Skip to main content
Log in

Low-temperature synthesis of α-Al2O3 single crystal platelets by one-step thermal decomposition of Al-urea complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low-temperature synthesis of α-Al2O3 powder is still a great challenge. In this study, we report a direct synthesis of α-Al2O3 platelets by the thermal decomposition of aluminum-urea nitrate ([Al(NH2CONH2)6](NO3)3, AUN) complex at low temperature. The thermal decomposition of AUN and subsequent formation of α-Al2O3 platelets are investigated using thermogravimetric and differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate the formation of hexagonal α-Al2O3 single crystal platelets by the thermal decomposition of AUN at 550 °C. The calcination temperature has a significant effect on the morphology of α-Al2O3 platelets. When the calcination temperature increases from 550 to more than 800 °C, the morphology of α-Al2O3 platelets changes from hexagonal to roundish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amrute AP, Łodziana Z, Schreyer H, Weidenthaler C, Schüth F. High-surface-area corundum by mechanochemically induced phase transformation of boehmite. Science. 2019;366:485–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ishihara S, Tochigi E, Ishikawa R, Shibata N, Ikuhara Y. Atomic structures of Ti-doped α-Al2O3 Σ13 grain boundary with a small amount of Si impurity. J Am Ceram Soc. 2020;103:6659–65.

    Article  CAS  Google Scholar 

  3. Li Z, Li Z, Zhang A, Zhu Y. Synergistic effect of α-Al2O3 and (NH4)3AlF6 co-doped seed on phase transformation, microstructure, and mechanical properties of nanocrystalline alumina abrasive. J Alloy Compd. 2009;476:276–81.

    Article  CAS  Google Scholar 

  4. Wang Q, Li Y, Luo M, Sang S, Zhu T, Zhao L. Strengthening mechanism of graphene oxide nanosheets for Al2O3-C refractories. Ceram Int. 2014;40:163–72.

    Article  CAS  Google Scholar 

  5. Salla JS, Padoin N, Amorim SM, Li Puma G, Moreira RFPM. Humic acids adsorption and decomposition on Mn2O3 and α-Al2O3 nanoparticles in aqueous suspensions in the presence of ozone. J Environ Chem Eng. 2020;8: 102780.

    Article  CAS  Google Scholar 

  6. Wang C, Xu W, Qin Z, Liu X, Mintova S. Low-temperature synthesis of α-alumina nanosheets on microfibrous-structured Al-fibers for Pd-catalyzed CO oxidative coupling to dimethyl oxalate. Catal Today. 2020;354:158–66.

    Article  CAS  Google Scholar 

  7. Lin B, Heng L, Fang B, Yin H, Ni J, Wang X, Lin J, Jiang L. Ammonia synthesis activity of alumina-supported ruthenium catalyst enhanced by alumina phase transformation. ACS Catal. 2019;9:1635–44.

    Article  CAS  Google Scholar 

  8. Lertwittayanon K, Youravong W, Lau WJ. Enhanced catalytic performance of Ni/Α-Al2O3 catalyst modified with CaZrO3 nanoparticles in steam-methane reforming. Int J Hydrogen Energ. 2017;42:28254–65.

    Article  CAS  Google Scholar 

  9. Amrute AP, Jeske K, Łodziana Z, Prieto G, Schüth F. Hydrothermal stability of high-surface-area α-Al2O3 and its use as a support for hydrothermally stable Fischer−Tropsch synthesis catalysts. Chem Mater. 2020;32:4369–74.

    Article  CAS  Google Scholar 

  10. Frank B, Emig G, Renken A. Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt−Mo−Co/α-Al2O3 catalyst. Appl Catal B-Environ. 1998;19:45–57.

    Article  CAS  Google Scholar 

  11. Hu J, Zhou Z, Zhang R, Li L, Cheng Z. Selective hydrogenation of phenylacetylene over a nano-Pd/α-Al2O3 catalyst. J Mol Catal A-Chem. 2014;381:61–9.

    Article  CAS  Google Scholar 

  12. Li L, Pu S, Liu Y, Zhao L, Ma J, Li J. High-purity disperse α-Al2O3 nanoparticles synthesized by high-energy ball milling. Adv Powder Technol. 2018;29:2194–203.

    Article  CAS  Google Scholar 

  13. Pu S, Li L, Ma J, Lu F, Li J. Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation. Sci Rep. 2015;5:11575.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu P, Yang R, Chang Y, Yen F. Fabrication of nano-scaled α-Al2O3 crystallites through heterogeneous precipitation of boehmite in a well-dispersed θ-Al2O3-suspension. J Am Ceram Soc. 2007;90:2340–6.

