-\varvec{\alpha }_i)}|\mathbf{m}\rangle \otimes f_i|\mathbf{m}'\rangle \),

  4. (4)

    \(\Gamma ^{-1}(f_i\otimes 1)\Gamma \, |\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle =\mathbf{i}^{-\gamma _i(\mathbf{m}'-\varvec{\alpha }_i)} f_i|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle \).

Lemma C.2

The following formulas hold for \(\mathbf{m}\) and \(i\in I\):

  1. (1)

    \(K^{-1}e_iK|\mathbf{m}\rangle =\mathbf{i}^{\beta _i(\mathbf{m})}e_i{|\mathbf{m}\rangle }\),

  2. (2)

    \(K^{-1}f_iK|\mathbf{m}\rangle =\mathbf{i}^{-\beta _i(\mathbf{m}-\varvec{\alpha }_i)}f_i{|\mathbf{m}\rangle }\).

Proposition C.3

For \(u_i\) \((i\in I\), \(u=e,f,k)\), we have

$$\begin{aligned} \Delta ({\bar{u}}_i)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle =\mathbf{i}^{\Lambda _i(\mathbf{m}+\mathbf{m}')} (K\otimes K)^{-1}\Delta ^\Gamma (u_i)(K\otimes K)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle , \end{aligned}$$

on \(\mathcal {W}^{\otimes 2}\). Here

$$\begin{aligned} \Lambda _i(\mathbf{m})={\left\{ \begin{array}{ll} m_i+m_{i+1}-(\delta _{i0}+\delta _{in})|\mathbf{m}|-n\delta _{i0}&{}(u=e)\\ m_i+m_{i+1}+(\delta _{i0}+\delta _{in})(|\mathbf{m}|+1)-2&{}(u=f)\\ 2m_i-2m_{i+1}&{}(u=k) \end{array}\right. }, \end{aligned}$$

except when \(i=0\) and for \(U_q(B^{(1)}(0,n))\), where

$$\begin{aligned} \Lambda _0(\mathbf{m})={\left\{ \begin{array}{ll} 2m_1-2|\mathbf{m}|-2n+1&{}(u=e)\\ 2m_1-2|\mathbf{m}|-2n+3&{}(u=f)\\ 0&{}(u=k) \end{array}\right. }. \end{aligned}$$

Here we should understand \(m_0=m_{n+1}=0\).

Proof

It follows from Lemmas C.1 and C.2, and the following calculations. For instance, for \(i=n\)

$$\begin{aligned} \Delta ({\bar{e}}_n)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle&= (1\otimes {\bar{e}}_n + {\bar{e}}_n\otimes \sigma {\bar{k}}_n)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle \\&=\kappa (\mathbf{i}^{1-|\mathbf{m}'|}[m'_n] |\mathbf{m}\rangle \otimes |\mathbf{m}'-\mathbf{e}_n\rangle \\&\quad +(-1)^{|\mathbf{m}'|}\mathbf{i}^{2-|\mathbf{m}|+2m'_n}q^{-2m'_n-1}[m_n]|\mathbf{m}-\mathbf{e}_n\rangle \otimes |\mathbf{m}'\rangle ),\\ \Delta ^\Gamma (e_n)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle&= (\Gamma ^{-1}(1\otimes e_n)\Gamma + \Gamma ^{-1}(e_n\otimes 1)\Gamma \cdot (1\otimes k_n))|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle \\&=\kappa (\mathbf{i}^{|\mathbf{m}|-m_n+1}[m'_n] |\mathbf{m}\rangle \otimes |\mathbf{m}'-\mathbf{e}_n\rangle \\&\quad +\mathbf{i}^{-|\mathbf{m}'|+m'_n+2}q^{-2m'_n-1}[m_n]|\mathbf{m}-\mathbf{e}_n\rangle \otimes |\mathbf{m}'\rangle ), \end{aligned}$$

and for \(i\ne n\)

