Skip to main content
Log in

Facile energetic fluoride chemistry induced organically coated aluminum powder with effectively improved ignition and combustion performances

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Energetic fluoride chemistry possesses great promise as the energetic fluoride coating has the potential to enhance energy release of aluminum. In this study, glycidyl azide polymer (GAP) and pentadecafluorooctanoic acid (PFOA) were one-pot esterified to form energetic fluoride: glycidyl azide polymer pentadecafluorooctanoic ester (GAPFE), which formed homogeneous coating on the surface of micron-sized Al to form Al@GAPFE. The exothermic enthalpy of Al@GAPFE in the DSC test was 2.5 times higher than that of raw Al. Al@GAPFE not only effectively lowering ignition temperature, but also enhanced the combustion heat by 6.2%. The promotive effect of GAPFE on ignition and combustion was outstanding among the reported aluminum fuels. Our work provided an effective synthetic strategy for one-pot energetic fluoride chemistry, which addressed potential use in propellants, explosives, protective coating, multifunctional interface, etc. Besides, the corresponding combustion and exothermic mechanisms were also discussed in details, which could help the future design of high-performance energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang C, Zou X, Yin S, Wang J, Li H, Liu Y, et al. Improvement of ignition and combustion performance of micro-aluminum particles by double-shell nickel-phosphorus alloy coating. Chem Eng J. 2021;1:133585.

    Google Scholar 

  2. Jiang Y, Deng S, Hong S, Zhao J, Huang S, Wu CC, et al. Energetic performance of optically activated aluminum/graphene oxide composites. ACS Nano. 2018;12(11):11366–75.

    Article  CAS  PubMed  Google Scholar 

  3. Qiu Q, Zhou Y, Liu J, Shi W, Yang W. Combustion of aluminum powder using CO2 laser in O2/CO2 atmosphere under different pressure conditions. J Therm Anal and Calorim. 2021;147(8):4959–70.

    Article  Google Scholar 

  4. Zhou Y, Liu J, Li H, Yuan J, Zhou J. Combustion of aluminum particles in a high-temperature furnace under various O2/CO2/H2O atmospheres. J Therm Anal Calorim. 2019;139(1):251–60.

    Article  Google Scholar 

  5. Xiao F, Liu Z, Liang T, Yang R, Li J, Luo P. Establishing the interface layer on the aluminum surface through the self-assembly of tannic acid (TA): Improving the ignition and combustion properties of aluminum. Chem Eng J. 2021;420:130523.

    Article  CAS  Google Scholar 

  6. Wang J, Qiao Z, Yang Y, Shen J, Long Z, Li Z, et al. Core-Shell Al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials. Chemistry. 2016;22(1):279–84.

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Ren H, Yan T, Jiao Q, Wang H. Reactivity of fluororubber-modified aluminum in terms of heat transfer effect. J Therm Anal Calorim. 2020;142(2):871–6.

    Article  CAS  Google Scholar 

  8. Piao J, Duan S, Mao Y, Wang J, Cao A-M, Zhang L. Stabilization of the energetic Al powder through uniform and controlled surface coating for promoting its energy output. Surf Coat Technol. 2020;389:12603.

    Article  Google Scholar 

  9. Hu Y, Hao D, Tao B, Wang F, Wang D, Fan R, et al. Core-shell nAl@Fc-Fx nanocomposites with dual function: combustion and anti-migration performance. Chem Eng J. 2020;394:124884.

    Article  CAS  Google Scholar 

  10. Li Y, Li J, Wang B, Ma H, Han Z. An approach to the induced reaction mechanism of the combustion of the nano-Al/PVDF composite particles. Surf Coat Technol. 2022;429:127912.

    Article  CAS  Google Scholar 

  11. Osborne DT, Pantoya ML. Effect of Al particle size on the thermal degradation of al/teflon mixtures. Combust Sci Technol. 2007;179(8):1467–80.

    Article  CAS  Google Scholar 

  12. DeLisio JB, Hu X, Wu T, Egan GC, Young G, Zachariah MR. Probing the reaction mechanism of aluminum/poly(vinylidene fluoride) composites. J Phys Chem B. 2016;120(24):5534–42.

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Zhao X, Li G, Gong F, Liu Y, Yan Q, et al. Surface fluorination of n-Al particles with improved combustion performance and adjustable reaction kinetics. Chem Eng J. 2021;425:131619.

