Skip to main content
Log in

Isothermal and non-isothermal cold crystallization kinetics of polylactide/cellulose nanocrystal (PLA/CNC) nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of cellulose nanocrystal (CNC) content on the crystallization and melting behaviors of polylactide (PLA)/CNC nanocomposites prepared by solution mixing was investigated. Isothermal and non-isothermal cold crystallization kinetics of specimens were quantified using Ozawa, Avrami, and Liu-Mo methods. Overall and conversion dependent crystallization activation energy values were also determined through the Kissinger and Flynn–Wall–Ozawa equations. It was found that although CNC acted as a nucleating agent for cold crystallization of PLA under isothermal and non-isothermal conditions, it differently affected the crystal growth behavior. Kinetic calculations revealed that the increase in CNC amount decreased the non-isothermal cold crystallization rate of PLA possibly due to the reduced interaction among PLA molecules and formation of strong hydrogen bonding between the carboxyl groups of PLA and CNC surfaces. CNC addition also increased the overall cold crystallization activation energy whereas progress in crystallization yielded a significant reduce in the activation energy. This was because the relative crystallinity and temperature simultaneously increase during cold crystallization under non-isothermal conditions. Avrami analysis implied that CNC addition improved the crystallization rate of PLA possibly following athermal nucleation and two-dimensional discotic growth.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. A. Auras, L. T. Lim, S. E. Selke, H. Tsuji, (Eds.), Poly (lactic acid): synthesis, structures, properties, processing, and applications, (2010) John Wiley & Sons.

  2. Nofar M. Multiphase polylactide blends: toward a sustainable and green environment. Elsevier; 2021.

    Google Scholar 

  3. Saad GR, Elsawy MA, Aziz MSA. Nonisothermal crystallization behavior and molecular dynamics of poly (lactic acid) plasticized with jojoba oil. J Therm Anal Calorim. 2017;128(1):211–23.

    CAS  Google Scholar 

  4. Raquez M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Prog Polym Sci. 2013;38:1504–42.

    CAS  Google Scholar 

  5. Delpouve N, Saiter-Fourcin A, Coiai S, Cicogna F, Spiniello R, Oberhauser W, Passaglia E. Effects of organo-LDH dispersion on thermal stability, crystallinity and mechanical features of PLA. Polymer. 2020;208: 122952.

    CAS  Google Scholar 

  6. Sarul DS, Arslan D, Vatansever E, Kahraman Y, Durmus A, Salehiyan R, Nofar M. Preparation and characterization of PLA/PBAT/CNC blend nanocomposites. Colloid Polym Sci. 2021;299(6):987–98. https://doi.org/10.1007/s00396-021-04822-9.

    Article  CAS  Google Scholar 

  7. Clarkson CM, El Awad SM, Azrak RC, Shuvo SN, Snyder J, Schueneman G, Ortalan V, Youngblood JP. Melt spinning of cellulose nanofibril/polylactic acid (CNF/PLA) composite fibers for high stiffness. ACS Appl Polym Mater. 2018;1(2):160–8. https://doi.org/10.1021/acsapm.8b00030.

    Article  CAS  Google Scholar 

  8. Sessini V, Palenzuela M, Damian J, Mosquera ME. Bio-based polyether from limonene oxide catalytic ROP as green polymeric plasticizer for PLA. Polymer. 2020;210: 123003.

    CAS  Google Scholar 

  9. O’Mahony C, Gkartzou E, Haq EU, Koutsoumpis S, Silien C, Charitidis CA, Tofail SAM. Determination of thermal and thermomechanical properties of biodegradable PLA blends: for additive manufacturing process. J Therm Anal Calorim. 2020;142(2):715–22.

    Google Scholar 

  10. Arul Jeya Kumar A, Prakash M. Thermal properties of basalt/Cissus quadrangularis hybrid fiber reinforced polylactic acid biomedical composites. J Therm Anal Calorim. 2020;141(2):717–25.

    CAS  Google Scholar 

  11. Müller AJ, Avila M, Saenz G, Salazar J. Crystallization of PLA-based Materials. InPoly (lactic acid) science and technology: processing, properties, additives and applications 2015 (Vol. 12). London, UK: The Royal Society of Chemistry.