$$\begin{aligned} \Delta ({\bar{e}}_i)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle&= (1\otimes {\bar{e}}_i + {\bar{e}}_i\otimes {\bar{k}}_i)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle \\&=\mathbf{i}^{2m'_{i+1}}[m'_i] |\mathbf{m}\rangle \otimes |\mathbf{m}'-\mathbf{e}_i+\mathbf{e}_{i+1}\rangle \\&\quad +\mathbf{i}^{2m_{i+1}+2m'_i-2m'_{i+1}}q^{-2m'_i+2m'_{i+1}}[m_i]|\mathbf{m}-\mathbf{e}_i+\mathbf{e}_{i+1}\rangle \otimes |\mathbf{m}'\rangle ,\\ \Delta ^\Gamma (e_i)|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle&= (\Gamma ^{-1}(1\otimes e_i)\Gamma + \Gamma ^{-1}(e_i\otimes 1)\Gamma \cdot (1\otimes k_i))|\mathbf{m}\rangle \otimes |\mathbf{m}'\rangle \\&=\mathbf{i}^{-m_i-m_{i+1}}[m'_i] |\mathbf{m}\rangle \otimes |\mathbf{m}'-\mathbf{e}_i+\mathbf{e}_{i+1}\rangle \\&\quad +\mathbf{i}^{m'_i+m'_{i+1}}q^{-2m'_i+2m'_{i+1}}[m_i]|\mathbf{m}-\mathbf{e}_i+\mathbf{e}_{i+1}\rangle \otimes |\mathbf{m}'\rangle . \end{aligned}$$

\(\square \)

For a quantum affine superalgebras such as \(U_q(D^{(2)}_{n+1})\), \(U_q(A^{(2)\dagger }_{2n})\), \(U_q(C^{(2)}(n+1))\), and \(U_q(B^{(1)}(0,n))\), a quantum R matrix R(z) is defined, if it exists, as an intertwiner satisfying

$$\begin{aligned} {\check{R}}(z)(\pi _x\otimes \pi _y)\Delta (u) =(\pi _y\otimes \pi _x)\Delta (u){\check{R}}(z), \end{aligned}$$

where \({\check{R}}(z)=PR(z)\), P is the transposition of the tensor components and \(z=x/y\). We also note that the coproduct we use here is (C.1). For \(U_q(D^{(2)}_{n+1})\) or \(U_q(A^{(2)\dagger }_{2n})\), the existence of quantum R matrices are proved in [15] or Appendix B. We denote them by \({\check{R}}_{KO}(z)\). Let \({\check{R}}_{new}(z)\) be the quantum R matrices for the quantum groups \(U_q(C^{(2)}(n+1))\) or \(U_q(B^{(1)}(0,n))\). From Proposition C.3, we have

Proposition C.4

For generic \(x, y\in {\mathbb {Q}}(q)\), \({\check{R}}_{new}(z)\) and \({\check{R}}_{KO}(z)\) have the following relation:

$$\begin{aligned} {\check{R}}_{new}(z,-q)=(K\otimes K)^{-1}\Gamma ^{-1}{\check{R}}_{KO}(z,q) \Gamma (K\otimes K). \end{aligned}$$

Appendix D. Irreducibility of \(\mathcal {W}^{(s)}\)

In this appendix, we prove Theorem 4.1. We adopt the arguments used in the finite-dimensional representations of the quantum affine algebras [12]. We assume that \(X=C_n^{(1)}\) and \(\mathcal {W}=\mathcal {W}_+\) since the proof for the other two cases are similar.

1.1 Normalized R matrix

Let us use the following notations.

  • \(\mathbf{k}\) : the base field, which is the algebraic closure of \({\mathbb {Q}}(q)\) in \(\bigcup _n {\mathbb {C}}((q^{-1/n}))\),

  • \(\mathcal {W}[z] = \mathbf{k}[z^{\pm 1}]\otimes _\mathbf{k} \mathcal {W}(1)\) : the affinization of \(\mathcal {W}(1)\), where z is a formal variable (see [14, Section 4.2]),