    Article  CAS  Google Scholar 

  14. Nie H, Pisharath S, Hng HH. Combustion of fluoropolymer coated Al and Al–Mg alloy powders. Combust Flame. 2020;220:394–406.

    Article  CAS  Google Scholar 

  15. McCollum J, Pantoya ML, Iacono ST. Activating aluminum reactivity with fluoropolymer coatings for improved energetic composite combustion. ACS Appl Mater Interfaces. 2015;7(33):18742–9.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Y, Deng S, Hong S, Tiwari S, Chen H, Nomura KI, et al. Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion. ACS Appl Mater Interf. 2020;12(6):7451–8.

    Article  CAS  Google Scholar 

  17. Ao W, Liu P, Liu H, Wu S, Tao B, Huang X, et al. Tuning the agglomeration and combustion characteristics of aluminized propellants via a new functionalized fluoropolymer. Chem Eng J. 2020;382:122987.

    Article  CAS  Google Scholar 

  18. He W, Lyu J-Y, Tang D-Y, He G-Q, Liu P-J, Yan Q-L. Control the combustion behavior of solid propellants by using core-shell Al-based composites. Combust Flame. 2020;221:441–52.

    Article  CAS  Google Scholar 

  19. Ou Y, Jiao Q, Li N, Yan S, Yang R. Pyrolysis of ammonium perfluorooctanoate (APFO) and its interaction with nano-aluminum. Chem Eng J. 2021;403:126367.

    Article  CAS  Google Scholar 

  20. Tang C-J, Lee Y, Litzinger TA. Simultaneous temperature and species measurements of the glycidyl azide polymer (GAP) propellant during laser-induced decomposition. Combust Flame. 1999;117(1):244–56.

    Article  CAS  Google Scholar 

  21. Zeng C, Wang J, He G, Huang C, Yang Z, Liu S, et al. Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J Mater Sci. 2018;53(17):12091–102.

    Article  CAS  Google Scholar 

  22. Yan T, Ren H, Li Y, Wang H, Jiao Q. Tailoring structural energetics for enhanced reactivity of nano-aluminum particles based microspheres. Adv Eng Mater. 2019;21:1900176.

    Article  Google Scholar 

  23. Zhang L, Su X, Wang S, Li X, Zou M. In situ preparation of Al@3-Perfluorohexyl-1, 2-epoxypropane@glycidyl azide polymer (Al@PFHP@GAP) high-energy material. Chem Eng J. 2022;45:137118.

    Article  Google Scholar 

  24. Köthe M, Müller M, Simon F, Komber H, Adler HJ. Examination of poly(butadiene epoxide)-coatings on inorganic surfaces. Colloids Surfaces A. 1999;154(1–2):75–85.

    Article  Google Scholar 

  25. Fredericks JR, Hamilton AD. Chem inform abstract: metal template control of self-assembly in supramolecular chemistry. Cheminform. 1997;3:1–39.

    Google Scholar 

  26. Sadeghipour S, Ghaderian J, Wahid MA. Advances in aluminum powder usage as an energetic material and applications for rocket propellant. 2012. p. 100–8.

  27. Manship TD, Heister SD, O’Neil PT. Experimental investigation of high-burning-rate composite solid propellants. J Propul Power. 2012;28(6):1389–98.

    Article  CAS  Google Scholar 

  28. Li MH. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere. 2008;70(10):1796–803.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Z, Li S, Liu R, Yuan J, Wang H, Zhang Y, et al. Regio-and stereo-selective synthesis of peracetylated carbohydrate esters of aromatic fatty acid using p-toluenesulfonic acid as catalyst. Chinese J Chem. 2010;28(11):2245–8.

    Article  CAS  Google Scholar 

  30. Bradley S, Moore P A. Non-stick natural products. Nat Chem. 2014;6(1):10–2.

    Article  Google Scholar 

  31. Lee SW, Sigmund WM. Repulsive van der Waals Forces for Silica and Alumina. J Colloid Interf Sci. 2001;243(2):365–9.

    Article  CAS  Google Scholar 

  32. Brown EN, Rae PJ, Orler EB, Iii G, Dattelbaum DM. The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Mater Sci Eng C. 2006;26(8):1338–43.

    Article  CAS  Google Scholar 

  33. Liu Y, Wang P, Su X, Xu L, Tian Z, Wang H, et al. Electrically Programmable Interfacial Adhesion for Ultrastrong Hydrogel Bonding. Adv Mater. 2022;34(13):2108820.