    Article  CAS  Google Scholar 

  15. Li J, Pan Y, Xiang C, Ge Q, Guo J. Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process. Ceram Int. 2006;32:587–91.

    Article  CAS  Google Scholar 

  16. Wang X, Lu G, Guo Y, Wang Y, Guo Y. Preparation of high thermal-stabile alumina by reverse microemulsion method. Mater Chem Phys. 2005;90:225–9.

    Article  CAS  Google Scholar 

  17. Billik P, Čaplovičová M, Turányi T, Čaplovič L, Horváth B. Low-temperature mechanochemical–thermal synthesis of α-Al2O3 nanocrystals. Mater Res Bull. 2011;46:2135–40.

    Article  CAS  Google Scholar 

  18. Xu L, Song H, Chou L. Facile synthesis of nano-crystalline alpha-alumina at low temperature via an absolute ethanol sol–gel strategy. Mater Chem Phys. 2012;132:1071–6.

    Article  CAS  Google Scholar 

  19. Aman Y, Rossignol C, Garnier V, Djurado E. Low temperature synthesis of ultrafine non vermicular α-alumina from aerosol decomposition of aluminium nitrates salts. J Eur Ceram Soc. 2013;33:1917–28.

    Article  CAS  Google Scholar 

  20. Nemade KR, Waghuley SA. Low temperature synthesis of semiconducting α-Al2O3 quantum dots. Ceram Int. 2014;40:6109–13.

    Article  CAS  Google Scholar 

  21. Guo R, Cao W, Mao X, Li J. Selective corrosion preparation and sintering of disperse α-Al2O3 nanoparticles. J Am Ceram Soc. 2016;99:3556–60.

    Article  CAS  Google Scholar 

  22. Du X, Wang Y, Su X, Li J. Low temperature formation of α-Al2O3 nanopowder by dehydration of grinding-activated gibbsite. Nanosci Nanotech Let. 2011;3:146–50.

    Article  CAS  Google Scholar 

  23. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Edit. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  24. Isupov V, Chupakhina L, Kryukova G, Tsybulya S. Fine α-alumina with low alkali: new approach for preparation. Solid State Ionics. 2001;141–142:471–8.

    Article  Google Scholar 

  25. Martín-Ruiz MM, Pérez-Maqueda LA, Cordero T, Balek V, Subrt J, Murafa N, Pascual-Cosp J. High surface area α-alumina preparation by using urban waste. Ceram Int. 2009;35:2111–7.

    Article  Google Scholar 

  26. Huang Y, Xia Y, Liao S, Tong Z, Liu G, Li Y, Chen Z. Synthesis of α-Al2O3 platelets and kinetics study for thermal decomposition of its precursor in molten salt. Ceram Int. 2014;40:8071–9.

    Article  CAS  Google Scholar 

  27. Qiu Y, Gao L. Gao, Metal–urea complex—a precursor to metal nitrides. J Am Ceram Soc. 2004;87:352–7.

    Article  CAS  Google Scholar 

  28. Asuha S, Suyala B, Siqintana X, Zhao S. Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe–urea complex and its properties. J Alloy Compd. 2011;509:2870–3.

    Article  CAS  Google Scholar 

  29. Bai ML, Zhao S, Asuha S. Synthesis and thermal decomposition of Cr-urea complex. J Therm Anal Calorim. 2014;115:255–8.

    Article  CAS  Google Scholar 

  30. Penland RB, Mizushima S, Curran C, Quagliano JV. Infrared absorption spectra of inorganic coordination complexes. X. Studies of some metal–urea complexes. J Am Chem Soc. 1957;79:1575–8.

    Article  CAS  Google Scholar 

  31. Manfred K, Martin E. Determination of urea and its thermal decomposition products by high-performance liquid chromatography. J Chromatogr A. 1995;689:164–9.

    Article  Google Scholar 

  32. Zhu L, Liu L, Sun C, Zhang X, Zhang L, Gao Z, Ye G, Li H. Low temperature synthesis of polyhedral α-Al2O3 nanoparticles through two different modes of planetary ball milling. Ceram Int. 2020;46:28414–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 21267016), and Program for Inner Mongolia Excellence Specialist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Zhao or S. Asuha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Zhou, L., Zhao, S. et al. Low-temperature synthesis of α-Al2O3 single crystal platelets by one-step thermal decomposition of Al-urea complex. J Therm Anal Calorim 148, 8841–8848 (2023). https://doi.org/10.1007/s10973-023-12297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12297-9

Keywords

Navigation