Skip to main content
Log in

Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various D-isomer contents

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report the isothermal enthalpy relaxation behavior, gas permeability, and dynamic mechanical properties of melt-quenched amorphous polylactide (PLA) films with various D-isomer contents (1, 4, and 9 mol%) as a function of the aging temperature (T a ) and time (t a ). It was found that the enthalpy relaxation peak area (ΔH relax ) and glass transition temperature (T g ) of all PLA samples aged at a given T a increased initially and then remained relatively unchanged with increasing t a . The experimental ΔH relax vs. t a plots were fitted well with the Cowie-Ferguson equation incorporating the Kohlrausch-Williams-Watts (KWW) function. A comparison of the PLA samples aged at a similar degree of subcooling (ΔT = T g T a ) showed that the ultimate ΔH relax was somewhat higher for a PLA film with a lower D-isomer content. In addition, the oxygen permeability of all PLA films decreased linearly with increasing t a , which is due to the densification of glassy PLA films during physical aging. The dynamic mechanical data demonstrated that for the aged PLA films, the storage moduli around glass transition region increased significantly and the loss moduli peak corresponding to the glass transition region shifted to higher temperatures and became narrower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lunt, Polym. Degrad. Stabil., 59, 145 (1998).

    Article  CAS  Google Scholar 

  2. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000).

    Article  CAS  Google Scholar 

  3. H. Tsuji, in Polyesters III Applications and Commercial Products, Y. Doi and A. Steinbuchel, Eds., Wiley-VCH, Weinheim, 2002, vol. 4, p. 129.

    Google Scholar 

  4. H. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn, Macromol. Res., 13, 446 (2005).

    CAS  Google Scholar 

  5. H.-M. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, Macromol. Res., 15, 238 (2007).

    CAS  Google Scholar 

  6. H. R. Kricheldorf, I. Kreiser-Saunders, and C. Boettcher, Polymer, 36, 1253 (1995).

    Article  CAS  Google Scholar 

  7. P. Pan, B. Zhu, and Y. Inoue, Macromolecules, 40, 9664 (2007).

    Article  CAS  Google Scholar 

  8. K. Aou, S. L. Hsu, L. W. Kleiner, and F. W. Tang, J. Phys. Chem. B, 111, 12322 (2007).

    Article  CAS  Google Scholar 

  9. I.-H. Kim, S. C. Lee, and Y. G. Jeong, Fiber. Polym., 10, 687 (2009).

    Article  CAS  Google Scholar 

  10. J. M. Hutchinson, Prog. Polym. Sci., 20, 703 (1995).

    Article  CAS  Google Scholar 

  11. A. Aref-Azar, F. Arnoux, F. Biddlestone, and J. N. Hay, Thermochim. Acta, 273, 217 (1996).

    Article  CAS  Google Scholar 

  12. J. M. Hutchinson, in The Physics of Glassy Polymers, R. N. Haward and R. J. Young, Eds., Chapman & Hall, London, 1997.

    Google Scholar 

  13. N. A. Bailey and J. N. Hay, Thermochim. Acta, 367–368, 425 (2001).

    Article  Google Scholar 

  14. J. R. Atkinson, J. N. Hay, and M. J. Jenkins, Polymer, 43, 731 (2002).

    Article  CAS  Google Scholar 

  15. R. Surana, A. Pyne, M. Rani, and R. Suryanarayanan, Thermochim. Acta, 433, 173 (2005).

    Article  CAS  Google Scholar 

  16. Y. J. Kim, T. Hagiwara, K. Kawai, T. Suzuki, and R. Takai, Carbonhyd. Polym., 53, 289 (2003).

    Article  CAS  Google Scholar 

  17. Y. Yang, A. D’amore, Y. Di, L. Nicolais, and B. Li, J. Appl. Polym. Sci., 59, 1159 (1996).

    Article  CAS  Google Scholar 

  18. C. G. Robertson, J. E. Monat, and G. L. Wilkes, J. Polym. Sci. Part B: Polym. Phys., 37, 1931 (1999).

    Article  CAS  Google Scholar 

  19. Y. G. Jeong, S. C. Lee, and W. H. Jo, Macromol. Res., 14, 416 (2006).

    CAS  Google Scholar 

  20. J. M. G. Cowie and R. Ferguson, Polym. Commun., 27, 258 (1986).

    CAS  Google Scholar 

  21. A. A. Mehmet-Alkan, F. Biddlestone, and J. N. Hay, Thermochim. Acta, 256, 123 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, M., Lee, S.C. & Jeong, Y.G. Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various D-isomer contents. Macromol. Res. 18, 346–351 (2010). https://doi.org/10.1007/s13233-010-0410-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0410-7

Keywords

Navigation