    Article  CAS  Google Scholar 

  34. Inamoto N, Masuda S. Revised Method for Calculation of Group Electronegativites. Chem Lett. 1982;11(7):1003–6.

    Article  Google Scholar 

  35. Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. USA: John Wiley & Sons; 2004.

    Google Scholar 

  36. Wang X, Wang W, Liu Y, Ren M, Xiao H, Liu X. Characterization of Conformation and Locations of C-F Bonds in Graphene Derivative by Polarized ATR-FTIR. Anal Chem. 2016;88(7):3926–34.

    Article  CAS  PubMed  Google Scholar 

  37. Ganie K, Mohshim DF, Saaid IM, Sulaiman WRW, Idris AK. Synthesis and characterization of a new surface-modified nanoparticle using fluoroalkanoic acids as a wettability alteration agent. J Nanomater. 2020;2020:1–9.

    Article  Google Scholar 

  38. Hao D, Hu Y, Wang F, Xia D, Wang D, Fan R, et al. Core-shell structured nAl@F-x nanocomposite: preparation and their improved combustion performances. J Energ Mater. 2020;40:1–21.

    Google Scholar 

  39. Kim DW, Kim KT, Min TS, Kim KJ, Kim SH. Improved energetic-behaviors of spontaneously surface-mediated al particles. Sci Rep. 2017;7(1):4659.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang G, Colin M, Yang X, Sun S, Dodelet J-P, Dubois M. C F bonding in fluorinated N-Doped carbons. Appli Surf Sci. 2022;577:151721.

    Article  CAS  Google Scholar 

  41. Zhang L, Yi D, Hao J. Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexes as an all-in-one flame retardant for polypropylene. Polym Advan Technol. 2019;31(2):260–72.

    Article  Google Scholar 

  42. Kloprogge JT, Duong LV, Wood BJ, Frost RL. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite. J Colloid Interface Sci. 2006;296(2):572–6.

    Article  CAS  PubMed  Google Scholar 

  43. Pelissier B, Fontaine H, Beaurain A, Danel A, Joubert O. HF contamination of 200mm Al wafers: a parallel angle resolved XPS study. Microelectron Eng. 2011;88(6):861–6.

    Article  CAS  Google Scholar 

  44. Lindsay JR, Rose HJ, Swartz WE, Watts PH, Rayburn KA. X-Ray photoelectron spectra of aluminum oxides: structural effects on the “chemical shift.” Appli Spectrosc. 1973;27(1):1–5.

    Article  CAS  Google Scholar 

  45. Arisawa H, Brill TB. Thermal decomposition of energetic materials 71: structure-decomposition and kinetic relationships in flash pyrolysis of Glycidyl Azide Polymer (GAP). Combust Flame. 1998;112(4):533–44.

    Article  CAS  Google Scholar 

  46. Zhang L, Liu Z, Wang X, Heng S, Pan Q, Zhao F. Investigation on thermal decomposition of GAP by FTIR spectroanalysis. J Solid Rocket Technol. 2010;5:549–53.

    Google Scholar 

  47. Zhou X-Y, Xiao F, Yang R-J, Huang F-L, Li J-M. Investigation of the ignition and combustion of compressed aluminum/polytetrafluoroethylene bulk composites. J Therm Anal Calorim. 2019;139(5):3013–21.

    Article  Google Scholar 

  48. Salem S, Salem A, Parni MH, Jafarizad A. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition. J Phys Chem Solids. 2018;117:86–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

There is no other financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Su or Meishuai Zou.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10973_2023_12155_MOESM1_ESM.docx

The data of density and composition of samples (Table S1); FTIR spectra of GAP, PFOA and GAPFE; 1H NMR spectra of GAP, PFOA and GAPFE; EDS images of Al@PFOA and Al@GAPFE; Volume weighted particle size distributions of Al, Al@PFOA and Al@GAPFE; FTIR spectra of Al, Al@PFOA, Al@GAPFE; The XRD patterns of Al powders, Al@PFOA and Al@GAPFE; Thermal decomposition curve of GAPFE; Supplementary caption of Fig. 4. (DOCX 4775 KB)

Supplementary file2 (MP4 7880 KB)

Supplementary file3 (MP4 7189 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, X., Wang, S. et al. Facile energetic fluoride chemistry induced organically coated aluminum powder with effectively improved ignition and combustion performances. J Therm Anal Calorim 148, 5957–5966 (2023). https://doi.org/10.1007/s10973-023-12155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12155-8

Keywords

Navigation