  • \(\mathcal {W}[z_1]\, {\widehat{\otimes }}\, \mathcal {W}[z_2]\), \(\mathcal {W}[z_2]\, {\widetilde{\otimes }}\, \mathcal {W}[z_1]\) : the completions of \(\mathcal {W}[z_1]{\otimes } \mathcal {W}[z_2]\) and \(\mathcal {W}[z_2]{\otimes } \mathcal {W}[z_1]\), respectively, where \(z_1, z_2\) are formal commuting variables (see [14, Section 7]),

  • \(\mathbf{k}\llbracket \frac{z_1}{z_2}\rrbracket \) : the ring of formal power series in \(\frac{z_1}{z_2}\) over \(\mathbf{k}\), where we regard \(\mathbf{k}(\tfrac{z_1}{z_2}) \subset \mathbf{k}\llbracket \tfrac{z_1}{z_2}\rrbracket \) under the identification \(\frac{1}{1-c(z_1/z_2)}=\sum _{k\ge 0}c^k(\frac{z_1}{z_2})^k\in \mathbf{k}\llbracket \tfrac{z_1}{z_2}\rrbracket \) for \(c\in \mathbf{k}\).

Let \(R^\mathrm{univ}\) be the universal R matrix for \(U_q(C_n^{(1)})\). Then we have (cf. [14, (7.6)])

Lemma D.1

\(\mathbf{k}(\frac{z_1}{z_2})\otimes _{\mathbf{k}[(\frac{z_1}{z_2})^{\pm 1}]}(\mathcal {W}[z_1]\otimes \mathcal {W}[z_2])\) is an irreducible module over \(\mathbf{k}(\frac{z_1}{z_2})\otimes _{\mathbf{k}[(\frac{z_1}{z_2})^{\pm 1}]} U_q(C_n^{(1)})[z_1^{\pm 1},z_2^{\pm 1}]\).

Proof

See [15, Proposition 12]. \(\quad \square \)

Lemma D.2

The spaces \(\mathcal {W}[z_1]\, {\widehat{\otimes }}\, \mathcal {W}[z_2]\) and \(\mathcal {W}[z_2]\,{\widetilde{\otimes }}\, \mathcal {W}[z_1]\) are invariant under the action of \(\mathbf{k}\llbracket \frac{z_1}{z_2}\rrbracket \).

Proof

Let us consider \(\mathcal {W}[z_2]\,{\widetilde{\otimes }}\,\mathcal {W}[z_1]\). The proof for \(\mathcal {W}[z_1]\, {\widehat{\otimes }}\, \mathcal {W}[z_2]\) is the same. It suffices to check that \(\mathcal {W}[z_2]\,{\widetilde{\otimes }}\,\mathcal {W}[z_1]\) is invariant under multiplication by \(\mathbf{k}\llbracket \frac{z_1}{z_2}\rrbracket \). Let Q be the root lattice for \(C_n^{(1)}\) and \(Q_+\) the set of non-negative integral linear combinations of simple roots. By definition of \(\mathcal {W}[z_2]\, {\widetilde{\otimes }}\, \mathcal {W}[z_1]\), we have

$$\begin{aligned} \mathcal {W}[z_2]\, {\widetilde{\otimes }}\, \mathcal {W}[z_1]=\sum _{(\lambda ,\mu )}F_{(\lambda ,\mu )}(\mathcal {W}[z_2]\otimes \mathcal {W}[z_1]), \end{aligned}$$

where \(F_{(\lambda ,\mu )}(\mathcal {W}[z_2]\otimes \mathcal {W}[z_1])=\prod _{\beta \in Q_+} \mathcal {W}[z_2]_{\lambda -\beta }\times \mathcal {W}[z_1]_{\mu +\beta }\). Here we understand the weights \(\lambda -\beta \) and \(\mu +\beta \) of \(\mathcal {W}[z_i]\) (\(i=1,2\)) as elements in the affine weight lattice, say P in [14, Section 2.1]. We have

$$\begin{aligned} (\tfrac{z_1}{z_2})^k F_{(\lambda ,\mu )}(\mathcal {W}[z_2]\otimes \mathcal {W}[z_1]) \subset F_{(\lambda ,\mu )}(\mathcal {W}[z_2]\otimes \mathcal {W}[z_1]), \end{aligned}$$

for \(k\in {\mathbb {Z}}_{\ge 0}\), since for a given \(\mu +\beta \) (\(\beta \in Q_+\)), there exist only finitely many \(k\in {\mathbb {Z}}_{\ge 0}\) and \(\beta '\in Q_+\) such that \(\mu +\beta =\mu + \beta '+k\delta \), where \(\delta \) is the null root of \(C_n^{(1)}\). This proves the lemma. \(\quad \square \)

