Skip to main content

Advertisement

Log in

Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of aluminum nanoparticle is limited due to its passivation Al2O3 layer even though it owns extreme specific surface and high reaction activity. In this work, the aluminum nanoparticles were modified via in situ grafting onto energetic glycidyl azide polymer (GAP) to improve the stability and energy-releasing performance. The results showed that GAP was grafted on the nano-aluminum surface with chemical bonds of –O–(CO–NH)– formed, and the thickness of shell layer of GAP could be tuned by changing the relative ratio of reactants. Furthermore, modified nanoparticles show hydrophobicity with static water contact angle changing from 20.2° to 142.4°. Significant increasing stability of aluminum nanoparticles is obtained in hot water, which is evidenced by that around 10 wt% of modified aluminum is reacted after 210 min. Based on the core–shell configurations, (Al@GAP)/fluorine composites were prepared. The violent combustion phenomenon and high release rate profiles revealed high energy-releasing performance with the assistance of GAP. This synthetic strategy may provide an effective approach to prepare other metal nanoparticles, and possess potential application value in the fields of metallized explosives and high-energy structure with energy release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. J Combust Flame 159:409–415

    Article  Google Scholar 

  2. Wen A, Liu PJ, Yang WJ (2016) Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant. Acta Astronaut 129:147–153

    Article  Google Scholar 

  3. Patel VK, Ganguli A, Kant R, Bhattacharya S (2015) Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv 5:14967–14973

    Article  Google Scholar 

  4. Su Y, Meguid SA (2016) Multiphysics modeling and characterization of explosively loaded aluminum blocks. Acta Mech 227:707–720

    Article  Google Scholar 

  5. Manner VW, Pemberton SJ, Gunderson JA, Herrera TJ, Lloyd JM, Salazar PJ, Rae P, Tappan BC (2012) The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propellants Explos Pyrotech 337:198–206

    Article  Google Scholar 

  6. Broussean P (2002) Nanometric Al in explosive. Propellants Explos Pyrotech 27:300–306

    Article  Google Scholar 

  7. Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, Arentzen P (2008) Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett 5:1410–1416

    Article  Google Scholar 

  8. DeLuca LT, Galfetti L, Severini F, Meda L, Marra G, Vorozhtsov AB, Sedoi VS, Babuk VA (2005) Burning of nano-aluminized composite rocket propellants. Combust Explos Shock 6:680–692

    Article  Google Scholar 

  9. Pantoya ML, Grantier JJ (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos Pyrotech 1:53–62

    Article  Google Scholar 

  10. Valliappan S, Swiatkiewicz J, Puszynski JA (2005) Reactivity of aluminum nanopowders with metal oxides. Powder Technol 156:164–169

    Article  Google Scholar 

  11. Yang Y, Wang PP, Zhang ZC, Liu HL, Zhang J, Zhuang J, Wang X (2013) Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions. Sci Rep 3:1694

    Article  Google Scholar 

  12. Dong ZZ, Al-Sharab JF, Kear BH, Tse SD (2013) Combined flame and electrode position synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays. Nano Lett 13:4346–4350

    Article  Google Scholar 

  13. Chung SW, Guliants EA, Bunker CE, Hammerstroem DW, Deng Y, Burgers MA, Jelliss PA, Buckner SW (2009) Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 25:8883–8887

    Article  Google Scholar 

  14. Hammerstroem DW, Burgers MA, Chung SW, Gulians EA, Bunker CE, Wentz KM, Hayes SE, Buckner SW, Jelliss PA (2011) Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: ratio-dependent stability and particle Size. Inorg Chem 50:5054–5059

    Article  Google Scholar 

  15. He GS, Yang ZJ, Zhou XY, Zhang JL, Pan LP, Liu SJ (2016) Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with grapheme nanoplatelets. Compos Sci Technol 131:22–31

    Article  Google Scholar 

  16. Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proc Combust Inst 32:1819–1838

    Article  Google Scholar 

  17. Rubio MA, Gunduz IE, Groven LJ, Sippel TR, Han CW, Unocic RR, Ortalan V, Son SF (2017) Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles. J Combust Flame 176:162–171

    Article  Google Scholar 

  18. Andrzejak TA, Shafirovich E, Varma A (2007) Ignition mechanism of nickel-coated aluminum particles. J Combust Flame 150:60–70

    Article  Google Scholar 

  19. Hahma A (2010) Method of improving the burn rate and ignitability of aluminum fuel particles and aluminum fuel so modified. US 7,785,430, B2, 31 Aug 2010

  20. Jouet RJ, Warren AD, Rosenberg DM, Bellitto VJ, Park K, Zachariah MR (2005) Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 17:2987–2996

    Article  Google Scholar 

  21. Kwon YS, Alexander AG, Julia IS (2007) Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl Surf Sci 253:5558–5564

    Article  Google Scholar 

  22. Mohseni M, Mirabedini M, Hashemi M, Thompson GE (2006) Adhesion performance of an epoxy clear coat on aluminum alloy in the presence of vinyl and amino-sliane primers. Prog Org Coat 57:307–313