  12. Eom Y, Choi B, Park SI. A study on mechanical and thermal properties of PLA/PEO blends. J Polym Environ. 2019;27(2):256–62.

    CAS  Google Scholar 

  13. Yueagyen P, Lertworasirikul A. Study on crystallization of poly (lactic acid)/poly (propylene succinate) blends. Mater Today Proc. 2018;5(3):9609–14.

    CAS  Google Scholar 

  14. Clarkson CM, Azrak SM, Schueneman GT, Snyder JF, Youngblood JP. Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly (lactic acid)(PLA) with plasticizer. Polymer. 2020;187:122101.

    CAS  Google Scholar 

  15. Abdolrsaouli MH, Babaei A, Kaschta J, Nazockdat H. Polylactide/organoclay nanocomposites: The effect of organoclay types on the structure development and the kinetic of cold crystallization. J Vinyl Addit Technol. 2019;25:48–58.

    Google Scholar 

  16. Xia X, Shi X, Liu W, Zhao H, Li H, Zhang Y. Effect of flax fiber content on polylactic acid (PLA) crystallization in PLA/flax fiber composites. Iran Polym J. 2017;26(9):693–702.

    CAS  Google Scholar 

  17. Jandas PJ, Mohanty S, Nayak SK. Cold crystallization kinetics of biodegradable polymer blend; controlled by reactive interactable and nano nucleating agent. Adv Composit Hybrid Mater. 2018;1(3):624–34.

    CAS  Google Scholar 

  18. Li H, Lu X, Yang H, Hu J. Non-isothermal crystallization of P (3HB-co-4HB)/PLA blends. J Therm Anal Calorim. 2015;122(2):817–29.

    CAS  Google Scholar 

  19. Hesami M, Jalali-Arani A. Cold crystallization behavior of poly (lactic acid) in its blend with acrylic rubber; the effect of acrylic rubber content. Polym Int. 2017;66(11):1564–71.

    CAS  Google Scholar 

  20. Yang JN, Nie SB, Qiao YH, Liu Y, Li ZY, Cheng GJ. Crystallization and rheological properties of the eco-friendly composites based on poly (lactic acid) and precipitated barium sulfate. J Polym Environ. 2019;27(12):2739–55.

    CAS  Google Scholar 

  21. Li Y, Han C, Yu Y, Xiao L, Shao Y. Crystallization behaviors of poly (lactic acid) composites fabricated using functionalized eggshell powder and poly (ethylene glycol). Thermochim Acta. 2018;663:67–76.

    CAS  Google Scholar 

  22. Díaz-Díaz AM, López-Beceiro J, Li Y, Cheng Y, Artiaga R. Crystallization kinetics of a commercial poly (lactic acid) based on characteristic crystallization time and optimal crystallization temperature. J Therm Anal Calorimet. 2021;145(6):3125–32.

    Google Scholar 

  23. Herc AS, Bojda J, Nowacka M, Lewinski P, Maniukiewicz W, Piorkowska E, Kowalewska A. Crystallization, structure and properties of polylactide/ladder poly (silsesquioxane) blends. Polymer. 2020;201: 122563.

    CAS  Google Scholar 

  24. Nofar M, Tabatabaei A, Park CB. Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer. 2013;54(9):2382–91.

    CAS  Google Scholar 

  25. Kelnar I, Kratochvil J, Kapralkova L. Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. J Therm Anal Calorim. 2016;124(2):799–805.

    CAS  Google Scholar 

  26. Zhang C, Lan Q, Zhai T, Nie S, Luo J, Yan W. Melt crystallization behavior and crystalline morphology of polylactide/poly (ε-caprolactone) blends compatibilized by lactide-caprolactone copolymer. Polymers. 2018;10(11):1181.

    Google Scholar 

  27. Liao R, Yang B, Wei Y, Zhou C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci. 2007;104(1):310–7. https://doi.org/10.1002/app.25733.