By Lemma D.2, we may regard

$$\begin{aligned} \begin{aligned}&\mathbf{k}(\tfrac{z_1}{z_2})\otimes _{\mathbf{k}[(\frac{z_1}{z_2})^{\pm 1}]}(\mathcal {W}[z_1]\otimes \mathcal {W}[z_2]) \ \subset \ \mathbf{k}\llbracket \tfrac{z_1}{z_2}\rrbracket \otimes _{\mathbf{k}[(\frac{z_1}{z_2})^{\pm 1}]} \left( \mathcal {W}[z_1]\otimes \mathcal {W}[z_2]\right) \ \subset \ \mathcal {W}[z_1]\ {\widehat{\otimes }}\ \mathcal {W}[z_2],\\&\mathbf{k}(\tfrac{z_1}{z_2})\otimes _{\mathbf{k}[(\frac{z_1}{z_2})^{\pm 1}]}(\mathcal {W}[z_2]\otimes \mathcal {W}[z_1]) \ \subset \ \mathbf{k}\llbracket \tfrac{z_1}{z_2}\rrbracket \otimes _{\mathbf{k}[(\frac{z_1}{z_2})^{\pm 1}]} \left( \mathcal {W}[z_2]\otimes \mathcal {W}[z_1]\right) \ \subset \ \mathcal {W}[z_2]\ {\widetilde{\otimes }}\ \mathcal {W}[z_1]. \end{aligned} \end{aligned}$$

Note that the weight of \(z_i^k\otimes |\mathbf{m}\rangle \) is in \(-\tfrac{1}{2}\varpi _n +{\mathbb {Z}}_{\ge 0}\delta \) if and only if \(|\mathbf{m}\rangle =|\mathbf{0}\rangle \). Hence one can check without difficulty that

$$\begin{aligned} R^\mathrm{univ} (|\mathbf{0}\rangle \otimes |\mathbf{0}\rangle ) = a(\tfrac{z_1}{z_2})\otimes ( |\mathbf{0}\rangle \otimes |\mathbf{0}\rangle ), \end{aligned}$$

for some non-zero \(a(\frac{z_1}{z_2})\in \mathbf{k}\llbracket \frac{z_1}{z_2}\rrbracket \), which is invertible. Now, we define the normalized R matrix by

$$\begin{aligned} R^\mathrm{norm}_{z_1,z_2}= a(\tfrac{z_1}{z_2})^{-1}R^\mathrm{univ}. \end{aligned}$$

Lemma D.3

The normalized R matrix \(R^\mathrm{norm}_{z_1,z_2}\) gives a \(\mathbf{k}(\frac{z_1}{z_2})\otimes _{\mathbf{k}[(\frac{z_1}{z_2})^{\pm 1}]} U_q(C_n^{(1)})[z_1^{\pm 1},z_2^{\pm 1}]\)-linear map

where \(R^\mathrm{norm}_{z_1,z_2}(|\mathbf{0}\rangle \otimes |\mathbf{0}\rangle )=|\mathbf{0}\rangle \otimes |\mathbf{0}\rangle \). Moreover, \(R^\mathrm{norm}_{z_1,z_2}\) is a unique such map and hence

$$\begin{aligned} {\check{R}}_+(z_1,z_2)=R^\mathrm{norm}_{z_1,z_2}, \end{aligned}$$

where \({\check{R}}_+(z_1,z_2)\) is the quantum R matrix in (4.1).