    Article  Google Scholar 

  23. Attavar S, Diwekar M, Linford MR, Davis MA, Blair S (2010) Passivation of aluminum with alkyl phosphonic acids for biochip applications. Appl Surf Sci 256:7146–7150

    Article  Google Scholar 

  24. Pauly CS, Genix AC, Alauzun JG, Sztucki M, Oberdisse J, Mutin PH (2015) Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions. Phys Chem Chem Phys 17:19173–19182

    Article  Google Scholar 

  25. Atmane YA, Sicard L, Lamouri A, Pinson J, Sicard M, Masson C, Nowak S, Decorse P, Piquemal JY, Galtayries A, Mangeney C (2013) Functionalization of aluminum nanoparticles using a combination of aryl Diazonium salt chemistry and iniferter method. J Phys Chem C 117:26000–26006

    Article  Google Scholar 

  26. Gong FY, Liu XB, Wang L, Liu JH (2014) Surface grafting with energetic glycidyl azide polymer(GAP): an efficient way to process ultrafine aluminum powders. In: New trends in research and energetic materials, Czech Republic

  27. Liu XB, Pan LP, Zhang JH, Gong FY (2015) Properties of ultrafine aluminum powders modified by facile grafting with glycidyl azide polymer. Chin J Energ Mater 23:813–816

    Google Scholar 

  28. Kuwahara T, Takizuka M, Onda T (2000) Combustion of GAP based energetic pyrolants. Propellants Explos Pyrotech 25:112–116

    Article  Google Scholar 

  29. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  Google Scholar 

  30. Hagen TH, Jensen TL, Unneberg E, Stenstrom YH, Kristensen TE (2015) Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems. Propellants Explos Pyrotech 40:275–284

    Article  Google Scholar 

  31. Keicher T, Kuglstatter W, Eisele S, Wetzel T, Krause H (2009) Isocyanate-free curing of glycidyl azide polymer(GAP) with bis-propargyl-succinate(II). Propellants Explos Pyrotech 34:210–217

    Article  Google Scholar 

  32. Ramaswamy AL, Kaste P (2004) T.S. F.revino, A “micro-vision” of the physio-chemical phenomena occurring in nanoparticles of aluminum. J Energ Mater 21:1–24

    Article  Google Scholar 

  33. Kassaee MZ, Buazar F (2009) Al nanoparticles impact of media and current on the arc fabrication. J Manuf Process 11:31–37

    Article  Google Scholar 

  34. Fernando KA, Smith MJ, Harruff BA, Lewis WK, Guliants EA, Bunker CE (2009) Sonochemically assisted thermal decomposition of alane N, N-dimethylethylamine with titanium(IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core–shell nanoparticles. J Phys Chem C 113:500–503

    Article  Google Scholar 

  35. Gouget-Laemmel AC, Yang J, Lodhi MA, Siriwardena A, Aureau D, Boukherroub R, Chazalviel JN, Ozanam F, Szunerits S (2013) Functionalization of azide-terminated silicon surfaces with glycans using click chemistry: XPS and FTIR study. J Phys Chem C 117:368–375

    Article  Google Scholar 

  36. Bhairamadgi NS, Gangarapu S, Campos MAC, Paulusse JMJ, Rijn CJM, Zuilhof H (2013) Efficient functionalization of oxide-free silicon (111) surfaces: Thiol-yne versus thiol-ene click chemistry. Langmuir 29:4535–4542

    Article  Google Scholar 

  37. Enman J, Ramser K, Rova U, Berglund KA (2008) Raman analysis of synthetic eritadenine. J Raman Spectrosc 39:1464–1468

    Article  Google Scholar 

  38. Meda L, Nicastro C, Conte F, Cerofolini GF (2000) Experimental valuation of net atomic charge via XPS. Surf Interface Anal 29:851–855

    Article  Google Scholar 

  39. Shin WG, Han D, Park Y, Hyun HS, Sung HG, Sohn YK (2016) Combustion of boron particles coated with an energetic polymer material. Korean J Chem Eng 33:3016–3020

    Article  Google Scholar 

  40. Crouse CA, Pierce CJ, Spowart JE (2012) Synthesis and reactivity of aluminized fluorinated acrylic (AlFA) nanocomposites. Combust Flame 159:3199–3200

    Article  Google Scholar 

  41. Wang QG, Zhang J, Zhang F (2009) The principle and application of the cone calorimeter. Mod Sci Instrum 6:36–39

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 11402238, 11502242, 11702267).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengcheng Zeng or Feiyan Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Wang, J., He, G. et al. Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J Mater Sci 53, 12091–12102 (2018). https://doi.org/10.1007/s10853-018-2503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2503-1

Keywords

Navigation