    Article  CAS  Google Scholar 

  28. Guo T, Wang B. Isothermal cold crystallization and melting behaviors of poly(lactic acid)/epoxy vinyl polyhedral oligomeric silsesquioxanes nanocomposites. Polym-Plasti Technol Eng. 2014;53(9):917–26. https://doi.org/10.1080/03602559.2014.886061.

    Article  CAS  Google Scholar 

  29. Marathe YN, Ramesh C, Badiger MV. Isothermal cold crystallization kinetics of borassus powder/poly (lactic acid) biocomposites. Polym Crystalliz. 2020;3(1): e10097.

    CAS  Google Scholar 

  30. Fernandez MJ, Fernandez MD. Effect of organic modifier and clay content on non-isothermal cold crystallization and melting behavior of polylactide/organovermiculite nanocomposites. Polymers. 2020;12(2):364.

    CAS  Google Scholar 

  31. Mendoza G, Pena-Juarez MG, Gonzalez-Calderon JA, Perez E. Use of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly (latic acid). J Mex Chem Soc. 2020;64(2):117–36.

    Google Scholar 

  32. Vatansever E, Arslan D, Nofar M. Polylactide cellulose-based nanocomposites. Int J Biol Macromol. 2019;137:912–38.

    CAS  Google Scholar 

  33. George J, Sabapathi SN. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl. 2015;8:45.

    CAS  Google Scholar 

  34. Sturcova A, Davies GR, Eichhorn SJ. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol. 2005;6(2):1055–61.

    CAS  Google Scholar 

  35. Sojoudiasli H, Heuzey MC, Carreau PJ. Mechanical and morphological properties of cellulose nanocrystal-polypropylene composites. Polym Compos. 2018;39(10):3605–17.

    CAS  Google Scholar 

  36. Khoshkava V, Ghasemi H, Kamal MR. Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene. Thermochim Acta. 2015;608:30–9.

    CAS  Google Scholar 

  37. Sapkota J, Natterodt JC, Shirole A, Foster EJ, Weder C. Fabrication and properties of polyethylene/cellulose nanocrystal composites. Macromol Mater Eng. 2017;302(1):1600300.

    Google Scholar 

  38. Heidarbeigi J, Afshari H, Borghei AM. Study of physical and mechanical properties of PE/CNC nanocomposite for food packaging applications. J Thermoplast Compos Mater. 2021;34(3):396–408.

    CAS  Google Scholar 

  39. Fortunati E, Luzi F, Janke A, Häußler L, Pionteck J, Kenny JM, Torre L. Reinforcement effect of cellulose nanocrystals in thermoplastic polyurethane matrices characterized by different soft/hard segment ratio. Polym Eng Sci. 2017;57(6):521–30.

    CAS  Google Scholar 

  40. Bagheriasl D, Carreau PJ, Riedl B, Dubois C. Enhanced properties of polylactide by incorporating cellulose nanocrystals. Polym Compos. 2018;39(8):2685–94.

    CAS  Google Scholar 

  41. Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY. Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose. 2016;23(3):1885–97.

    CAS  Google Scholar 

  42. Bagheriasl D, Safdari F, Carreau PJ, Dubois C, Riedl B. Development of cellulose nanocrystal-reinforced polylactide: a comparative study on different preparation methods. Polym Compos. 2019;40(S1):E342–434.

    CAS  Google Scholar 

  43. Mohammadi M, Bruel C, Heuzey MC, Carreau PJ. CNC dispersion in PLA and PBAT using two solvents: morphological and rheological properties. Cellulose. 2020;27(17):9877–92.

    CAS  Google Scholar 

  44. Vatansever E, Arslan D, Sarul DS, Kahraman Y, Nofar M. Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites. Int J Biol Macromol. 2020;154:276–90.

    CAS  Google Scholar 

  45. Mohammadi M, Heuzey MC, Carreau PJ, Taguet A. Morphological and rheological properties of PLA, PBAT, and PLA/PBAT blend nanocomposites containing CNCs. Nanomaterials. 2021;11(4):857.