Proof

The well-definedness and uniqueness of \(R^\mathrm{norm}_{z_1,z_2}\) follows from Lemma D.1 and \(R^\mathrm{norm}_{z_1,z_2}(|\mathbf{0}\rangle \otimes |\mathbf{0}\rangle )=|\mathbf{0}\rangle \otimes |\mathbf{0}\rangle \). In particular, we have \(R^\mathrm{norm}_{z_1,z_2}={\check{R}}_+(z_1,z_2)\). \(\quad \square \)

1.2 Irreducibility of \(\mathcal {W}^{(2)}\)

Let us prove first that \(\mathcal {W}^{(2)}\) is irreducible. Recall that \(\mathcal {W}^{(2)}\) is the image of

which is well-defined by (4.1) and Lemma D.3. Let

$$\begin{aligned} \mathbf{K}=\mathbf{k}(\tfrac{z_1}{z_3})\otimes \mathbf{k}(\tfrac{z_2}{z_3}),\quad \mathbf{D}=\mathbf{k}[(\tfrac{z_1}{z_3})^{\pm 1},(\tfrac{z_2}{z_3})^{\pm 1}]. \end{aligned}$$

Consider the following maps

By the hexagon property of \(R^\mathrm{univ}\), we have

$$\begin{aligned} \begin{aligned} (R^\mathrm{norm}_{z_1,z_3}\otimes \mathrm{id})\circ (\mathrm{id}\otimes R^\mathrm{norm}_{z_2,z_3})&=(a(\tfrac{z_1}{z_3})^{-1}R^\mathrm{univ}_{1,3}\otimes \mathrm{id})\circ (a(\tfrac{z_2}{z_3})^{-1} \mathrm{id}\otimes R^\mathrm{univ}_{2,3})\\&= a(\tfrac{z_1}{z_3})^{-1}a(\tfrac{z_2}{z_3})^{-1}(R^\mathrm{univ}_{1,3}\otimes \mathrm{id})\circ ( \mathrm{id}\otimes R^\mathrm{univ}_{2,3})\\&= a(\tfrac{z_1}{z_3})^{-1}a(\tfrac{z_2}{z_3})^{-1}R^\mathrm{univ}_{12,3}, \end{aligned} \end{aligned}$$
(D.1)

where the second equality follows from the fact that the action of \(z_i\) commutes with those of \(e_j\) and \(f_j\), and \(R^\mathrm{univ}_{12,3}\) in the last equality is understood as the map

Put

$$\begin{aligned} R = a(\tfrac{z_1}{z_3})^{-1}a(\tfrac{z_2}{z_3})^{-1}R^\mathrm{univ}_{12,3}=(R^\mathrm{norm}_{z_1,z_3}\otimes \mathrm{id})\circ (\mathrm{id}\otimes R^\mathrm{norm}_{z_2,z_3}). \end{aligned}$$

By (4.1), we have a well-defined non-zero \(U_q(C_n^{(1)})\)-linear map \(\mathbf{r}:=R\vert _{z_1=z_2^{-1}=z_3=q}\):

By the hexagon property (D.1), we obtain the following.

Lemma D.4

Let \(S\subset \mathcal {W}(q)\otimes \mathcal {W}(q^{-1})\) be a \(U_q(C_n^{(1)})\)-submodule. Then we have

$$\begin{aligned} \mathbf{r}(S \otimes \mathcal {W}(q^{-1}))\subset \mathcal {W}(q^{-1})\otimes S, \end{aligned}$$

and the following diagram commutes:

\(\square \)

Proposition D.5

\(\mathcal {W}^{(2)}\) is irreducible.

Proof

Note that \(\mathcal {W}(q^{\pm 1})\) is irreducible, and \(\mathbf{r}= (\mathbf{r}_{1,3}\otimes \mathrm{id})\otimes (\mathrm{id}\otimes \mathbf{r}_{2,3})\), where \(\mathbf{r}_{2,3}=R^\mathrm{norm}_{z_2,z_3}\vert _{z_2^{-1}=z_3=q}\) and \(\mathbf{r}_{1,3}=R^\mathrm{norm}_{z_1,z_3}\vert _{z_1=z_3=q}=\mathrm{id}\). Hence, we may apply the same arguments as in [12, Theorem 3.12] to show that if S is a non-zero submodule of \(\mathcal {W}(q)\otimes \mathcal {W}(q^{-1})\), then S includes \(\mathrm{Im}(R^\mathrm{norm}_{q^{-1},q})\). This implies that \(\mathcal {W}^{(2)}\) is irreducible. \(\quad \square \)