    CAS  Google Scholar 

  46. Mohammadi M, Heuzey MC, Carreau PJ, Taguet A. Interfacial localization of CNCs in PLA/PBAT blends and its effect on rheological, thermal, and mechanical properties. Polymer. 2021;233:124229. https://doi.org/10.1016/j.polymer.2021.124229.

    Article  CAS  Google Scholar 

  47. Arslan D, Vatansever E, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M. Effect of preparation method on the properties of polylactide/cellulose nanocrystal nanocomposites. Polym Compos. 2020;41(10):4170–80.

    CAS  Google Scholar 

  48. Sarul D, Arslan D, Vatansever E, Kahraman Y, Durmus A, Salehiyan R, Nofar M. Effect of mixing strategy on the structure-properties of the PLA/PBAT blends incorporated with CNC. J Renew Mater. 2021;10(1):149–64.

    Google Scholar 

  49. Arslan D, Vatansever E, Nofar M. Nanocellulose polylactide-based composite films for packaging applications. Bio-based Pack Mater Environ Econ Aspects. 2021;24:165–91.

    Google Scholar 

  50. Vatansever E, Arslan D, Sarul DS, Kahraman Y, Gunes G, Durmus A, Nofar M. Development of CNC-reinforced PBAT nanocomposites with reduced percolation threshold: a comparative study on the preparation method. J Mater Sci. 2020;55(32):15523–37.

    CAS  Google Scholar 

  51. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab. 2012;97(10):2027–36.

    CAS  Google Scholar 

  52. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS. Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;49:463–71.

    CAS  Google Scholar 

  53. Liu D, Yuan X, Bhattacharyya D. The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibers. J Mater Sci. 2012;47(7):3159–65.

    CAS  Google Scholar 

  54. Özdemir B, Nofar M. Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCs in PLA through rheological analysis. Carbohydr Polym. 2021;268:118243. https://doi.org/10.1016/j.carbpol.2021.118243.

    Article  CAS  Google Scholar 

  55. Fischer E, Sterzel HJ, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid Z Z Polym. 1973;251(11):980–90.

    CAS  Google Scholar 

  56. Ayrilmis N, Yurttaş E, Durmus A, Özdemir F, Nagarajan R, Kalimuthu M, Kuzman MK. Properties of biocomposite films from PLA and thermally treated wood modified with silver nanoparticles using leaf extracts of oriental sweetgum. J Polym Environ. 2021;29(8):2409–20. https://doi.org/10.1007/s10924-021-02065-x.

    Article  CAS  Google Scholar 

  57. Kwon M, Lee SC, Jeong YG. Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various d-isomer contents. Macromol Res. 2010;18(4):346–51. https://doi.org/10.1007/s13233-010-0410-7.

    Article  CAS  Google Scholar 

  58. Müller P, Imre B, Bere J, Moczo J, Pukanszky B. Physical ageing and molecular mobility in PLA blends and composites. J Therm Anal Calorim. 2015;122:1423–33.

    Google Scholar 

  59. Naeem Iqbal HM, Sungkapreecha C, Androsch R. Enthalpy relaxation of the glass of poly (l-lactic acid) of different d-isomer content and its effect on mechanical properties. Polymer Bull. 2017;74(7):2565–73. https://doi.org/10.1007/s00289-016-1854-5.

    Article  CAS  Google Scholar 

  60. M.A. Sohel, A. Mondal, A. Sengupta, Effect of physical aging on glass transition and enthalpy relaxation in PLA Polymer filament. In: Proceeding in International Conference RAMSB-18, Mangalore (2018) 191–194.

  61. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150.

    CAS  Google Scholar 

  62. Jiang Y, Han S, Zhang S, Li J, Huang G, Bi Y, Chai Q. Improved properties by hydrogen bonding interaction of poly (lactic acid)/palygorskite nanocomposites for agricultural products packaging. Polym Compos. 2014;35(3):468–76.

    CAS  Google Scholar 

  63. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217.

    CAS  Google Scholar 

  64. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    CAS  Google Scholar 

  65. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Thermal Anal. 1978;13:283.

    CAS  Google Scholar 

  66. Takhor RL Advances in nucleation and crystallization of glasses; J Am Ceram Soc, (1971) 166–172.

  67. Ozawa TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  68. da Cruz É, Faria ML, Dias LM, Ferreira MI, Tavares B. Crystallization behavior of zinc oxide/poly(lactic acid) nanocomposites. J Therm Anal Calorimetry. 2020;146(4):1483–90. https://doi.org/10.1007/s10973-020-10166-3.

    Article  CAS  Google Scholar 

  69. Oburoğlu N, Ercan N, Durmus A, Kaşgöz A. effects of halloysite nanotube on the mechanical properties and nonisothermal crystallization kinetics of poly(butylene terephthalate) (PBT). J Macromol Sci Part B. 2012;51(5):860–79. https://doi.org/10.1080/00222348.2011.610231.

    Article  CAS  Google Scholar 

  70. Oburoğlu N, Ercan N, Durmus A, Kaşgöz A. Effects of filler type on the nonisothermal crystallization kinetics of poly (butylene terephthalate)(PBT) composites. J Appl Polym Sci. 2012;123(1):77–91.

    Google Scholar 

  71. Şanlı S, Durmus A, Ercan N. Effect of nucleating agent on the nonisothermal crystallization kinetics of glass fiber-and mineral-filled polyamide-6 composites. J Appl Polym Sci. 2012;125(S1):E268–81.

    Google Scholar 

  72. Avrami M. Kinetics of phase change, I general theory. J Chem Phys. 1939;7:1103.

    CAS  Google Scholar 

  73. Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;119(1):635–42.

    CAS  Google Scholar 

  74. Xiao H, Yang L, Ren X, Jiang T, Yeh JT. Kinetics and crystal structure of poly (lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent. Polym Compos. 2010;31(12):2057–68.

    CAS  Google Scholar 

  75. Liu T, Mo Z, Zhang H. Nonisothermal crystallization behavior of a novel poly (aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67(5):815–21.

    CAS  Google Scholar 

  76. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Nonisothermal crystallization kinetics and melting behavior of poly (butylene terephthalate) and calcium carbonate nanocomposites. Thermochim Acta. 2015;606:66–76.

    CAS  Google Scholar 

  77. Zeng Y, Liu Y, Wang L, Huang H, Zhang X, Liu Y, Li Y. Effect of silver nanoparticles on the microstructure, non-isothermal crystallization behavior and antibacterial activity of polyoxymethylene. Polymers. 2020;12(2):424.

    CAS  Google Scholar 

  78. Liu Y, Guo W, Su Z, Li B, Wu C. Nonisothermal crystallization of recycled poly (ethylene terephthalate)/poly (ethylene octene) blends. J Macromol Sci. 2009;48(2):414–29.

    CAS  Google Scholar 

  79. Durmus A, Yalçınyuva T. Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res. 2009;16(5):489–98.

    CAS  Google Scholar 

  80. Hu D, Chen J, Zhao L, Liu T. Melting and non-isothermal crystallization behaviors of polypropylene and polypropylene/montmorillonite nanocomposites under pressurized carbon dioxide. Thermochim Acta. 2015;617:65–75.

    CAS  Google Scholar 

  81. Karami S, Ahmadi Z, Nazockdast H, Rabolt JF, Noda I, Chase BD. The effect of well-dispersed nanoclay on isothermal and non-isothermal crystallization kinetics of PHB/LDPE blends. Mater Res Express. 2018;5(1): 015316.

    Google Scholar 

  82. dos Santos Silva ID, Schäfer H, Jaques NG, Siqueira DD, Ries A, de Souza Morais DD, Haag K, Koschek K, Carvalho LH, Ramos Wellen RM. An investigation of PLA/Babassu cold crystallization kinetics. J Therm Anal Calorimetry. 2020;141(4):1389–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammadreza Nofar or Ali Durmus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanalp, M.B., Ozdemir, B., Nofar, M. et al. Isothermal and non-isothermal cold crystallization kinetics of polylactide/cellulose nanocrystal (PLA/CNC) nanocomposites. J Therm Anal Calorim 147, 14211–14227 (2022). https://doi.org/10.1007/s10973-022-11598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11598-9

Keywords

Navigation