1.3 Proof of Theorem 4.1

Fix \(s\ge 2\). Let \(z_1,\dots ,z_s\) be formal commuting variables. Consider

$$\begin{aligned} \mathcal {W}[z_1]\otimes \dots \otimes \mathcal {W}[z_s]. \end{aligned}$$

For \(a\in {\mathbb {Q}}(q)^\times \), let \(x_i=aq^{2i-1-s}\) and \(\mathcal {W}_i = \mathcal {W}(x_i)\) for \(1\le i\le s\). We have a map \(\mathbf{r}_{i,j}:= R^\mathrm{norm}_{x_i,x_j}: \mathcal {W}_i\otimes \mathcal {W}_j \longrightarrow \mathcal {W}_j\otimes \mathcal {W}_i\) for \(1\le i<j\le s\) and

which is the composition of \(\mathbf{r}_{i,j}\) associated to a reduced expression of \(w_0\in \mathfrak {S}_s\).

Let us prove that \(\mathcal {W}^{(s)}=\mathrm{Im}(\mathbf{r})\) is irreducible. Use induction on s. It is true for \(s=2\) by Proposition D.5. Suppose that \(s\ge 3\). Let \(\mathbf{r}={\mathbf {r}}_s\) be the map in the statement and let \({\mathbf {r}}_{s-1}\) be the map corresponding to the first \(s-1\) factors. We have the following commutative diagram:

where \(\hat{{\mathbf {r}}}_i= \mathrm{id}^{\otimes s-i-1}\otimes {\mathbf {r}}_{i,s} \otimes \mathrm{id}^{i-1}\) for \(1\le i\le s-1\). Note that \({\mathbf {r}}_s \ne 0\) since \(\mathbf{r}(|\mathbf{0}\rangle ^{\otimes s})=|\mathbf{0}\rangle ^{\otimes s}\). Thus \({\mathbf {r}}_{s-1}\) has a nonzero image \(\mathcal {W}^{(s-1)}\), which is irreducible by the induction hypothesis. Applying the hexagon property repeatedly, we have the following commutative diagram:

Here the map \({\mathbf {r}}_{\mathcal {W}^{(s-1)},\mathcal {W}_s}\) is given by

$$\begin{aligned} {\mathbf {r}}_{\mathcal {W}^{(s-1)},\mathcal {W}_s}= c R^\mathrm{univ}_{1\dots s-1,s}\vert _{z_i=aq^{2i-1-s}}, \end{aligned}$$

where c is an element in \(\bigotimes _{i<j}\mathbf{k}(\frac{z_i}{z_j})\), and \(R^\mathrm{univ}_{1\dots s-1,s}\) is the universal R matrix

Thus the image of \({\mathbf {r}}_s\) is equal to that of \({\mathbf {r}}_{\mathcal {W}^{(s-1)},\mathcal {W}_s}\).

Now, let S be a non-zero submodule of \(\mathcal {W}_s\otimes \mathcal {W}^{(s-1)}\). Put \(\mathbf{r}'=\mathbf{r}_{s,s}\circ {\mathbf {r}}_{\mathcal {W}^{(s-1)},\mathcal {W}_s}\). Then as in Lemma D.4, we can check the following commutative diagram:

Again by the same arguments as in [12, Theorem 3.12], we conclude that \(\mathcal {W}^{(s)}\subset S\), which implies that \(\mathcal {W}^{(s)}\) is irreducible. This completes the proof.

Remark D.6

The universal R matrix for \(C^{(2)}(n+1)\) and \(B^{(1)}(0,n)\) can be found in [7].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, JH., Okado, M. Higher Level q-Oscillator Representations for \(U_q(C_n^{(1)}),U_q(C^{(2)}(n+1))\) and \(U_q(B^{(1)}(0,n))\). Commun. Math. Phys. 385, 1041–1082 (2021). https://doi.org/10.1007/s00220-021-04009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04009-x

Navigation